u-boot/board/trab/trab_fkt.c

1412 lines
33 KiB
C
Raw Normal View History

/*
* (C) Copyright 2003
* Martin Krause, TQ-Systems GmbH, martin.krause@tqs.de
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#define DEBUG
#include <common.h>
#include <exports.h>
#include <s3c2400.h>
#include "tsc2000.h"
#include "rs485.h"
/*
* define, to wait for the touch to be pressed, before reading coordinates in
* command do_touch. If not defined, an error message is printed, when the
* command do_touch is invoked and the touch is not pressed within an specific
* interval.
*/
2004-10-17 21:12:06 +00:00
#undef CONFIG_TOUCH_WAIT_PRESSED
/* max time to wait for touch is pressed */
#ifndef CONFIG_TOUCH_WAIT_PRESSED
#define TOUCH_TIMEOUT 5
#endif /* !CONFIG_TOUCH_WAIT_PRESSED */
/* assignment of CPU internal ADC channels with TRAB hardware */
#define VCC5V 2
#define VCC12V 3
/* CPLD-Register for controlling TRAB hardware functions */
#define CPLD_BUTTONS ((volatile unsigned long *)0x04020000)
#define CPLD_FILL_LEVEL ((volatile unsigned long *)0x04008000)
#define CPLD_ROTARY_SWITCH ((volatile unsigned long *)0x04018000)
#define CPLD_RS485_RE ((volatile unsigned long *)0x04028000)
/* timer configuration bits for buzzer and PWM */
#define START2 (1 << 12)
#define UPDATE2 (1 << 13)
#define INVERT2 (1 << 14)
#define RELOAD2 (1 << 15)
#define START3 (1 << 16)
#define UPDATE3 (1 << 17)
#define INVERT3 (1 << 18)
#define RELOAD3 (1 << 19)
#define PCLK 66000000
#define BUZZER_FREQ 1000 /* frequency in Hz */
#define PWM_FREQ 500
/* definitions of I2C EEPROM device address */
#define I2C_EEPROM_DEV_ADDR 0x54
/* definition for touch panel calibration points */
#define CALIB_TL 0 /* calibration point in (T)op (L)eft corner */
#define CALIB_DR 1 /* calibration point in (D)own (R)ight corner */
/* EEPROM address map */
#define SERIAL_NUMBER 8
#define TOUCH_X0 52
#define TOUCH_Y0 54
#define TOUCH_X1 56
#define TOUCH_Y1 58
#define CRC16 60
/* EEPROM stuff */
#define EEPROM_MAX_CRC_BUF 64
/* RS485 stuff */
#define RS485_MAX_RECEIVE_BUF_LEN 100
/* Bit definitions for ADCCON */
#define ADC_ENABLE_START 0x1
#define ADC_READ_START 0x2
#define ADC_STDBM 0x4
#define ADC_INP_AIN0 (0x0 << 3)
#define ADC_INP_AIN1 (0x1 << 3)
#define ADC_INP_AIN2 (0x2 << 3)
#define ADC_INP_AIN3 (0x3 << 3)
#define ADC_INP_AIN4 (0x4 << 3)
#define ADC_INP_AIN5 (0x5 << 3)
#define ADC_INP_AIN6 (0x6 << 3)
#define ADC_INP_AIN7 (0x7 << 3)
#define ADC_PRSCEN 0x4000
#define ADC_ECFLG 0x8000
/* function test functions */
int do_dip (void);
int do_info (void);
int do_vcc5v (void);
int do_vcc12v (void);
int do_buttons (void);
int do_fill_level (void);
int do_rotary_switch (void);
int do_pressure (void);
int do_v_bat (void);
int do_vfd_id (void);
int do_buzzer (char **);
int do_led (char **);
int do_full_bridge (char **);
int do_dac (char **);
int do_motor_contact (void);
int do_motor (char **);
int do_pwm (char **);
int do_thermo (char **);
int do_touch (char **);
int do_rs485 (char **);
int do_serial_number (char **);
int do_crc16 (void);
int do_power_switch (void);
int do_gain (char **);
int do_eeprom (char **);
/* helper functions */
static void adc_init (void);
static int adc_read (unsigned int channel);
static void print_identifier (void);
#ifdef CONFIG_TOUCH_WAIT_PRESSED
static void touch_wait_pressed (void);
#else
static int touch_check_pressed (void);
#endif /* CONFIG_TOUCH_WAIT_PRESSED */
static void touch_read_x_y (int *x, int *y);
static int touch_write_clibration_values (int calib_point, int x, int y);
static int rs485_send_line (const char *data);
static int rs485_receive_chars (char *data, int timeout);
static unsigned short updcrc(unsigned short icrc, unsigned char *icp,
unsigned int icnt);
#if (CONFIG_COMMANDS & CFG_CMD_I2C)
static int trab_eeprom_read (char **argv);
static int trab_eeprom_write (char **argv);
int i2c_write_multiple (uchar chip, uint addr, int alen, uchar *buffer,
int len);
int i2c_read_multiple ( uchar chip, uint addr, int alen, uchar *buffer,
int len);
#endif /* CFG_CMD_I2C */
/*
* TRAB board specific commands. Especially commands for burn-in and function
* test.
*/
int trab_fkt (int argc, char *argv[])
{
int i;
app_startup(argv);
if (get_version () != XF_VERSION) {
printf ("Wrong XF_VERSION. Please re-compile with actual "
"u-boot sources\n");
printf ("Example expects ABI version %d\n", XF_VERSION);
printf ("Actual U-Boot ABI version %d\n", (int)get_version());
return 1;
}
debug ("argc = %d\n", argc);
for (i=0; i<=argc; ++i) {
debug ("argv[%d] = \"%s\"\n", i, argv[i] ? argv[i] : "<NULL>");
}
adc_init ();
switch (argc) {
case 0:
case 1:
break;
case 2:
if (strcmp (argv[1], "info") == 0) {
return (do_info ());
}
if (strcmp (argv[1], "dip") == 0) {
return (do_dip ());
}
if (strcmp (argv[1], "vcc5v") == 0) {
return (do_vcc5v ());
}
if (strcmp (argv[1], "vcc12v") == 0) {
return (do_vcc12v ());
}
if (strcmp (argv[1], "buttons") == 0) {
return (do_buttons ());
}
if (strcmp (argv[1], "fill_level") == 0) {
return (do_fill_level ());
}
if (strcmp (argv[1], "rotary_switch") == 0) {
return (do_rotary_switch ());
}
if (strcmp (argv[1], "pressure") == 0) {
return (do_pressure ());
}
if (strcmp (argv[1], "v_bat") == 0) {
return (do_v_bat ());
}
if (strcmp (argv[1], "vfd_id") == 0) {
return (do_vfd_id ());
}
if (strcmp (argv[1], "motor_contact") == 0) {
return (do_motor_contact ());
}
if (strcmp (argv[1], "crc16") == 0) {
return (do_crc16 ());
}
if (strcmp (argv[1], "power_switch") == 0) {
return (do_power_switch ());
}
break;
case 3:
if (strcmp (argv[1], "full_bridge") == 0) {
return (do_full_bridge (argv));
}
if (strcmp (argv[1], "dac") == 0) {
return (do_dac (argv));
}
if (strcmp (argv[1], "motor") == 0) {
return (do_motor (argv));
}
if (strcmp (argv[1], "pwm") == 0) {
return (do_pwm (argv));
}
if (strcmp (argv[1], "thermo") == 0) {
return (do_thermo (argv));
}
if (strcmp (argv[1], "touch") == 0) {
return (do_touch (argv));
}
if (strcmp (argv[1], "serial_number") == 0) {
return (do_serial_number (argv));
}
if (strcmp (argv[1], "buzzer") == 0) {
return (do_buzzer (argv));
}
if (strcmp (argv[1], "gain") == 0) {
return (do_gain (argv));
}
break;
case 4:
if (strcmp (argv[1], "led") == 0) {
return (do_led (argv));
}
if (strcmp (argv[1], "rs485") == 0) {
return (do_rs485 (argv));
}
if (strcmp (argv[1], "serial_number") == 0) {
return (do_serial_number (argv));
}
break;
case 5:
if (strcmp (argv[1], "eeprom") == 0) {
return (do_eeprom (argv));
}
break;
case 6:
if (strcmp (argv[1], "eeprom") == 0) {
return (do_eeprom (argv));
}
break;
default:
break;
}
printf ("Usage:\n<command> <parameter1> <parameter2> ...\n");
return 1;
}
int do_info (void)
{
printf ("Stand-alone application for TRAB board function test\n");
printf ("Built: %s at %s\n", __DATE__ , __TIME__ );
return 0;
}
int do_dip (void)
{
unsigned int result = 0;
int adc_val;
int i;
/***********************************************************
DIP switch connection (according to wa4-cpu.sp.301.pdf, page 3):
SW1 - AIN4
SW2 - AIN5
SW3 - AIN6
SW4 - AIN7
"On" DIP switch position short-circuits the voltage from
the input channel (i.e. '0' conversion result means "on").
*************************************************************/
for (i = 7; i > 3; i--) {
if ((adc_val = adc_read (i)) == -1) {
printf ("Channel %d could not be read\n", i);
return 1;
}
/*
* Input voltage (switch open) is 1.8 V.
* (Vin_High/VRef)*adc_res = (1,8V/2,5V)*1023) = 736
* Set trigger at halve that value.
*/
if (adc_val < 368)
result |= (1 << (i-4));
}
/* print result to console */
print_identifier ();
for (i = 0; i < 4; i++) {
if ((result & (1 << i)) == 0)
printf("0");
else
printf("1");
}
printf("\n");
return 0;
}
int do_vcc5v (void)
{
int result;
/* VCC5V is connected to channel 2 */
if ((result = adc_read (VCC5V)) == -1) {
printf ("VCC5V could not be read\n");
return 1;
}
/*
* Calculate voltage value. Split in two parts because there is no
* floating point support. VCC5V is connected over an resistor divider:
* VCC5V=ADCval*2,5V/1023*(10K+30K)/10K.
*/
print_identifier ();
printf ("%d", (result & 0x3FF)* 10 / 1023);
printf (".%d", ((result & 0x3FF)* 10 % 1023)* 10 / 1023);
printf ("%d V\n", (((result & 0x3FF) * 10 % 1023 ) * 10 % 1023)
* 10 / 1024);
return 0;
}
int do_vcc12v (void)
{
int result;
if ((result = adc_read (VCC12V)) == -1) {
printf ("VCC12V could not be read\n");
return 1;
}
/*
* Calculate voltage value. Split in two parts because there is no
* floating point support. VCC5V is connected over an resistor divider:
* VCC12V=ADCval*2,5V/1023*(30K+270K)/30K.
*/
print_identifier ();
printf ("%d", (result & 0x3FF)* 25 / 1023);
printf (".%d V\n", ((result & 0x3FF)* 25 % 1023) * 10 / 1023);
return 0;
}
static int adc_read (unsigned int channel)
{
int j = 1000; /* timeout value for wait loop in us */
int result;
S3C2400_ADC *padc;
padc = S3C2400_GetBase_ADC();
channel &= 0x7;
padc->ADCCON &= ~ADC_STDBM; /* select normal mode */
padc->ADCCON &= ~(0x7 << 3); /* clear the channel bits */
padc->ADCCON |= ((channel << 3) | ADC_ENABLE_START);
while (j--) {
if ((padc->ADCCON & ADC_ENABLE_START) == 0)
break;
udelay (1);
}
if (j == 0) {
printf("%s: ADC timeout\n", __FUNCTION__);
padc->ADCCON |= ADC_STDBM; /* select standby mode */
return -1;
}
result = padc->ADCDAT & 0x3FF;
padc->ADCCON |= ADC_STDBM; /* select standby mode */
debug ("%s: channel %d, result[DIGIT]=%d\n", __FUNCTION__,
(padc->ADCCON >> 3) & 0x7, result);
/*
* Wait for ADC to be ready for next conversion. This delay value was
* estimated, because the datasheet does not specify a value.
*/
udelay (1000);
return (result);
}
static void adc_init (void)
{
S3C2400_ADC *padc;
padc = S3C2400_GetBase_ADC();
padc->ADCCON &= ~(0xff << 6); /* clear prescaler bits */
padc->ADCCON |= ((65 << 6) | ADC_PRSCEN); /* set prescaler */
/*
* Wait some time to avoid problem with very first call of
* adc_read(). Without * this delay, sometimes the first read adc
* value is 0. Perhaps because the * adjustment of prescaler takes
* some clock cycles?
*/
udelay (1000);
return;
}
int do_buttons (void)
{
int result;
int i;
result = *CPLD_BUTTONS; /* read CPLD */
debug ("%s: cpld_taster (32 bit) %#x\n", __FUNCTION__, result);
/* print result to console */
print_identifier ();
for (i = 16; i <= 19; i++) {
if ((result & (1 << i)) == 0)
printf("0");
else
printf("1");
}
printf("\n");
return 0;
}
int do_power_switch (void)
{
int result;
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
/* configure GPE7 as input */
gpio->PECON &= ~(0x3 << (2 * 7));
/* signal GPE7 from power switch is low active: 0=on , 1=off */
result = ((gpio->PEDAT & (1 << 7)) == (1 << 7)) ? 0 : 1;
print_identifier ();
printf("%d\n", result);
return 0;
}
int do_fill_level (void)
{
int result;
result = *CPLD_FILL_LEVEL; /* read CPLD */
debug ("%s: cpld_fuellstand (32 bit) %#x\n", __FUNCTION__, result);
/* print result to console */
print_identifier ();
if ((result & (1 << 16)) == 0)
printf("0\n");
else
printf("1\n");
return 0;
}
int do_rotary_switch (void)
{
int result;
/*
* Please note, that the default values of the direction bits are
* undefined after reset. So it is a good idea, to make first a dummy
* call to this function, to clear the direction bits and set so to
* proper values.
*/
result = *CPLD_ROTARY_SWITCH; /* read CPLD */
debug ("%s: cpld_inc (32 bit) %#x\n", __FUNCTION__, result);
*CPLD_ROTARY_SWITCH |= (3 << 16); /* clear direction bits in CPLD */
/* print result to console */
print_identifier ();
if ((result & (1 << 16)) == (1 << 16))
printf("R");
if ((result & (1 << 17)) == (1 << 17))
printf("L");
if (((result & (1 << 16)) == 0) && ((result & (1 << 17)) == 0))
printf("0");
if ((result & (1 << 18)) == 0)
printf("0\n");
else
printf("1\n");
return 0;
}
int do_vfd_id (void)
{
int i;
long int pcup_old, pccon_old;
int vfd_board_id;
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
/* try to red vfd board id from the value defined by pull-ups */
pcup_old = gpio->PCUP;
pccon_old = gpio->PCCON;
gpio->PCUP = (gpio->PCUP & 0xFFF0); /* activate GPC0...GPC3 pull-ups */
gpio->PCCON = (gpio->PCCON & 0xFFFFFF00); /* configure GPC0...GPC3 as
* inputs */
udelay (10); /* allow signals to settle */
vfd_board_id = (~gpio->PCDAT) & 0x000F; /* read GPC0...GPC3 port pins */
gpio->PCCON = pccon_old;
gpio->PCUP = pcup_old;
/* print vfd_board_id to console */
print_identifier ();
for (i = 0; i < 4; i++) {
if ((vfd_board_id & (1 << i)) == 0)
printf("0");
else
printf("1");
}
printf("\n");
return 0;
}
int do_buzzer (char **argv)
{
int counter;
S3C24X0_TIMERS * const timers = S3C24X0_GetBase_TIMERS();
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
/* set prescaler for timer 2, 3 and 4 */
timers->TCFG0 &= ~0xFF00;
timers->TCFG0 |= 0x0F00;
/* set divider for timer 2 */
timers->TCFG1 &= ~0xF00;
timers->TCFG1 |= 0x300;
/* set frequency */
counter = (PCLK / BUZZER_FREQ) >> 9;
timers->ch[2].TCNTB = counter;
timers->ch[2].TCMPB = counter / 2;
if (strcmp (argv[2], "on") == 0) {
debug ("%s: frequency: %d\n", __FUNCTION__,
BUZZER_FREQ);
/* configure pin GPD7 as TOUT2 */
gpio->PDCON &= ~0xC000;
gpio->PDCON |= 0x8000;
/* start */
timers->TCON = (timers->TCON | UPDATE2 | RELOAD2) &
~INVERT2;
timers->TCON = (timers->TCON | START2) & ~UPDATE2;
return (0);
}
else if (strcmp (argv[2], "off") == 0) {
/* stop */
timers->TCON &= ~(START2 | RELOAD2);
/* configure GPD7 as output and set to low */
gpio->PDCON &= ~0xC000;
gpio->PDCON |= 0x4000;
gpio->PDDAT &= ~0x80;
return (0);
}
printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]);
return 1;
}
int do_led (char **argv)
{
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
/* configure PC14 and PC15 as output */
gpio->PCCON &= ~(0xF << 28);
gpio->PCCON |= (0x5 << 28);
/* configure PD0 and PD4 as output */
gpio->PDCON &= ~((0x3 << 8) | 0x3);
gpio->PDCON |= ((0x1 << 8) | 0x1);
switch (simple_strtoul(argv[2], NULL, 10)) {
case 0:
case 1:
break;
case 2:
if (strcmp (argv[3], "on") == 0)
gpio->PCDAT |= (1 << 14);
else
gpio->PCDAT &= ~(1 << 14);
return 0;
case 3:
if (strcmp (argv[3], "on") == 0)
gpio->PCDAT |= (1 << 15);
else
gpio->PCDAT &= ~(1 << 15);
return 0;
case 4:
if (strcmp (argv[3], "on") == 0)
gpio->PDDAT |= (1 << 0);
else
gpio->PDDAT &= ~(1 << 0);
return 0;
case 5:
if (strcmp (argv[3], "on") == 0)
gpio->PDDAT |= (1 << 4);
else
gpio->PDDAT &= ~(1 << 4);
return 0;
default:
break;
}
printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]);
return 1;
}
int do_full_bridge (char **argv)
{
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
/* configure PD5 and PD6 as output */
gpio->PDCON &= ~((0x3 << 5*2) | (0x3 << 6*2));
gpio->PDCON |= ((0x1 << 5*2) | (0x1 << 6*2));
if (strcmp (argv[2], "+") == 0) {
gpio->PDDAT |= (1 << 5);
gpio->PDDAT |= (1 << 6);
return 0;
}
else if (strcmp (argv[2], "-") == 0) {
gpio->PDDAT &= ~(1 << 5);
gpio->PDDAT |= (1 << 6);
return 0;
}
else if (strcmp (argv[2], "off") == 0) {
gpio->PDDAT &= ~(1 << 5);
gpio->PDDAT &= ~(1 << 6);
return 0;
}
printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]);
return 1;
}
/* val must be in [0, 4095] */
static inline unsigned long tsc2000_to_uv (u16 val)
{
return ((250000 * val) / 4096) * 10;
}
int do_dac (char **argv)
{
int brightness;
/* initialize SPI */
spi_init ();
if (((brightness = simple_strtoul (argv[2], NULL, 10)) < 0) ||
(brightness > 255)) {
printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]);
return 1;
}
tsc2000_write(TSC2000_REG_DACCTL, 0x0); /* Power up DAC */
tsc2000_write(TSC2000_REG_DAC, brightness & 0xff);
return 0;
}
int do_v_bat (void)
{
unsigned long ret, res;
/* initialize SPI */
spi_init ();
tsc2000_write(TSC2000_REG_ADC, 0x1836);
/* now wait for data available */
adc_wait_conversion_done();
ret = tsc2000_read(TSC2000_REG_BAT1);
res = (tsc2000_to_uv(ret) + 1250) / 2500;
res += (ERROR_BATTERY * res) / 1000;
print_identifier ();
printf ("%ld", (res / 100));
printf (".%ld", ((res % 100) / 10));
printf ("%ld V\n", (res % 10));
return 0;
}
int do_pressure (void)
{
/* initialize SPI */
spi_init ();
tsc2000_write(TSC2000_REG_ADC, 0x2436);
/* now wait for data available */
adc_wait_conversion_done();
print_identifier ();
printf ("%d\n", tsc2000_read(TSC2000_REG_AUX2));
return 0;
}
int do_motor_contact (void)
{
int result;
result = *CPLD_FILL_LEVEL; /* read CPLD */
debug ("%s: cpld_fuellstand (32 bit) %#x\n", __FUNCTION__, result);
/* print result to console */
print_identifier ();
if ((result & (1 << 17)) == 0)
printf("0\n");
else
printf("1\n");
return 0;
}
int do_motor (char **argv)
{
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
/* Configure I/O port */
gpio->PGCON &= ~(0x3 << 0);
gpio->PGCON |= (0x1 << 0);
if (strcmp (argv[2], "on") == 0) {
gpio->PGDAT &= ~(1 << 0);
return 0;
}
if (strcmp (argv[2], "off") == 0) {
gpio->PGDAT |= (1 << 0);
return 0;
}
printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]);
return 1;
}
static void print_identifier (void)
{
printf ("## FKT: ");
}
int do_pwm (char **argv)
{
int counter;
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
S3C24X0_TIMERS * const timers = S3C24X0_GetBase_TIMERS();
if (strcmp (argv[2], "on") == 0) {
/* configure pin GPD8 as TOUT3 */
gpio->PDCON &= ~(0x3 << 8*2);
gpio->PDCON |= (0x2 << 8*2);
/* set prescaler for timer 2, 3 and 4 */
timers->TCFG0 &= ~0xFF00;
timers->TCFG0 |= 0x0F00;
/* set divider for timer 3 */
timers->TCFG1 &= ~(0xf << 12);
timers->TCFG1 |= (0x3 << 12);
/* set frequency */
counter = (PCLK / PWM_FREQ) >> 9;
timers->ch[3].TCNTB = counter;
timers->ch[3].TCMPB = counter / 2;
/* start timer */
timers->TCON = (timers->TCON | UPDATE3 | RELOAD3) & ~INVERT3;
timers->TCON = (timers->TCON | START3) & ~UPDATE3;
return 0;
}
if (strcmp (argv[2], "off") == 0) {
/* stop timer */
timers->TCON &= ~(START2 | RELOAD2);
/* configure pin GPD8 as output and set to 0 */
gpio->PDCON &= ~(0x3 << 8*2);
gpio->PDCON |= (0x1 << 8*2);
gpio->PDDAT &= ~(1 << 8);
return 0;
}
printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]);
return 1;
}
int do_thermo (char **argv)
{
int channel, res;
tsc2000_reg_init ();
if (strcmp (argv[2], "all") == 0) {
int i;
for (i=0; i <= 15; i++) {
res = tsc2000_read_channel(i);
print_identifier ();
printf ("c%d: %d\n", i, res);
}
return 0;
}
channel = simple_strtoul (argv[2], NULL, 10);
res = tsc2000_read_channel(channel);
print_identifier ();
printf ("%d\n", res);
return 0; /* return OK */
}
int do_touch (char **argv)
{
int x, y;
if (strcmp (argv[2], "tl") == 0) {
#ifdef CONFIG_TOUCH_WAIT_PRESSED
touch_wait_pressed();
#else
{
int i;
for (i = 0; i < (TOUCH_TIMEOUT * 1000); i++) {
if (touch_check_pressed ()) {
break;
}
udelay (1000); /* pause 1 ms */
}
}
if (!touch_check_pressed()) {
print_identifier ();
printf ("error: touch not pressed\n");
return 1;
}
#endif /* CONFIG_TOUCH_WAIT_PRESSED */
touch_read_x_y (&x, &y);
print_identifier ();
printf ("x=%d y=%d\n", x, y);
return touch_write_clibration_values (CALIB_TL, x, y);
}
else if (strcmp (argv[2], "dr") == 0) {
#ifdef CONFIG_TOUCH_WAIT_PRESSED
touch_wait_pressed();
#else
{
int i;
for (i = 0; i < (TOUCH_TIMEOUT * 1000); i++) {
if (touch_check_pressed ()) {
break;
}
udelay (1000); /* pause 1 ms */
}
}
if (!touch_check_pressed()) {
print_identifier ();
printf ("error: touch not pressed\n");
return 1;
}
#endif /* CONFIG_TOUCH_WAIT_PRESSED */
touch_read_x_y (&x, &y);
print_identifier ();
printf ("x=%d y=%d\n", x, y);
return touch_write_clibration_values (CALIB_DR, x, y);
}
return 1; /* not "tl", nor "dr", so return error */
}
#ifdef CONFIG_TOUCH_WAIT_PRESSED
static void touch_wait_pressed (void)
{
while (!(tsc2000_read(TSC2000_REG_ADC) & TC_PSM));
}
#else
static int touch_check_pressed (void)
{
return (tsc2000_read(TSC2000_REG_ADC) & TC_PSM);
}
#endif /* CONFIG_TOUCH_WAIT_PRESSED */
static int touch_write_clibration_values (int calib_point, int x, int y)
{
#if (CONFIG_COMMANDS & CFG_CMD_I2C)
int x_verify = 0;
int y_verify = 0;
tsc2000_reg_init ();
if (calib_point == CALIB_TL) {
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_X0, 1,
(char *)&x, 2)) {
return 1;
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_Y0, 1,
(char *)&y, 2)) {
return 1;
}
/* verify written values */
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_X0, 1,
(char *)&x_verify, 2)) {
return 1;
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_Y0, 1,
(char *)&y_verify, 2)) {
return 1;
}
if ((y != y_verify) || (x != x_verify)) {
print_identifier ();
printf ("error: verify error\n");
return 1;
}
return 0; /* no error */
}
else if (calib_point == CALIB_DR) {
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_X1, 1,
(char *)&x, 2)) {
return 1;
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_Y1, 1,
(char *)&y, 2)) {
return 1;
}
/* verify written values */
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_X1, 1,
(char *)&x_verify, 2)) {
return 1;
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_Y1, 1,
(char *)&y_verify, 2)) {
return 1;
}
if ((y != y_verify) || (x != x_verify)) {
print_identifier ();
printf ("error: verify error\n");
return 1;
}
return 0;
}
return 1;
#else
printf ("No I2C support enabled (CFG_CMD_I2C), could not write "
"to EEPROM\n");
return (1);
#endif /* CFG_CMD_I2C */
}
static void touch_read_x_y (int *px, int *py)
{
tsc2000_write(TSC2000_REG_ADC, DEFAULT_ADC | TC_AD0 | TC_AD1);
adc_wait_conversion_done();
*px = tsc2000_read(TSC2000_REG_X);
tsc2000_write(TSC2000_REG_ADC, DEFAULT_ADC | TC_AD2);
adc_wait_conversion_done();
*py = tsc2000_read(TSC2000_REG_Y);
}
int do_rs485 (char **argv)
{
int timeout;
char data[RS485_MAX_RECEIVE_BUF_LEN];
if (strcmp (argv[2], "send") == 0) {
return (rs485_send_line (argv[3]));
}
else if (strcmp (argv[2], "receive") == 0) {
timeout = simple_strtoul(argv[3], NULL, 10);
if (rs485_receive_chars (data, timeout) != 0) {
print_identifier ();
printf ("## nothing received\n");
return (1);
}
else {
print_identifier ();
printf ("%s\n", data);
return (0);
}
}
printf ("%s: unknown command %s\n", __FUNCTION__, argv[2]);
return (1); /* unknown command, return error */
}
static int rs485_send_line (const char *data)
{
rs485_init ();
trab_rs485_enable_tx ();
rs485_puts (data);
rs485_putc ('\n');
return (0);
}
static int rs485_receive_chars (char *data, int timeout)
{
int i;
int receive_count = 0;
rs485_init ();
trab_rs485_enable_rx ();
/* test every 1 ms for received characters to avoid a receive FIFO
* overrun (@ 38.400 Baud) */
for (i = 0; i < (timeout * 1000); i++) {
while (rs485_tstc ()) {
if (receive_count >= RS485_MAX_RECEIVE_BUF_LEN-1)
break;
*data++ = rs485_getc ();
receive_count++;
}
udelay (1000); /* pause 1 ms */
}
*data = '\0'; /* terminate string */
if (receive_count == 0)
return (1);
else
return (0);
}
int do_serial_number (char **argv)
{
#if (CONFIG_COMMANDS & CFG_CMD_I2C)
unsigned int serial_number;
if (strcmp (argv[2], "read") == 0) {
if (i2c_read (I2C_EEPROM_DEV_ADDR, SERIAL_NUMBER, 1,
(char *)&serial_number, 4)) {
printf ("could not read from eeprom\n");
return (1);
}
print_identifier ();
printf ("%08d\n", serial_number);
return (0);
}
else if (strcmp (argv[2], "write") == 0) {
serial_number = simple_strtoul(argv[3], NULL, 10);
if (i2c_write (I2C_EEPROM_DEV_ADDR, SERIAL_NUMBER, 1,
(char *)&serial_number, 4)) {
printf ("could not write to eeprom\n");
return (1);
}
return (0);
}
printf ("%s: unknown command %s\n", __FUNCTION__, argv[2]);
return (1); /* unknown command, return error */
#else
printf ("No I2C support enabled (CFG_CMD_I2C), could not write "
"to EEPROM\n");
return (1);
#endif /* CFG_CMD_I2C */
}
int do_crc16 (void)
{
#if (CONFIG_COMMANDS & CFG_CMD_I2C)
int crc;
char buf[EEPROM_MAX_CRC_BUF];
if (i2c_read (I2C_EEPROM_DEV_ADDR, 0, 1, buf, 60)) {
printf ("could not read from eeprom\n");
return (1);
}
crc = 0; /* start value of crc calculation */
crc = updcrc (crc, buf, 60);
print_identifier ();
printf ("crc16=%#04x\n", crc);
if (i2c_write (I2C_EEPROM_DEV_ADDR, CRC16, 1, (char *)&crc,
sizeof (crc))) {
printf ("could not read from eeprom\n");
return (1);
}
return (0);
#else
printf ("No I2C support enabled (CFG_CMD_I2C), could not write "
"to EEPROM\n");
return (1);
#endif /* CFG_CMD_I2C */
}
/*
* Calculate, intelligently, the CRC of a dataset incrementally given a
* buffer full at a time.
* Initialize crc to 0 for XMODEM, -1 for CCITT.
*
* Usage:
* newcrc = updcrc( oldcrc, bufadr, buflen )
* unsigned int oldcrc, buflen;
* char *bufadr;
*
* Compile with -DTEST to generate program that prints CRC of stdin to stdout.
* Compile with -DMAKETAB to print values for crctab to stdout
*/
/* the CRC polynomial. This is used by XMODEM (almost CCITT).
* If you change P, you must change crctab[]'s initial value to what is
* printed by initcrctab()
*/
#define P 0x1021
/* number of bits in CRC: don't change it. */
#define W 16
/* this the number of bits per char: don't change it. */
#define B 8
static unsigned short crctab[1<<B] = { /* as calculated by initcrctab() */
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};
static unsigned short updcrc(unsigned short icrc, unsigned char *icp,
unsigned int icnt )
{
register unsigned short crc = icrc;
register unsigned char *cp = icp;
register unsigned int cnt = icnt;
while (cnt--)
crc = (crc<<B) ^ crctab[(crc>>(W-B)) ^ *cp++];
return (crc);
}
int do_gain (char **argv)
{
int range;
range = simple_strtoul (argv[2], NULL, 10);
if ((range < 1) || (range > 3))
{
printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]);
return 1;
}
tsc2000_set_range (range);
return (0);
}
int do_eeprom (char **argv)
{
#if (CONFIG_COMMANDS & CFG_CMD_I2C)
if (strcmp (argv[2], "read") == 0) {
return (trab_eeprom_read (argv));
}
else if (strcmp (argv[2], "write") == 0) {
return (trab_eeprom_write (argv));
}
printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]);
return (1);
#else
printf ("No I2C support enabled (CFG_CMD_I2C), could not write "
"to EEPROM\n");
return (1);
#endif /* CFG_CMD_I2C */
}
#if (CONFIG_COMMANDS & CFG_CMD_I2C)
static int trab_eeprom_read (char **argv)
{
int i;
int len;
unsigned int addr;
long int value = 0;
uchar *buffer;
buffer = (uchar *) &value;
addr = simple_strtoul (argv[3], NULL, 10);
addr &= 0xfff;
len = simple_strtoul (argv[4], NULL, 10);
if ((len < 1) || (len > 4)) {
printf ("%s: invalid parameter %s\n", __FUNCTION__,
argv[4]);
return (1);
}
for (i = 0; i < len; i++) {
if (i2c_read (I2C_EEPROM_DEV_ADDR, addr+i, 1, buffer+i, 1)) {
printf ("%s: could not read from i2c device %#x"
", addr %d\n", __FUNCTION__,
I2C_EEPROM_DEV_ADDR, addr);
return (1);
}
}
print_identifier ();
if (strcmp (argv[5], "-") == 0) {
if (len == 1)
printf ("%d\n", (signed char) value);
else if (len == 2)
printf ("%d\n", (signed short int) value);
else
printf ("%ld\n", value);
}
else {
if (len == 1)
printf ("%d\n", (unsigned char) value);
else if (len == 2)
printf ("%d\n", (unsigned short int) value);
else
printf ("%ld\n", (unsigned long int) value);
}
return (0);
}
static int trab_eeprom_write (char **argv)
{
int i;
int len;
unsigned int addr;
long int value = 0;
uchar *buffer;
buffer = (uchar *) &value;
addr = simple_strtoul (argv[3], NULL, 10);
addr &= 0xfff;
len = simple_strtoul (argv[4], NULL, 10);
if ((len < 1) || (len > 4)) {
printf ("%s: invalid parameter %s\n", __FUNCTION__,
argv[4]);
return (1);
}
value = simple_strtol (argv[5], NULL, 10);
debug ("value=%ld\n", value);
for (i = 0; i < len; i++) {
if (i2c_write (I2C_EEPROM_DEV_ADDR, addr+i, 1, buffer+i, 1)) {
printf ("%s: could not write to i2c device %d"
", addr %d\n", __FUNCTION__,
I2C_EEPROM_DEV_ADDR, addr);
return (1);
}
#if 0
printf ("chip=%#x, addr+i=%#x+%d=%p, alen=%d, *buffer+i="
"%#x+%d=%p=%#x \n",I2C_EEPROM_DEV_ADDR_DEV_ADDR , addr,
i, addr+i, 1, buffer, i, buffer+i, *(buffer+i));
#endif
udelay (30000); /* wait for EEPROM ready */
}
return (0);
}
int i2c_write_multiple (uchar chip, uint addr, int alen,
uchar *buffer, int len)
{
int i;
if (alen != 1) {
printf ("%s: addr len other than 1 not supported\n",
__FUNCTION__);
return (1);
}
for (i = 0; i < len; i++) {
if (i2c_write (chip, addr+i, alen, buffer+i, 1)) {
printf ("%s: could not write to i2c device %d"
", addr %d\n", __FUNCTION__, chip, addr);
return (1);
}
#if 0
printf ("chip=%#x, addr+i=%#x+%d=%p, alen=%d, *buffer+i="
"%#x+%d=%p=\"%.1s\"\n", chip, addr, i, addr+i,
alen, buffer, i, buffer+i, buffer+i);
#endif
udelay (30000);
}
return (0);
}
int i2c_read_multiple ( uchar chip, uint addr, int alen,
uchar *buffer, int len)
{
int i;
if (alen != 1) {
printf ("%s: addr len other than 1 not supported\n",
__FUNCTION__);
return (1);
}
for (i = 0; i < len; i++) {
if (i2c_read (chip, addr+i, alen, buffer+i, 1)) {
printf ("%s: could not read from i2c device %#x"
", addr %d\n", __FUNCTION__, chip, addr);
return (1);
}
}
return (0);
}
#endif /* CFG_CMD_I2C */