u-boot/arch/arm/cpu/armv8/cache_v8.c

753 lines
17 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2013
* David Feng <fenghua@phytium.com.cn>
*
* (C) Copyright 2016
* Alexander Graf <agraf@suse.de>
*/
#include <common.h>
#include <asm/system.h>
#include <asm/armv8/mmu.h>
DECLARE_GLOBAL_DATA_PTR;
#if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
/*
* With 4k page granule, a virtual address is split into 4 lookup parts
* spanning 9 bits each:
*
* _______________________________________________
* | | | | | | |
* | 0 | Lv0 | Lv1 | Lv2 | Lv3 | off |
* |_______|_______|_______|_______|_______|_______|
* 63-48 47-39 38-30 29-21 20-12 11-00
*
* mask page size
*
* Lv0: FF8000000000 --
* Lv1: 7FC0000000 1G
* Lv2: 3FE00000 2M
* Lv3: 1FF000 4K
* off: FFF
*/
u64 get_tcr(int el, u64 *pips, u64 *pva_bits)
{
u64 max_addr = 0;
u64 ips, va_bits;
u64 tcr;
int i;
/* Find the largest address we need to support */
for (i = 0; mem_map[i].size || mem_map[i].attrs; i++)
max_addr = max(max_addr, mem_map[i].virt + mem_map[i].size);
/* Calculate the maximum physical (and thus virtual) address */
if (max_addr > (1ULL << 44)) {
ips = 5;
va_bits = 48;
} else if (max_addr > (1ULL << 42)) {
ips = 4;
va_bits = 44;
} else if (max_addr > (1ULL << 40)) {
ips = 3;
va_bits = 42;
} else if (max_addr > (1ULL << 36)) {
ips = 2;
va_bits = 40;
} else if (max_addr > (1ULL << 32)) {
ips = 1;
va_bits = 36;
} else {
ips = 0;
va_bits = 32;
}
if (el == 1) {
tcr = TCR_EL1_RSVD | (ips << 32) | TCR_EPD1_DISABLE;
} else if (el == 2) {
tcr = TCR_EL2_RSVD | (ips << 16);
} else {
tcr = TCR_EL3_RSVD | (ips << 16);
}
/* PTWs cacheable, inner/outer WBWA and inner shareable */
tcr |= TCR_TG0_4K | TCR_SHARED_INNER | TCR_ORGN_WBWA | TCR_IRGN_WBWA;
tcr |= TCR_T0SZ(va_bits);
if (pips)
*pips = ips;
if (pva_bits)
*pva_bits = va_bits;
return tcr;
}
#define MAX_PTE_ENTRIES 512
static int pte_type(u64 *pte)
{
return *pte & PTE_TYPE_MASK;
}
/* Returns the LSB number for a PTE on level <level> */
static int level2shift(int level)
{
/* Page is 12 bits wide, every level translates 9 bits */
return (12 + 9 * (3 - level));
}
static u64 *find_pte(u64 addr, int level)
{
int start_level = 0;
u64 *pte;
u64 idx;
u64 va_bits;
int i;
debug("addr=%llx level=%d\n", addr, level);
get_tcr(0, NULL, &va_bits);
if (va_bits < 39)
start_level = 1;
if (level < start_level)
return NULL;
/* Walk through all page table levels to find our PTE */
pte = (u64*)gd->arch.tlb_addr;
for (i = start_level; i < 4; i++) {
idx = (addr >> level2shift(i)) & 0x1FF;
pte += idx;
debug("idx=%llx PTE %p at level %d: %llx\n", idx, pte, i, *pte);
/* Found it */
if (i == level)
return pte;
/* PTE is no table (either invalid or block), can't traverse */
if (pte_type(pte) != PTE_TYPE_TABLE)
return NULL;
/* Off to the next level */
pte = (u64*)(*pte & 0x0000fffffffff000ULL);
}
/* Should never reach here */
return NULL;
}
/* Returns and creates a new full table (512 entries) */
static u64 *create_table(void)
{
u64 *new_table = (u64*)gd->arch.tlb_fillptr;
u64 pt_len = MAX_PTE_ENTRIES * sizeof(u64);
/* Allocate MAX_PTE_ENTRIES pte entries */
gd->arch.tlb_fillptr += pt_len;
if (gd->arch.tlb_fillptr - gd->arch.tlb_addr > gd->arch.tlb_size)
panic("Insufficient RAM for page table: 0x%lx > 0x%lx. "
"Please increase the size in get_page_table_size()",
gd->arch.tlb_fillptr - gd->arch.tlb_addr,
gd->arch.tlb_size);
/* Mark all entries as invalid */
memset(new_table, 0, pt_len);
return new_table;
}
static void set_pte_table(u64 *pte, u64 *table)
{
/* Point *pte to the new table */
debug("Setting %p to addr=%p\n", pte, table);
*pte = PTE_TYPE_TABLE | (ulong)table;
}
/* Splits a block PTE into table with subpages spanning the old block */
static void split_block(u64 *pte, int level)
{
u64 old_pte = *pte;
u64 *new_table;
u64 i = 0;
/* level describes the parent level, we need the child ones */
int levelshift = level2shift(level + 1);
if (pte_type(pte) != PTE_TYPE_BLOCK)
panic("PTE %p (%llx) is not a block. Some driver code wants to "
"modify dcache settings for an range not covered in "
"mem_map.", pte, old_pte);
new_table = create_table();
debug("Splitting pte %p (%llx) into %p\n", pte, old_pte, new_table);
for (i = 0; i < MAX_PTE_ENTRIES; i++) {
new_table[i] = old_pte | (i << levelshift);
/* Level 3 block PTEs have the table type */
if ((level + 1) == 3)
new_table[i] |= PTE_TYPE_TABLE;
debug("Setting new_table[%lld] = %llx\n", i, new_table[i]);
}
/* Set the new table into effect */
set_pte_table(pte, new_table);
}
/* Add one mm_region map entry to the page tables */
static void add_map(struct mm_region *map)
{
u64 *pte;
u64 virt = map->virt;
u64 phys = map->phys;
u64 size = map->size;
u64 attrs = map->attrs | PTE_TYPE_BLOCK | PTE_BLOCK_AF;
u64 blocksize;
int level;
u64 *new_table;
while (size) {
pte = find_pte(virt, 0);
if (pte && (pte_type(pte) == PTE_TYPE_FAULT)) {
debug("Creating table for virt 0x%llx\n", virt);
new_table = create_table();
set_pte_table(pte, new_table);
}
for (level = 1; level < 4; level++) {
pte = find_pte(virt, level);
if (!pte)
panic("pte not found\n");
blocksize = 1ULL << level2shift(level);
debug("Checking if pte fits for virt=%llx size=%llx blocksize=%llx\n",
virt, size, blocksize);
if (size >= blocksize && !(virt & (blocksize - 1))) {
/* Page fits, create block PTE */
debug("Setting PTE %p to block virt=%llx\n",
pte, virt);
if (level == 3)
*pte = phys | attrs | PTE_TYPE_PAGE;
else
*pte = phys | attrs;
virt += blocksize;
phys += blocksize;
size -= blocksize;
break;
} else if (pte_type(pte) == PTE_TYPE_FAULT) {
/* Page doesn't fit, create subpages */
debug("Creating subtable for virt 0x%llx blksize=%llx\n",
virt, blocksize);
new_table = create_table();
set_pte_table(pte, new_table);
} else if (pte_type(pte) == PTE_TYPE_BLOCK) {
debug("Split block into subtable for virt 0x%llx blksize=0x%llx\n",
virt, blocksize);
split_block(pte, level);
}
}
}
}
enum pte_type {
PTE_INVAL,
PTE_BLOCK,
PTE_LEVEL,
};
/*
* This is a recursively called function to count the number of
* page tables we need to cover a particular PTE range. If you
* call this with level = -1 you basically get the full 48 bit
* coverage.
*/
static int count_required_pts(u64 addr, int level, u64 maxaddr)
{
int levelshift = level2shift(level);
u64 levelsize = 1ULL << levelshift;
u64 levelmask = levelsize - 1;
u64 levelend = addr + levelsize;
int r = 0;
int i;
enum pte_type pte_type = PTE_INVAL;
for (i = 0; mem_map[i].size || mem_map[i].attrs; i++) {
struct mm_region *map = &mem_map[i];
u64 start = map->virt;
u64 end = start + map->size;
/* Check if the PTE would overlap with the map */
if (max(addr, start) <= min(levelend, end)) {
start = max(addr, start);
end = min(levelend, end);
/* We need a sub-pt for this level */
if ((start & levelmask) || (end & levelmask)) {
pte_type = PTE_LEVEL;
break;
}
/* Lv0 can not do block PTEs, so do levels here too */
if (level <= 0) {
pte_type = PTE_LEVEL;
break;
}
/* PTE is active, but fits into a block */
pte_type = PTE_BLOCK;
}
}
/*
* Block PTEs at this level are already covered by the parent page
* table, so we only need to count sub page tables.
*/
if (pte_type == PTE_LEVEL) {
int sublevel = level + 1;
u64 sublevelsize = 1ULL << level2shift(sublevel);
/* Account for the new sub page table ... */
r = 1;
/* ... and for all child page tables that one might have */
for (i = 0; i < MAX_PTE_ENTRIES; i++) {
r += count_required_pts(addr, sublevel, maxaddr);
addr += sublevelsize;
if (addr >= maxaddr) {
/*
* We reached the end of address space, no need
* to look any further.
*/
break;
}
}
}
return r;
}
/* Returns the estimated required size of all page tables */
__weak u64 get_page_table_size(void)
{
u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
u64 size = 0;
u64 va_bits;
int start_level = 0;
get_tcr(0, NULL, &va_bits);
if (va_bits < 39)
start_level = 1;
/* Account for all page tables we would need to cover our memory map */
size = one_pt * count_required_pts(0, start_level - 1, 1ULL << va_bits);
/*
* We need to duplicate our page table once to have an emergency pt to
* resort to when splitting page tables later on
*/
size *= 2;
/*
* We may need to split page tables later on if dcache settings change,
* so reserve up to 4 (random pick) page tables for that.
*/
size += one_pt * 4;
return size;
}
void setup_pgtables(void)
{
int i;
if (!gd->arch.tlb_fillptr || !gd->arch.tlb_addr)
panic("Page table pointer not setup.");
/*
* Allocate the first level we're on with invalidate entries.
* If the starting level is 0 (va_bits >= 39), then this is our
* Lv0 page table, otherwise it's the entry Lv1 page table.
*/
create_table();
/* Now add all MMU table entries one after another to the table */
for (i = 0; mem_map[i].size || mem_map[i].attrs; i++)
add_map(&mem_map[i]);
}
static void setup_all_pgtables(void)
{
u64 tlb_addr = gd->arch.tlb_addr;
u64 tlb_size = gd->arch.tlb_size;
/* Reset the fill ptr */
gd->arch.tlb_fillptr = tlb_addr;
/* Create normal system page tables */
setup_pgtables();
/* Create emergency page tables */
gd->arch.tlb_size -= (uintptr_t)gd->arch.tlb_fillptr -
(uintptr_t)gd->arch.tlb_addr;
gd->arch.tlb_addr = gd->arch.tlb_fillptr;
setup_pgtables();
gd->arch.tlb_emerg = gd->arch.tlb_addr;
gd->arch.tlb_addr = tlb_addr;
gd->arch.tlb_size = tlb_size;
}
/* to activate the MMU we need to set up virtual memory */
__weak void mmu_setup(void)
{
int el;
/* Set up page tables only once */
if (!gd->arch.tlb_fillptr)
setup_all_pgtables();
el = current_el();
set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(el, NULL, NULL),
MEMORY_ATTRIBUTES);
/* enable the mmu */
set_sctlr(get_sctlr() | CR_M);
}
/*
* Performs a invalidation of the entire data cache at all levels
*/
void invalidate_dcache_all(void)
{
__asm_invalidate_dcache_all();
__asm_invalidate_l3_dcache();
}
/*
* Performs a clean & invalidation of the entire data cache at all levels.
* This function needs to be inline to avoid using stack.
* __asm_flush_l3_dcache return status of timeout
*/
inline void flush_dcache_all(void)
{
int ret;
__asm_flush_dcache_all();
ret = __asm_flush_l3_dcache();
if (ret)
debug("flushing dcache returns 0x%x\n", ret);
else
debug("flushing dcache successfully.\n");
}
arch: armv8: Provide a way to disable cache maintenance ops On AM654 SoC(arm64) which is IO coherent and has L3 Cache, cache maintenance operations being done to support non-coherent platforms causes issues. For example, here is how U-Boot prepares/handles a buffer to receive data from a device (DMA Write). This may vary slightly depending on the driver framework: Start DMA to write to destination buffer Wait for DMA to be done (dma_receive()/dma_memcpy()) Invalidate destination buffer (invalidate_dcache_range()) Read from destination buffer The invalidate after the DMA is needed in order to read latest data from memory that’s updated by DMA write. Also, in case random prefetch has pulled in buffer data during the “wait for DMA” before the DMA has written to it. This works well for non-coherent architectures. In case of coherent architecture with L3 cache, DMA write would directly update L3 cache contents (assuming cacheline is present in L3) without updating the DDR memory. So invalidate after “wait for DMA” in above sequence would discard latest data and read will cause stale data to be fetched from DDR. Therefore invalidate after “wait for DMA” is not always correct on coherent architecture. Therefore, provide a Kconfig option to disable cache maintenance ops on coherent architectures. This has added benefit of improving the performance of DMA transfers as we no longer need to invalidate/flush individual cache lines(especially for buffer thats several KBs in size). In order to facilitate use of same Kconfig across different architecture, I have added the symbol to top level arch/Kconfig file. Patch currently disables cache maintenance ops for arm64 only. flush_dcache_all() and invalidate_dcache_all() are exclusively used during enabling/disabling dcache and hence are not disabled. Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
2019-04-22 16:13:32 +00:00
#ifndef CONFIG_SYS_DISABLE_DCACHE_OPS
/*
* Invalidates range in all levels of D-cache/unified cache
*/
void invalidate_dcache_range(unsigned long start, unsigned long stop)
{
__asm_invalidate_dcache_range(start, stop);
}
/*
* Flush range(clean & invalidate) from all levels of D-cache/unified cache
*/
void flush_dcache_range(unsigned long start, unsigned long stop)
{
__asm_flush_dcache_range(start, stop);
}
arch: armv8: Provide a way to disable cache maintenance ops On AM654 SoC(arm64) which is IO coherent and has L3 Cache, cache maintenance operations being done to support non-coherent platforms causes issues. For example, here is how U-Boot prepares/handles a buffer to receive data from a device (DMA Write). This may vary slightly depending on the driver framework: Start DMA to write to destination buffer Wait for DMA to be done (dma_receive()/dma_memcpy()) Invalidate destination buffer (invalidate_dcache_range()) Read from destination buffer The invalidate after the DMA is needed in order to read latest data from memory that’s updated by DMA write. Also, in case random prefetch has pulled in buffer data during the “wait for DMA” before the DMA has written to it. This works well for non-coherent architectures. In case of coherent architecture with L3 cache, DMA write would directly update L3 cache contents (assuming cacheline is present in L3) without updating the DDR memory. So invalidate after “wait for DMA” in above sequence would discard latest data and read will cause stale data to be fetched from DDR. Therefore invalidate after “wait for DMA” is not always correct on coherent architecture. Therefore, provide a Kconfig option to disable cache maintenance ops on coherent architectures. This has added benefit of improving the performance of DMA transfers as we no longer need to invalidate/flush individual cache lines(especially for buffer thats several KBs in size). In order to facilitate use of same Kconfig across different architecture, I have added the symbol to top level arch/Kconfig file. Patch currently disables cache maintenance ops for arm64 only. flush_dcache_all() and invalidate_dcache_all() are exclusively used during enabling/disabling dcache and hence are not disabled. Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
2019-04-22 16:13:32 +00:00
#else
void invalidate_dcache_range(unsigned long start, unsigned long stop)
{
}
void flush_dcache_range(unsigned long start, unsigned long stop)
{
}
#endif /* CONFIG_SYS_DISABLE_DCACHE_OPS */
void dcache_enable(void)
{
/* The data cache is not active unless the mmu is enabled */
if (!(get_sctlr() & CR_M)) {
invalidate_dcache_all();
__asm_invalidate_tlb_all();
mmu_setup();
}
set_sctlr(get_sctlr() | CR_C);
}
void dcache_disable(void)
{
uint32_t sctlr;
sctlr = get_sctlr();
/* if cache isn't enabled no need to disable */
if (!(sctlr & CR_C))
return;
set_sctlr(sctlr & ~(CR_C|CR_M));
flush_dcache_all();
__asm_invalidate_tlb_all();
}
int dcache_status(void)
{
return (get_sctlr() & CR_C) != 0;
}
u64 *__weak arch_get_page_table(void) {
puts("No page table offset defined\n");
return NULL;
}
static bool is_aligned(u64 addr, u64 size, u64 align)
{
return !(addr & (align - 1)) && !(size & (align - 1));
}
/* Use flag to indicate if attrs has more than d-cache attributes */
static u64 set_one_region(u64 start, u64 size, u64 attrs, bool flag, int level)
{
int levelshift = level2shift(level);
u64 levelsize = 1ULL << levelshift;
u64 *pte = find_pte(start, level);
/* Can we can just modify the current level block PTE? */
if (is_aligned(start, size, levelsize)) {
if (flag) {
*pte &= ~PMD_ATTRMASK;
*pte |= attrs & PMD_ATTRMASK;
} else {
*pte &= ~PMD_ATTRINDX_MASK;
*pte |= attrs & PMD_ATTRINDX_MASK;
}
debug("Set attrs=%llx pte=%p level=%d\n", attrs, pte, level);
return levelsize;
}
/* Unaligned or doesn't fit, maybe split block into table */
debug("addr=%llx level=%d pte=%p (%llx)\n", start, level, pte, *pte);
/* Maybe we need to split the block into a table */
if (pte_type(pte) == PTE_TYPE_BLOCK)
split_block(pte, level);
/* And then double-check it became a table or already is one */
if (pte_type(pte) != PTE_TYPE_TABLE)
panic("PTE %p (%llx) for addr=%llx should be a table",
pte, *pte, start);
/* Roll on to the next page table level */
return 0;
}
void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size,
enum dcache_option option)
{
u64 attrs = PMD_ATTRINDX(option);
u64 real_start = start;
u64 real_size = size;
debug("start=%lx size=%lx\n", (ulong)start, (ulong)size);
if (!gd->arch.tlb_emerg)
panic("Emergency page table not setup.");
/*
* We can not modify page tables that we're currently running on,
* so we first need to switch to the "emergency" page tables where
* we can safely modify our primary page tables and then switch back
*/
__asm_switch_ttbr(gd->arch.tlb_emerg);
/*
* Loop through the address range until we find a page granule that fits
* our alignment constraints, then set it to the new cache attributes
*/
while (size > 0) {
int level;
u64 r;
for (level = 1; level < 4; level++) {
/* Set d-cache attributes only */
r = set_one_region(start, size, attrs, false, level);
if (r) {
/* PTE successfully replaced */
size -= r;
start += r;
break;
}
}
}
/* We're done modifying page tables, switch back to our primary ones */
__asm_switch_ttbr(gd->arch.tlb_addr);
/*
* Make sure there's nothing stale in dcache for a region that might
* have caches off now
*/
flush_dcache_range(real_start, real_start + real_size);
}
/*
* Modify MMU table for a region with updated PXN/UXN/Memory type/valid bits.
* The procecess is break-before-make. The target region will be marked as
* invalid during the process of changing.
*/
void mmu_change_region_attr(phys_addr_t addr, size_t siz, u64 attrs)
{
int level;
u64 r, size, start;
start = addr;
size = siz;
/*
* Loop through the address range until we find a page granule that fits
* our alignment constraints, then set it to "invalid".
*/
while (size > 0) {
for (level = 1; level < 4; level++) {
/* Set PTE to fault */
r = set_one_region(start, size, PTE_TYPE_FAULT, true,
level);
if (r) {
/* PTE successfully invalidated */
size -= r;
start += r;
break;
}
}
}
flush_dcache_range(gd->arch.tlb_addr,
gd->arch.tlb_addr + gd->arch.tlb_size);
__asm_invalidate_tlb_all();
/*
* Loop through the address range until we find a page granule that fits
* our alignment constraints, then set it to the new cache attributes
*/
start = addr;
size = siz;
while (size > 0) {
for (level = 1; level < 4; level++) {
/* Set PTE to new attributes */
r = set_one_region(start, size, attrs, true, level);
if (r) {
/* PTE successfully updated */
size -= r;
start += r;
break;
}
}
}
flush_dcache_range(gd->arch.tlb_addr,
gd->arch.tlb_addr + gd->arch.tlb_size);
__asm_invalidate_tlb_all();
}
#else /* !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) */
/*
* For SPL builds, we may want to not have dcache enabled. Any real U-Boot
* running however really wants to have dcache and the MMU active. Check that
* everything is sane and give the developer a hint if it isn't.
*/
#ifndef CONFIG_SPL_BUILD
#error Please describe your MMU layout in CONFIG_SYS_MEM_MAP and enable dcache.
#endif
void invalidate_dcache_all(void)
{
}
void flush_dcache_all(void)
{
}
void dcache_enable(void)
{
}
void dcache_disable(void)
{
}
int dcache_status(void)
{
return 0;
}
void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size,
enum dcache_option option)
{
}
#endif /* !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) */
#if !CONFIG_IS_ENABLED(SYS_ICACHE_OFF)
void icache_enable(void)
{
invalidate_icache_all();
set_sctlr(get_sctlr() | CR_I);
}
void icache_disable(void)
{
set_sctlr(get_sctlr() & ~CR_I);
}
int icache_status(void)
{
return (get_sctlr() & CR_I) != 0;
}
void invalidate_icache_all(void)
{
__asm_invalidate_icache_all();
__asm_invalidate_l3_icache();
}
#else /* !CONFIG_IS_ENABLED(SYS_ICACHE_OFF) */
void icache_enable(void)
{
}
void icache_disable(void)
{
}
int icache_status(void)
{
return 0;
}
void invalidate_icache_all(void)
{
}
#endif /* !CONFIG_IS_ENABLED(SYS_ICACHE_OFF) */
/*
* Enable dCache & iCache, whether cache is actually enabled
* depend on CONFIG_SYS_DCACHE_OFF and CONFIG_SYS_ICACHE_OFF
*/
void __weak enable_caches(void)
{
icache_enable();
dcache_enable();
}