mips: octeon: Add octeon_ddr.h header

This header will be used by the DDR driver (lmc). Its ported from the
2013 Cavium / Marvell U-Boot repository.

Signed-off-by: Aaron Williams <awilliams@marvell.com>
Signed-off-by: Stefan Roese <sr@denx.de>
This commit is contained in:
Aaron Williams 2020-09-02 08:29:05 +02:00 committed by Daniel Schwierzeck
parent 91e34fcb41
commit 073e8ee5df

View file

@ -0,0 +1,982 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2020 Marvell International Ltd.
*/
#ifndef __OCTEON_DDR_H_
#define __OCTEON_DDR_H_
#include <env.h>
#include <linux/compat.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <mach/octeon-model.h>
#include <mach/cvmx/cvmx-lmcx-defs.h>
/* Mapping is done starting from 0x11800.80000000 */
#define CVMX_L2C_CTL 0x00800000
#define CVMX_L2C_BIG_CTL 0x00800030
#define CVMX_L2C_TADX_INT(i) (0x00a00028 + (((i) & 7) * 0x40000))
#define CVMX_L2C_MCIX_INT(i) (0x00c00028 + (((i) & 3) * 0x40000))
/* Some "external" (non-LMC) registers */
#define CVMX_IPD_CLK_COUNT 0x00014F0000000338
#define CVMX_FPA_CLK_COUNT 0x00012800000000F0
#define CVMX_NODE_MEM_SHIFT 40
#define DDR_INTERFACE_MAX 4
/* Private data struct */
struct ddr_priv {
void __iomem *lmc_base;
void __iomem *l2c_base;
bool ddr_clock_initialized[DDR_INTERFACE_MAX];
bool ddr_memory_preserved;
u32 flags;
struct ram_info info;
};
/* Short cut to convert a number to megabytes */
#define MB(X) ((u64)(X) * (u64)(1024 * 1024))
#define octeon_is_cpuid(x) (__OCTEON_IS_MODEL_COMPILE__(x, read_c0_prid()))
#define strtoull simple_strtoull
/* Access LMC registers */
static inline u64 lmc_rd(struct ddr_priv *priv, u64 addr)
{
return ioread64(priv->lmc_base + addr);
}
static inline void lmc_wr(struct ddr_priv *priv, u64 addr, u64 val)
{
iowrite64(val, priv->lmc_base + addr);
}
/* Access L2C registers */
static inline u64 l2c_rd(struct ddr_priv *priv, u64 addr)
{
return ioread64(priv->l2c_base + addr);
}
static inline void l2c_wr(struct ddr_priv *priv, u64 addr, u64 val)
{
iowrite64(val, priv->l2c_base + addr);
}
/* Access other CSR registers not located inside the LMC address space */
static inline u64 csr_rd(u64 addr)
{
void __iomem *base;
base = ioremap_nocache(addr, 0x100);
return ioread64(base);
}
static inline void csr_wr(u64 addr, u64 val)
{
void __iomem *base;
base = ioremap_nocache(addr, 0x100);
return iowrite64(val, base);
}
/* "Normal" access, without any offsets and/or mapping */
static inline u64 cvmx_read64_uint64(u64 addr)
{
return readq((void *)addr);
}
static inline void cvmx_write64_uint64(u64 addr, u64 val)
{
writeq(val, (void *)addr);
}
/* Failsafe mode */
#define FLAG_FAILSAFE_MODE 0x01000
/* Note that the DDR clock initialized flags must be contiguous */
/* Clock for DDR 0 initialized */
#define FLAG_DDR0_CLK_INITIALIZED 0x02000
/* Clock for DDR 1 initialized */
#define FLAG_DDR1_CLK_INITIALIZED 0x04000
/* Clock for DDR 2 initialized */
#define FLAG_DDR2_CLK_INITIALIZED 0x08000
/* Clock for DDR 3 initialized */
#define FLAG_DDR3_CLK_INITIALIZED 0x10000
/* Loaded into RAM externally */
#define FLAG_RAM_RESIDENT 0x20000
/* Verbose DDR information */
#define FLAG_DDR_VERBOSE 0x40000
/* Check env. for DDR variables */
#define FLAG_DDR_DEBUG 0x80000
#define FLAG_DDR_TRACE_INIT 0x100000
#define FLAG_MEMORY_PRESERVED 0x200000
#define FLAG_DFM_VERBOSE 0x400000
#define FLAG_DFM_TRACE_INIT 0x800000
/* DFM memory clock initialized */
#define FLAG_DFM_CLK_INITIALIZED 0x1000000
/* EEPROM clock descr. missing */
#define FLAG_CLOCK_DESC_MISSING 0x2000000
/* EEPROM board descr. missing */
#define FLAG_BOARD_DESC_MISSING 0x4000000
#define FLAG_DDR_PROMPT 0x8000000
#ifndef DDR_NO_DEBUG
static inline int ddr_verbose(struct ddr_priv *priv)
{
return !!(priv->flags & FLAG_DDR_VERBOSE);
}
static inline char *ddr_getenv_debug(struct ddr_priv *priv, char *name)
{
if (priv->flags & FLAG_FAILSAFE_MODE)
return NULL;
if (priv->flags & FLAG_DDR_DEBUG)
return env_get(name);
return NULL;
}
#else
static inline int ddr_verbose(void)
{
return 0;
}
#endif
/* turn the variable name into a string */
#define CVMX_TMP_STR(x) CVMX_TMP_STR2(x)
#define CVMX_TMP_STR2(x) #x
#define CVMX_SYNC asm volatile ("sync" : : : "memory")
#define CVMX_CACHE(op, address, offset) \
asm volatile ("cache " CVMX_TMP_STR(op) ", " \
CVMX_TMP_STR(offset) "(%[rbase])" \
: : [rbase] "d" (address))
/* unlock the state */
#define CVMX_CACHE_WBIL2(address, offset) \
CVMX_CACHE(23, address, offset)
/* complete prefetches, invalidate entire dcache */
#define CVMX_DCACHE_INVALIDATE \
{ CVMX_SYNC; asm volatile ("cache 9, 0($0)" : : ); }
/**
* cvmx_l2c_cfg
*
* Specify the RSL base addresses for the block
*
* L2C_CFG = L2C Configuration
*
* Description:
*/
union cvmx_l2c_cfg {
u64 u64;
struct cvmx_l2c_cfg_s {
uint64_t reserved_20_63:44;
uint64_t bstrun:1;
uint64_t lbist:1;
uint64_t xor_bank:1;
uint64_t dpres1:1;
uint64_t dpres0:1;
uint64_t dfill_dis:1;
uint64_t fpexp:4;
uint64_t fpempty:1;
uint64_t fpen:1;
uint64_t idxalias:1;
uint64_t mwf_crd:4;
uint64_t rsp_arb_mode:1;
uint64_t rfb_arb_mode:1;
uint64_t lrf_arb_mode:1;
} s;
};
/**
* cvmx_l2c_ctl
*
* L2C_CTL = L2C Control
*
*
* Notes:
* (1) If MAXVAB is != 0, VAB_THRESH should be less than MAXVAB.
*
* (2) L2DFDBE and L2DFSBE allows software to generate L2DSBE, L2DDBE, VBFSBE,
* and VBFDBE errors for the purposes of testing error handling code. When
* one (or both) of these bits are set a PL2 which misses in the L2 will fill
* with the appropriate error in the first 2 OWs of the fill. Software can
* determine which OW pair gets the error by choosing the desired fill order
* (address<6:5>). A PL2 which hits in the L2 will not inject any errors.
* Therefore sending a WBIL2 prior to the PL2 is recommended to make a miss
* likely (if multiple processors are involved software must be careful to be
* sure no other processor or IO device can bring the block into the L2).
*
* To generate a VBFSBE or VBFDBE, software must first get the cache block
* into the cache with an error using a PL2 which misses the L2. Then a
* store partial to a portion of the cache block without the error must
* change the block to dirty. Then, a subsequent WBL2/WBIL2/victim will
* trigger the VBFSBE/VBFDBE error.
*/
union cvmx_l2c_ctl {
u64 u64;
struct cvmx_l2c_ctl_s {
uint64_t reserved_29_63:35;
uint64_t rdf_fast:1;
uint64_t disstgl2i:1;
uint64_t l2dfsbe:1;
uint64_t l2dfdbe:1;
uint64_t discclk:1;
uint64_t maxvab:4;
uint64_t maxlfb:4;
uint64_t rsp_arb_mode:1;
uint64_t xmc_arb_mode:1;
uint64_t reserved_2_13:12;
uint64_t disecc:1;
uint64_t disidxalias:1;
} s;
struct cvmx_l2c_ctl_cn73xx {
uint64_t reserved_32_63:32;
uint64_t ocla_qos:3;
uint64_t reserved_28_28:1;
uint64_t disstgl2i:1;
uint64_t reserved_25_26:2;
uint64_t discclk:1;
uint64_t reserved_16_23:8;
uint64_t rsp_arb_mode:1;
uint64_t xmc_arb_mode:1;
uint64_t rdf_cnt:8;
uint64_t reserved_4_5:2;
uint64_t disldwb:1;
uint64_t dissblkdty:1;
uint64_t disecc:1;
uint64_t disidxalias:1;
} cn73xx;
struct cvmx_l2c_ctl_cn73xx cn78xx;
};
/**
* cvmx_l2c_big_ctl
*
* L2C_BIG_CTL = L2C Big memory control register
*
*
* Notes:
* (1) BIGRD interrupts can occur during normal operation as the PP's are
* allowed to prefetch to non-existent memory locations. Therefore,
* BIGRD is for informational purposes only.
*
* (2) When HOLEWR/BIGWR blocks a store L2C_VER_ID, L2C_VER_PP, L2C_VER_IOB,
* and L2C_VER_MSC will be loaded just like a store which is blocked by VRTWR.
* Additionally, L2C_ERR_XMC will be loaded.
*/
union cvmx_l2c_big_ctl {
u64 u64;
struct cvmx_l2c_big_ctl_s {
uint64_t reserved_8_63:56;
uint64_t maxdram:4;
uint64_t reserved_0_3:4;
} s;
struct cvmx_l2c_big_ctl_cn61xx {
uint64_t reserved_8_63:56;
uint64_t maxdram:4;
uint64_t reserved_1_3:3;
uint64_t disable:1;
} cn61xx;
struct cvmx_l2c_big_ctl_cn61xx cn63xx;
struct cvmx_l2c_big_ctl_cn61xx cn66xx;
struct cvmx_l2c_big_ctl_cn61xx cn68xx;
struct cvmx_l2c_big_ctl_cn61xx cn68xxp1;
struct cvmx_l2c_big_ctl_cn70xx {
uint64_t reserved_8_63:56;
uint64_t maxdram:4;
uint64_t reserved_1_3:3;
uint64_t disbig:1;
} cn70xx;
struct cvmx_l2c_big_ctl_cn70xx cn70xxp1;
struct cvmx_l2c_big_ctl_cn70xx cn73xx;
struct cvmx_l2c_big_ctl_cn70xx cn78xx;
struct cvmx_l2c_big_ctl_cn70xx cn78xxp1;
struct cvmx_l2c_big_ctl_cn61xx cnf71xx;
struct cvmx_l2c_big_ctl_cn70xx cnf75xx;
};
struct rlevel_byte_data {
int delay;
int loop_total;
int loop_count;
int best;
u64 bm;
int bmerrs;
int sqerrs;
int bestsq;
};
#define DEBUG_VALIDATE_BITMASK 0
#if DEBUG_VALIDATE_BITMASK
#define debug_bitmask_print printf
#else
#define debug_bitmask_print(...)
#endif
#define RLEVEL_BITMASK_TRAILING_BITS_ERROR 5
// FIXME? now less than TOOLONG
#define RLEVEL_BITMASK_BUBBLE_BITS_ERROR 11
#define RLEVEL_BITMASK_NARROW_ERROR 6
#define RLEVEL_BITMASK_BLANK_ERROR 100
#define RLEVEL_BITMASK_TOOLONG_ERROR 12
#define RLEVEL_NONSEQUENTIAL_DELAY_ERROR 50
#define RLEVEL_ADJACENT_DELAY_ERROR 30
/*
* Apply a filter to the BITMASK results returned from Octeon
* read-leveling to determine the most likely delay result. This
* computed delay may be used to qualify the delay result returned by
* Octeon. Accumulate an error penalty for invalid characteristics of
* the bitmask so that they can be used to select the most reliable
* results.
*
* The algorithm searches for the largest contiguous MASK within a
* maximum RANGE of bits beginning with the MSB.
*
* 1. a MASK with a WIDTH less than 4 will be penalized
* 2. Bubbles in the bitmask that occur before or after the MASK
* will be penalized
* 3. If there are no trailing bubbles then extra bits that occur
* beyond the maximum RANGE will be penalized.
*
* +++++++++++++++++++++++++++++++++++++++++++++++++++
* + +
* + e.g. bitmask = 27B00 +
* + +
* + 63 +--- mstart 0 +
* + | | | +
* + | +---------+ +--- fb | +
* + | | range | | | +
* + V V V V V +
* + +
* + 0 0 ... 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 +
* + +
* + ^ ^ ^ +
* + | | mask| +
* + lb ---+ +-----+ +
* + width +
* + +
* +++++++++++++++++++++++++++++++++++++++++++++++++++
*/
struct rlevel_bitmask {
u64 bm;
u8 mstart;
u8 width;
int errs;
};
#define MASKRANGE_BITS 6
#define MASKRANGE ((1 << MASKRANGE_BITS) - 1)
/* data field addresses in the DDR2 SPD eeprom */
enum ddr2_spd_addrs {
DDR2_SPD_BYTES_PROGRAMMED = 0,
DDR2_SPD_TOTAL_BYTES = 1,
DDR2_SPD_MEM_TYPE = 2,
DDR2_SPD_NUM_ROW_BITS = 3,
DDR2_SPD_NUM_COL_BITS = 4,
DDR2_SPD_NUM_RANKS = 5,
DDR2_SPD_CYCLE_CLX = 9,
DDR2_SPD_CONFIG_TYPE = 11,
DDR2_SPD_REFRESH = 12,
DDR2_SPD_SDRAM_WIDTH = 13,
DDR2_SPD_BURST_LENGTH = 16,
DDR2_SPD_NUM_BANKS = 17,
DDR2_SPD_CAS_LATENCY = 18,
DDR2_SPD_DIMM_TYPE = 20,
DDR2_SPD_CYCLE_CLX1 = 23,
DDR2_SPD_CYCLE_CLX2 = 25,
DDR2_SPD_TRP = 27,
DDR2_SPD_TRRD = 28,
DDR2_SPD_TRCD = 29,
DDR2_SPD_TRAS = 30,
DDR2_SPD_TWR = 36,
DDR2_SPD_TWTR = 37,
DDR2_SPD_TRFC_EXT = 40,
DDR2_SPD_TRFC = 42,
DDR2_SPD_CHECKSUM = 63,
DDR2_SPD_MFR_ID = 64
};
/* data field addresses in the DDR2 SPD eeprom */
enum ddr3_spd_addrs {
DDR3_SPD_BYTES_PROGRAMMED = 0,
DDR3_SPD_REVISION = 1,
DDR3_SPD_KEY_BYTE_DEVICE_TYPE = 2,
DDR3_SPD_KEY_BYTE_MODULE_TYPE = 3,
DDR3_SPD_DENSITY_BANKS = 4,
DDR3_SPD_ADDRESSING_ROW_COL_BITS = 5,
DDR3_SPD_NOMINAL_VOLTAGE = 6,
DDR3_SPD_MODULE_ORGANIZATION = 7,
DDR3_SPD_MEMORY_BUS_WIDTH = 8,
DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR = 9,
DDR3_SPD_MEDIUM_TIMEBASE_DIVIDEND = 10,
DDR3_SPD_MEDIUM_TIMEBASE_DIVISOR = 11,
DDR3_SPD_MINIMUM_CYCLE_TIME_TCKMIN = 12,
DDR3_SPD_CAS_LATENCIES_LSB = 14,
DDR3_SPD_CAS_LATENCIES_MSB = 15,
DDR3_SPD_MIN_CAS_LATENCY_TAAMIN = 16,
DDR3_SPD_MIN_WRITE_RECOVERY_TWRMIN = 17,
DDR3_SPD_MIN_RAS_CAS_DELAY_TRCDMIN = 18,
DDR3_SPD_MIN_ROW_ACTIVE_DELAY_TRRDMIN = 19,
DDR3_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN = 20,
DDR3_SPD_UPPER_NIBBLES_TRAS_TRC = 21,
DDR3_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN = 22,
DDR3_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN = 23,
DDR3_SPD_MIN_REFRESH_RECOVERY_LSB_TRFCMIN = 24,
DDR3_SPD_MIN_REFRESH_RECOVERY_MSB_TRFCMIN = 25,
DDR3_SPD_MIN_INTERNAL_WRITE_READ_CMD_TWTRMIN = 26,
DDR3_SPD_MIN_INTERNAL_READ_PRECHARGE_CMD_TRTPMIN = 27,
DDR3_SPD_UPPER_NIBBLE_TFAW = 28,
DDR3_SPD_MIN_FOUR_ACTIVE_WINDOW_TFAWMIN = 29,
DDR3_SPD_SDRAM_OPTIONAL_FEATURES = 30,
DDR3_SPD_SDRAM_THERMAL_REFRESH_OPTIONS = 31,
DDR3_SPD_MODULE_THERMAL_SENSOR = 32,
DDR3_SPD_SDRAM_DEVICE_TYPE = 33,
DDR3_SPD_MINIMUM_CYCLE_TIME_FINE_TCKMIN = 34,
DDR3_SPD_MIN_CAS_LATENCY_FINE_TAAMIN = 35,
DDR3_SPD_MIN_RAS_CAS_DELAY_FINE_TRCDMIN = 36,
DDR3_SPD_MIN_ROW_PRECHARGE_DELAY_FINE_TRPMIN = 37,
DDR3_SPD_MIN_ACTIVE_REFRESH_LSB_FINE_TRCMIN = 38,
DDR3_SPD_REFERENCE_RAW_CARD = 62,
DDR3_SPD_ADDRESS_MAPPING = 63,
DDR3_SPD_REGISTER_MANUFACTURER_ID_LSB = 65,
DDR3_SPD_REGISTER_MANUFACTURER_ID_MSB = 66,
DDR3_SPD_REGISTER_REVISION_NUMBER = 67,
DDR3_SPD_MODULE_SERIAL_NUMBER = 122,
DDR3_SPD_CYCLICAL_REDUNDANCY_CODE_LOWER_NIBBLE = 126,
DDR3_SPD_CYCLICAL_REDUNDANCY_CODE_UPPER_NIBBLE = 127,
DDR3_SPD_MODULE_PART_NUMBER = 128
};
/* data field addresses in the DDR4 SPD eeprom */
enum ddr4_spd_addrs {
DDR4_SPD_BYTES_PROGRAMMED = 0,
DDR4_SPD_REVISION = 1,
DDR4_SPD_KEY_BYTE_DEVICE_TYPE = 2,
DDR4_SPD_KEY_BYTE_MODULE_TYPE = 3,
DDR4_SPD_DENSITY_BANKS = 4,
DDR4_SPD_ADDRESSING_ROW_COL_BITS = 5,
DDR4_SPD_PACKAGE_TYPE = 6,
DDR4_SPD_OPTIONAL_FEATURES = 7,
DDR4_SPD_THERMAL_REFRESH_OPTIONS = 8,
DDR4_SPD_OTHER_OPTIONAL_FEATURES = 9,
DDR4_SPD_SECONDARY_PACKAGE_TYPE = 10,
DDR4_SPD_MODULE_NOMINAL_VOLTAGE = 11,
DDR4_SPD_MODULE_ORGANIZATION = 12,
DDR4_SPD_MODULE_MEMORY_BUS_WIDTH = 13,
DDR4_SPD_MODULE_THERMAL_SENSOR = 14,
DDR4_SPD_RESERVED_BYTE15 = 15,
DDR4_SPD_RESERVED_BYTE16 = 16,
DDR4_SPD_TIMEBASES = 17,
DDR4_SPD_MINIMUM_CYCLE_TIME_TCKAVGMIN = 18,
DDR4_SPD_MAXIMUM_CYCLE_TIME_TCKAVGMAX = 19,
DDR4_SPD_CAS_LATENCIES_BYTE0 = 20,
DDR4_SPD_CAS_LATENCIES_BYTE1 = 21,
DDR4_SPD_CAS_LATENCIES_BYTE2 = 22,
DDR4_SPD_CAS_LATENCIES_BYTE3 = 23,
DDR4_SPD_MIN_CAS_LATENCY_TAAMIN = 24,
DDR4_SPD_MIN_RAS_CAS_DELAY_TRCDMIN = 25,
DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN = 26,
DDR4_SPD_UPPER_NIBBLES_TRAS_TRC = 27,
DDR4_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN = 28,
DDR4_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN = 29,
DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC1MIN = 30,
DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC1MIN = 31,
DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC2MIN = 32,
DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC2MIN = 33,
DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC4MIN = 34,
DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC4MIN = 35,
DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_MSN_TFAWMIN = 36,
DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_LSB_TFAWMIN = 37,
DDR4_SPD_MIN_ROW_ACTIVE_DELAY_SAME_TRRD_SMIN = 38,
DDR4_SPD_MIN_ROW_ACTIVE_DELAY_DIFF_TRRD_LMIN = 39,
DDR4_SPD_MIN_CAS_TO_CAS_DELAY_TCCD_LMIN = 40,
DDR4_SPD_MIN_CAS_TO_CAS_DELAY_FINE_TCCD_LMIN = 117,
DDR4_SPD_MIN_ACT_TO_ACT_DELAY_SAME_FINE_TRRD_LMIN = 118,
DDR4_SPD_MIN_ACT_TO_ACT_DELAY_DIFF_FINE_TRRD_SMIN = 119,
DDR4_SPD_MIN_ACT_TO_ACT_REFRESH_DELAY_FINE_TRCMIN = 120,
DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_FINE_TRPMIN = 121,
DDR4_SPD_MIN_RAS_TO_CAS_DELAY_FINE_TRCDMIN = 122,
DDR4_SPD_MIN_CAS_LATENCY_FINE_TAAMIN = 123,
DDR4_SPD_MAX_CYCLE_TIME_FINE_TCKAVGMAX = 124,
DDR4_SPD_MIN_CYCLE_TIME_FINE_TCKAVGMIN = 125,
DDR4_SPD_CYCLICAL_REDUNDANCY_CODE_LOWER_NIBBLE = 126,
DDR4_SPD_CYCLICAL_REDUNDANCY_CODE_UPPER_NIBBLE = 127,
DDR4_SPD_REFERENCE_RAW_CARD = 130,
DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE = 131,
DDR4_SPD_REGISTER_MANUFACTURER_ID_LSB = 133,
DDR4_SPD_REGISTER_MANUFACTURER_ID_MSB = 134,
DDR4_SPD_REGISTER_REVISION_NUMBER = 135,
DDR4_SPD_RDIMM_ADDR_MAPPING_FROM_REGISTER_TO_DRAM = 136,
DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CTL = 137,
DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CK = 138,
};
#define SPD_EEPROM_SIZE (DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CK + 1)
struct impedence_values {
unsigned char *rodt_ohms;
unsigned char *rtt_nom_ohms;
unsigned char *rtt_nom_table;
unsigned char *rtt_wr_ohms;
unsigned char *dic_ohms;
short *drive_strength;
short *dqx_strength;
};
#define RODT_OHMS_COUNT 8
#define RTT_NOM_OHMS_COUNT 8
#define RTT_NOM_TABLE_COUNT 8
#define RTT_WR_OHMS_COUNT 8
#define DIC_OHMS_COUNT 3
#define DRIVE_STRENGTH_COUNT 15
/*
* Structure that provides DIMM information, either in the form of an SPD
* TWSI address, or a pointer to an array that contains SPD data. One of
* the two fields must be valid.
*/
struct dimm_config {
u16 spd_addrs[2]; /* TWSI address of SPD, 0 if not used */
u8 *spd_ptrs[2]; /* pointer to SPD data array, NULL if not used */
int spd_cached[2];
u8 spd_data[2][SPD_EEPROM_SIZE];
};
struct dimm_odt_config {
u8 odt_ena; /* FIX: dqx_ctl for Octeon 3 DDR4 */
u64 odt_mask; /* FIX: wodt_mask for Octeon 3 */
union cvmx_lmcx_modereg_params1 modereg_params1;
union cvmx_lmcx_modereg_params2 modereg_params2;
u8 qs_dic; /* FIX: rodt_ctl for Octeon 3 */
u64 rodt_ctl; /* FIX: rodt_mask for Octeon 3 */
u8 dic;
};
struct ddr_delay_config {
u32 ddr_board_delay;
u8 lmc_delay_clk;
u8 lmc_delay_cmd;
u8 lmc_delay_dq;
};
/*
* The parameters below make up the custom_lmc_config data structure.
* This structure is used to customize the way that the LMC DRAM
* Controller is configured for a particular board design.
*
* The HRM describes LMC Read Leveling which supports automatic
* selection of per byte-lane delays. When measuring the read delays
* the LMC configuration software sweeps through a range of settings
* for LMC0_COMP_CTL2[RODT_CTL], the Octeon II on-die-termination
* resistance and LMC0_MODEREG_PARAMS1[RTT_NOM_XX], the DRAM
* on-die-termination resistance. The minimum and maximum parameters
* for rtt_nom_idx and rodt_ctl listed below determine the ranges of
* ODT settings used for the measurements. Note that for rtt_nom an
* index is used into a sorted table rather than the direct csr setting
* in order to optimize the sweep.
*
* .min_rtt_nom_idx: 1=120ohms, 2=60ohms, 3=40ohms, 4=30ohms, 5=20ohms
* .max_rtt_nom_idx: 1=120ohms, 2=60ohms, 3=40ohms, 4=30ohms, 5=20ohms
* .min_rodt_ctl: 1=20ohms, 2=30ohms, 3=40ohms, 4=60ohms, 5=120ohms
* .max_rodt_ctl: 1=20ohms, 2=30ohms, 3=40ohms, 4=60ohms, 5=120ohms
*
* The settings below control the Octeon II drive strength for the CK,
* ADD/CMD, and DQ/DQS signals. 1=24ohms, 2=26.67ohms, 3=30ohms,
* 4=34.3ohms, 5=40ohms, 6=48ohms, 6=60ohms.
*
* .dqx_ctl: Drive strength control for DDR_DQX/DDR_DQS_X_P/N drivers.
* .ck_ctl: Drive strength control for
* DDR_CK_X_P/DDR_DIMMX_CSX_L/DDR_DIMMX_ODT_X drivers.
* .cmd_ctl: Drive strength control for CMD/A/RESET_L/CKEX drivers.
*
* The LMC controller software selects the most optimal CAS Latency
* that complies with the appropriate SPD values and the frequency
* that the DRAMS are being operated. When operating the DRAMs at
* frequencies substantially lower than their rated frequencies it
* might be necessary to limit the minimum CAS Latency the LMC
* controller software is allowed to select in order to make the DRAM
* work reliably.
*
* .min_cas_latency: Minimum allowed CAS Latency
*
* The value used for LMC0_RLEVEL_CTL[OFFSET_EN] determine how the
* read-leveling information that the Octeon II gathers is interpreted
* to determine the per-byte read delays.
*
* .offset_en: Value used for LMC0_RLEVEL_CTL[OFFSET_EN].
* .offset_udimm: Value used for LMC0_RLEVEL_CTL[OFFSET] for UDIMMS.
* .offset_rdimm: Value used for LMC0_RLEVEL_CTL[OFFSET] for RDIMMS.
*
* The LMC configuration software sweeps through a range of ODT
* settings while measuring the per-byte read delays. During those
* measurements the software makes an assessment of the quality of the
* measurements in order to determine which measurements provide the
* most accurate delays. The automatic settings provide the option to
* allow that same assessment to determine the most optimal RODT_CTL
* and/or RTT_NOM settings.
*
* The automatic approach might provide the best means to determine
* the settings used for initial poweron of a new design. However,
* the final settings should be determined by board analysis, testing,
* and experience.
*
* .ddr_rtt_nom_auto: 1 means automatically set RTT_NOM value.
* .ddr_rodt_ctl_auto: 1 means automatically set RODT_CTL value.
*
* .rlevel_compute: Enables software interpretation of per-byte read
* delays using the measurements collected by the
* Octeon II rather than completely relying on the
* Octeon II to determine the delays. 1=software
* computation is recomended since a more complete
* analysis is implemented in software.
*
* .rlevel_comp_offset: Set to 2 unless instructed differently by Cavium.
*
* .rlevel_average_loops: Determines the number of times the read-leveling
* sequence is run for each rank. The results is
* then averaged across the number of loops. The
* default setting is 1.
*
* .ddr2t_udimm:
* .ddr2t_rdimm: Turn on the DDR 2T mode. 2-cycle window for CMD and
* address. This mode helps relieve setup time pressure
* on the address and command bus. Please refer to
* Micron's tech note tn_47_01 titled DDR2-533 Memory
* Design Guide for Two Dimm Unbuffered Systems for
* physical details.
*
* .disable_sequential_delay_check: As result of the flyby topology
* prescribed in the JEDEC specifications the byte delays should
* maintain a consistent increasing or decreasing trend across
* the bytes on standard dimms. This setting can be used disable
* that check for unusual circumstances where the check is not
* useful.
*
* .maximum_adjacent_rlevel_delay_increment: An additional sequential
* delay check for the delays that result from the flyby
* topology. This value specifies the maximum difference between
* the delays of adjacent bytes. A value of 0 disables this
* check.
*
* .fprch2 Front Porch Enable: When set, the turn-off
* time for the default DDR_DQ/DQS drivers is FPRCH2 CKs earlier.
* 00 = 0 CKs
* 01 = 1 CKs
* 10 = 2 CKs
*
* .parity: The parity input signal PAR_IN on each dimm must be
* strapped high or low on the board. This bit is programmed
* into LMC0_DIMM_CTL[PARITY] and it must be set to match the
* board strapping. This signal is typically strapped low.
*
* .mode32b: Enable 32-bit datapath mode. Set to 1 if only 32 DQ pins
* are used. (cn61xx, cn71xx)
*
* .measured_vref: Set to 1 to measure VREF; set to 0 to compute VREF.
*
* .dram_connection: Set to 1 if discrete DRAMs; set to 0 if using DIMMs.
* This changes the algorithms used to compute VREF.
*
* .dll_write_offset: FIXME: Add description
* .dll_read_offset: FIXME: Add description
*/
struct rlevel_table {
const char part[20];
int speed;
u64 rl_rank[4][4];
};
struct ddr3_custom_config {
u8 min_rtt_nom_idx;
u8 max_rtt_nom_idx;
u8 min_rodt_ctl;
u8 max_rodt_ctl;
u8 dqx_ctl;
u8 ck_ctl;
u8 cmd_ctl;
u8 ctl_ctl;
u8 min_cas_latency;
u8 offset_en;
u8 offset_udimm;
u8 offset_rdimm;
u8 rlevel_compute;
u8 ddr_rtt_nom_auto;
u8 ddr_rodt_ctl_auto;
u8 rlevel_comp_offset_udimm;
u8 rlevel_comp_offset_rdimm;
int8_t ptune_offset;
int8_t ntune_offset;
u8 rlevel_average_loops;
u8 ddr2t_udimm;
u8 ddr2t_rdimm;
u8 disable_sequential_delay_check;
u8 maximum_adjacent_rlevel_delay_increment;
u8 parity;
u8 fprch2;
u8 mode32b;
u8 measured_vref;
u8 dram_connection;
const int8_t *dll_write_offset;
const int8_t *dll_read_offset;
struct rlevel_table *rl_tbl;
};
#define DDR_CFG_T_MAX_DIMMS 5
struct ddr_conf {
struct dimm_config dimm_config_table[DDR_CFG_T_MAX_DIMMS];
struct dimm_odt_config odt_1rank_config[4];
struct dimm_odt_config odt_2rank_config[4];
struct dimm_odt_config odt_4rank_config[4];
struct ddr_delay_config unbuffered;
struct ddr_delay_config registered;
struct ddr3_custom_config custom_lmc_config;
};
/* Divide and round results to the nearest integer. */
static inline u64 divide_nint(u64 dividend, u64 divisor)
{
u64 quotent, remainder;
quotent = dividend / divisor;
remainder = dividend % divisor;
return (quotent + ((remainder * 2) >= divisor));
}
/* Divide and round results up to the next higher integer. */
static inline u64 divide_roundup(u64 dividend, u64 divisor)
{
return ((dividend + divisor - 1) / divisor);
}
enum ddr_type {
DDR3_DRAM = 3,
DDR4_DRAM = 4,
};
#define rttnom_none 0 /* Rtt_Nom disabled */
#define rttnom_60ohm 1 /* RZQ/4 = 240/4 = 60 ohms */
#define rttnom_120ohm 2 /* RZQ/2 = 240/2 = 120 ohms */
#define rttnom_40ohm 3 /* RZQ/6 = 240/6 = 40 ohms */
#define rttnom_20ohm 4 /* RZQ/12 = 240/12 = 20 ohms */
#define rttnom_30ohm 5 /* RZQ/8 = 240/8 = 30 ohms */
#define rttnom_rsrv1 6 /* Reserved */
#define rttnom_rsrv2 7 /* Reserved */
#define rttwr_none 0 /* Dynamic ODT off */
#define rttwr_60ohm 1 /* RZQ/4 = 240/4 = 60 ohms */
#define rttwr_120ohm 2 /* RZQ/2 = 240/2 = 120 ohms */
#define rttwr_rsrv1 3 /* Reserved */
#define dic_40ohm 0 /* RZQ/6 = 240/6 = 40 ohms */
#define dic_34ohm 1 /* RZQ/7 = 240/7 = 34 ohms */
#define driver_24_ohm 1
#define driver_27_ohm 2
#define driver_30_ohm 3
#define driver_34_ohm 4
#define driver_40_ohm 5
#define driver_48_ohm 6
#define driver_60_ohm 7
#define rodt_ctl_none 0
#define rodt_ctl_20_ohm 1
#define rodt_ctl_30_ohm 2
#define rodt_ctl_40_ohm 3
#define rodt_ctl_60_ohm 4
#define rodt_ctl_120_ohm 5
#define ddr4_rttnom_none 0 /* Rtt_Nom disabled */
#define ddr4_rttnom_60ohm 1 /* RZQ/4 = 240/4 = 60 ohms */
#define ddr4_rttnom_120ohm 2 /* RZQ/2 = 240/2 = 120 ohms */
#define ddr4_rttnom_40ohm 3 /* RZQ/6 = 240/6 = 40 ohms */
#define ddr4_rttnom_240ohm 4 /* RZQ/1 = 240/1 = 240 ohms */
#define ddr4_rttnom_48ohm 5 /* RZQ/5 = 240/5 = 48 ohms */
#define ddr4_rttnom_80ohm 6 /* RZQ/3 = 240/3 = 80 ohms */
#define ddr4_rttnom_34ohm 7 /* RZQ/7 = 240/7 = 34 ohms */
#define ddr4_rttwr_none 0 /* Dynamic ODT off */
#define ddr4_rttwr_120ohm 1 /* RZQ/2 = 240/2 = 120 ohms */
#define ddr4_rttwr_240ohm 2 /* RZQ/1 = 240/1 = 240 ohms */
#define ddr4_rttwr_hiz 3 /* HiZ */
/* This setting is available for cn78xx pass 2, and cn73xx & cnf75xx pass 1 */
#define ddr4_rttwr_80ohm 4 /* RZQ/3 = 240/3 = 80 ohms */
#define ddr4_dic_34ohm 0 /* RZQ/7 = 240/7 = 34 ohms */
#define ddr4_dic_48ohm 1 /* RZQ/5 = 240/5 = 48 ohms */
#define ddr4_rttpark_none 0 /* Rtt_Park disabled */
#define ddr4_rttpark_60ohm 1 /* RZQ/4 = 240/4 = 60 ohms */
#define ddr4_rttpark_120ohm 2 /* RZQ/2 = 240/2 = 120 ohms */
#define ddr4_rttpark_40ohm 3 /* RZQ/6 = 240/6 = 40 ohms */
#define ddr4_rttpark_240ohm 4 /* RZQ/1 = 240/1 = 240 ohms */
#define ddr4_rttpark_48ohm 5 /* RZQ/5 = 240/5 = 48 ohms */
#define ddr4_rttpark_80ohm 6 /* RZQ/3 = 240/3 = 80 ohms */
#define ddr4_rttpark_34ohm 7 /* RZQ/7 = 240/7 = 34 ohms */
#define ddr4_driver_26_ohm 2
#define ddr4_driver_30_ohm 3
#define ddr4_driver_34_ohm 4
#define ddr4_driver_40_ohm 5
#define ddr4_driver_48_ohm 6
#define ddr4_dqx_driver_24_ohm 1
#define ddr4_dqx_driver_27_ohm 2
#define ddr4_dqx_driver_30_ohm 3
#define ddr4_dqx_driver_34_ohm 4
#define ddr4_dqx_driver_40_ohm 5
#define ddr4_dqx_driver_48_ohm 6
#define ddr4_dqx_driver_60_ohm 7
#define ddr4_rodt_ctl_none 0
#define ddr4_rodt_ctl_40_ohm 1
#define ddr4_rodt_ctl_60_ohm 2
#define ddr4_rodt_ctl_80_ohm 3
#define ddr4_rodt_ctl_120_ohm 4
#define ddr4_rodt_ctl_240_ohm 5
#define ddr4_rodt_ctl_34_ohm 6
#define ddr4_rodt_ctl_48_ohm 7
#define DIMM_CONFIG_TERMINATOR { {0, 0}, {NULL, NULL} }
#define SET_DDR_DLL_CTL3(field, expr) \
do { \
if (octeon_is_cpuid(OCTEON_CN66XX) || \
octeon_is_cpuid(OCTEON_CN63XX)) \
ddr_dll_ctl3.cn63xx.field = (expr); \
else if (octeon_is_cpuid(OCTEON_CN68XX) || \
octeon_is_cpuid(OCTEON_CN61XX) || \
octeon_is_cpuid(OCTEON_CNF71XX)) \
ddr_dll_ctl3.cn61xx.field = (expr); \
else if (octeon_is_cpuid(OCTEON_CN70XX) || \
octeon_is_cpuid(OCTEON_CN78XX)) \
ddr_dll_ctl3.cn70xx.field = (expr); \
else if (octeon_is_cpuid(OCTEON_CN73XX) || \
octeon_is_cpuid(OCTEON_CNF75XX)) \
ddr_dll_ctl3.cn73xx.field = (expr); \
else \
debug("%s(): " #field \
"not set for unknown chip\n", \
__func__); \
} while (0)
#define ENCODE_DLL90_BYTE_SEL(byte_sel) \
(octeon_is_cpuid(OCTEON_CN70XX) ? ((9 + 7 - (byte_sel)) % 9) : \
((byte_sel) + 1))
/**
* If debugging is disabled the ddr_print macro is not compatible
* with this macro.
*/
# define GET_DDR_DLL_CTL3(field) \
((octeon_is_cpuid(OCTEON_CN66XX) || \
octeon_is_cpuid(OCTEON_CN63XX)) ? \
ddr_dll_ctl3.cn63xx.field : \
(octeon_is_cpuid(OCTEON_CN68XX) || \
octeon_is_cpuid(OCTEON_CN61XX) || \
octeon_is_cpuid(OCTEON_CNF71XX)) ? \
ddr_dll_ctl3.cn61xx.field : \
(octeon_is_cpuid(OCTEON_CN70XX) || \
octeon_is_cpuid(OCTEON_CN78XX)) ? \
ddr_dll_ctl3.cn70xx.field : \
(octeon_is_cpuid(OCTEON_CN73XX) || \
octeon_is_cpuid(OCTEON_CNF75XX)) ? \
ddr_dll_ctl3.cn73xx.field : 0)
extern const char *ddr3_dimm_types[];
extern const char *ddr4_dimm_types[];
extern const struct dimm_odt_config disable_odt_config[];
#define RLEVEL_BYTE_BITS 6
#define RLEVEL_BYTE_MSK ((1ULL << 6) - 1)
/* Prototypes */
int get_ddr_type(struct dimm_config *dimm_config, int upper_dimm);
int get_dimm_module_type(struct dimm_config *dimm_config, int upper_dimm,
int ddr_type);
int read_spd(struct dimm_config *dimm_config, int dimm_index, int spd_field);
int read_spd_init(struct dimm_config *dimm_config, int dimm_index);
void report_dimm(struct dimm_config *dimm_config, int upper_dimm,
int dimm, int if_num);
int validate_dimm(struct ddr_priv *priv, struct dimm_config *dimm_config,
int dimm_index);
char *printable_rank_spec(char *buffer, int num_ranks, int dram_width,
int spd_package);
bool ddr_memory_preserved(struct ddr_priv *priv);
int get_wl_rank(union cvmx_lmcx_wlevel_rankx *lmc_wlevel_rank, int byte);
int get_rl_rank(union cvmx_lmcx_rlevel_rankx *lmc_rlevel_rank, int byte);
void upd_wl_rank(union cvmx_lmcx_wlevel_rankx *lmc_wlevel_rank, int byte,
int delay);
void upd_rl_rank(union cvmx_lmcx_rlevel_rankx *lmc_rlevel_rank, int byte,
int delay);
int compute_ddr3_rlevel_delay(u8 mstart, u8 width,
union cvmx_lmcx_rlevel_ctl rlevel_ctl);
int encode_row_lsb_ddr3(int row_lsb);
int encode_pbank_lsb_ddr3(int pbank_lsb);
int initialize_ddr_clock(struct ddr_priv *priv, struct ddr_conf *ddr_conf,
u32 cpu_hertz, u32 ddr_hertz, u32 ddr_ref_hertz,
int if_num, u32 if_mask);
void process_custom_dll_offsets(struct ddr_priv *priv, int if_num,
const char *enable_str,
const int8_t *offsets, const char *byte_str,
int mode);
int nonseq_del(struct rlevel_byte_data *rlevel_byte, int start, int end,
int max_adj_delay_inc);
int roundup_ddr3_wlevel_bitmask(int bitmask);
void oct3_ddr3_seq(struct ddr_priv *priv, int rank_mask, int if_num,
int sequence);
void ddr_init_seq(struct ddr_priv *priv, int rank_mask, int if_num);
void rlevel_to_wlevel(union cvmx_lmcx_rlevel_rankx *lmc_rlevel_rank,
union cvmx_lmcx_wlevel_rankx *lmc_wlevel_rank, int byte);
int validate_ddr3_rlevel_bitmask(struct rlevel_bitmask *rlevel_bitmask_p,
int ddr_type);
void change_dll_offset_enable(struct ddr_priv *priv, int if_num, int change);
unsigned short load_dll_offset(struct ddr_priv *priv, int if_num,
int dll_offset_mode,
int byte_offset, int byte);
u64 lmc_ddr3_rl_dbg_read(struct ddr_priv *priv, int if_num, int idx);
u64 lmc_ddr3_wl_dbg_read(struct ddr_priv *priv, int if_num, int idx);
void cvmx_maybe_tune_node(struct ddr_priv *priv, u32 ddr_speed);
void cvmx_dbi_switchover(struct ddr_priv *priv);
int init_octeon3_ddr3_interface(struct ddr_priv *priv,
struct ddr_conf *ddr_conf,
u32 ddr_hertz, u32 cpu_hertz, u32 ddr_ref_hertz,
int if_num, u32 if_mask);
char *lookup_env(struct ddr_priv *priv, const char *format, ...);
char *lookup_env_ull(struct ddr_priv *priv, const char *format, ...);
/* Each board provides a board-specific config table via this function */
struct ddr_conf *octeon_ddr_conf_table_get(int *count, int *def_ddr_freq);
#endif /* __OCTEON_DDR_H_ */