u-boot/drivers/net/ti/keystone_net.c

800 lines
18 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Ethernet driver for TI K2HK EVM.
*
* (C) Copyright 2012-2014
* Texas Instruments Incorporated, <www.ti.com>
*/
#include <common.h>
#include <command.h>
#include <console.h>
#include <asm/global_data.h>
#include <linux/delay.h>
#include <dm.h>
#include <dm/lists.h>
#include <net.h>
#include <phy.h>
#include <errno.h>
#include <miiphy.h>
#include <malloc.h>
#include <asm/ti-common/keystone_nav.h>
#include <asm/ti-common/keystone_net.h>
#include <asm/ti-common/keystone_serdes.h>
#include <asm/arch/psc_defs.h>
#include "cpsw_mdio.h"
DECLARE_GLOBAL_DATA_PTR;
#ifdef KEYSTONE2_EMAC_GIG_ENABLE
#define emac_gigabit_enable(x) keystone2_eth_gigabit_enable(x)
#else
#define emac_gigabit_enable(x) /* no gigabit to enable */
#endif
#define RX_BUFF_NUMS 24
#define RX_BUFF_LEN 1520
#define MAX_SIZE_STREAM_BUFFER RX_BUFF_LEN
#define SGMII_ANEG_TIMEOUT 4000
static u8 rx_buffs[RX_BUFF_NUMS * RX_BUFF_LEN] __aligned(16);
enum link_type {
LINK_TYPE_SGMII_MAC_TO_MAC_AUTO = 0,
LINK_TYPE_SGMII_MAC_TO_PHY_MODE = 1,
LINK_TYPE_SGMII_MAC_TO_MAC_FORCED_MODE = 2,
LINK_TYPE_SGMII_MAC_TO_FIBRE_MODE = 3,
LINK_TYPE_SGMII_MAC_TO_PHY_NO_MDIO_MODE = 4,
LINK_TYPE_RGMII_LINK_MAC_PHY = 5,
LINK_TYPE_RGMII_LINK_MAC_MAC_FORCED = 6,
LINK_TYPE_RGMII_LINK_MAC_PHY_NO_MDIO = 7,
LINK_TYPE_10G_MAC_TO_PHY_MODE = 10,
LINK_TYPE_10G_MAC_TO_MAC_FORCED_MODE = 11,
};
#define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
((mac)[2] << 16) | ((mac)[3] << 24))
#define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
#ifdef CONFIG_KSNET_NETCP_V1_0
#define EMAC_EMACSW_BASE_OFS 0x90800
#define EMAC_EMACSW_PORT_BASE_OFS (EMAC_EMACSW_BASE_OFS + 0x60)
/* CPSW Switch slave registers */
#define CPGMACSL_REG_SA_LO 0x10
#define CPGMACSL_REG_SA_HI 0x14
#define DEVICE_EMACSW_BASE(base, x) ((base) + EMAC_EMACSW_PORT_BASE_OFS + \
(x) * 0x30)
#elif defined(CONFIG_KSNET_NETCP_V1_5)
#define EMAC_EMACSW_PORT_BASE_OFS 0x222000
/* CPSW Switch slave registers */
#define CPGMACSL_REG_SA_LO 0x308
#define CPGMACSL_REG_SA_HI 0x30c
#define DEVICE_EMACSW_BASE(base, x) ((base) + EMAC_EMACSW_PORT_BASE_OFS + \
(x) * 0x1000)
#endif
struct ks2_eth_priv {
struct udevice *dev;
struct phy_device *phydev;
struct mii_dev *mdio_bus;
int phy_addr;
phy_interface_t phy_if;
ofnode phy_ofnode;
int sgmii_link_type;
phys_addr_t mdio_base;
struct rx_buff_desc net_rx_buffs;
struct pktdma_cfg *netcp_pktdma;
void *hd;
int slave_port;
enum link_type link_type;
bool emac_open;
bool has_mdio;
};
static void __attribute__((unused))
keystone2_eth_gigabit_enable(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
/*
* Check if link detected is giga-bit
* If Gigabit mode detected, enable gigbit in MAC
*/
if (priv->has_mdio) {
if (priv->phydev->speed != 1000)
return;
}
writel(readl(DEVICE_EMACSL_BASE(priv->slave_port - 1) +
CPGMACSL_REG_CTL) |
EMAC_MACCONTROL_GIGFORCE | EMAC_MACCONTROL_GIGABIT_ENABLE,
DEVICE_EMACSL_BASE(priv->slave_port - 1) + CPGMACSL_REG_CTL);
}
#ifdef CONFIG_SOC_K2G
int keystone_rgmii_config(struct phy_device *phy_dev)
{
unsigned int i, status;
i = 0;
do {
if (i > SGMII_ANEG_TIMEOUT) {
puts(" TIMEOUT !\n");
phy_dev->link = 0;
return 0;
}
if (ctrlc()) {
puts("user interrupt!\n");
phy_dev->link = 0;
return -EINTR;
}
if ((i++ % 500) == 0)
printf(".");
udelay(1000); /* 1 ms */
status = readl(RGMII_STATUS_REG);
} while (!(status & RGMII_REG_STATUS_LINK));
puts(" done\n");
return 0;
}
#else
int keystone_sgmii_config(struct phy_device *phy_dev, int port, int interface)
{
unsigned int i, status, mask;
unsigned int mr_adv_ability, control;
switch (interface) {
case SGMII_LINK_MAC_MAC_AUTONEG:
mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE |
SGMII_REG_MR_ADV_LINK |
SGMII_REG_MR_ADV_FULL_DUPLEX |
SGMII_REG_MR_ADV_GIG_MODE);
control = (SGMII_REG_CONTROL_MASTER |
SGMII_REG_CONTROL_AUTONEG);
break;
case SGMII_LINK_MAC_PHY:
case SGMII_LINK_MAC_PHY_FORCED:
mr_adv_ability = SGMII_REG_MR_ADV_ENABLE;
control = SGMII_REG_CONTROL_AUTONEG;
break;
case SGMII_LINK_MAC_MAC_FORCED:
mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE |
SGMII_REG_MR_ADV_LINK |
SGMII_REG_MR_ADV_FULL_DUPLEX |
SGMII_REG_MR_ADV_GIG_MODE);
control = SGMII_REG_CONTROL_MASTER;
break;
case SGMII_LINK_MAC_FIBER:
mr_adv_ability = 0x20;
control = SGMII_REG_CONTROL_AUTONEG;
break;
default:
mr_adv_ability = SGMII_REG_MR_ADV_ENABLE;
control = SGMII_REG_CONTROL_AUTONEG;
}
__raw_writel(0, SGMII_CTL_REG(port));
/*
* Wait for the SerDes pll to lock,
* but don't trap if lock is never read
*/
for (i = 0; i < 1000; i++) {
udelay(2000);
status = __raw_readl(SGMII_STATUS_REG(port));
if ((status & SGMII_REG_STATUS_LOCK) != 0)
break;
}
__raw_writel(mr_adv_ability, SGMII_MRADV_REG(port));
__raw_writel(control, SGMII_CTL_REG(port));
mask = SGMII_REG_STATUS_LINK;
if (control & SGMII_REG_CONTROL_AUTONEG)
mask |= SGMII_REG_STATUS_AUTONEG;
status = __raw_readl(SGMII_STATUS_REG(port));
if ((status & mask) == mask)
return 0;
printf("\n%s Waiting for SGMII auto negotiation to complete",
phy_dev->dev->name);
while ((status & mask) != mask) {
/*
* Timeout reached ?
*/
if (i > SGMII_ANEG_TIMEOUT) {
puts(" TIMEOUT !\n");
phy_dev->link = 0;
return 0;
}
if (ctrlc()) {
puts("user interrupt!\n");
phy_dev->link = 0;
return -EINTR;
}
if ((i++ % 500) == 0)
printf(".");
udelay(1000); /* 1 ms */
status = __raw_readl(SGMII_STATUS_REG(port));
}
puts(" done\n");
return 0;
}
#endif
int mac_sl_reset(u32 port)
{
u32 i, v;
if (port >= DEVICE_N_GMACSL_PORTS)
return GMACSL_RET_INVALID_PORT;
/* Set the soft reset bit */
writel(CPGMAC_REG_RESET_VAL_RESET,
DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET);
/* Wait for the bit to clear */
for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) {
v = readl(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET);
if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) !=
CPGMAC_REG_RESET_VAL_RESET)
return GMACSL_RET_OK;
}
/* Timeout on the reset */
return GMACSL_RET_WARN_RESET_INCOMPLETE;
}
int mac_sl_config(u_int16_t port, struct mac_sl_cfg *cfg)
{
u32 v, i;
int ret = GMACSL_RET_OK;
if (port >= DEVICE_N_GMACSL_PORTS)
return GMACSL_RET_INVALID_PORT;
if (cfg->max_rx_len > CPGMAC_REG_MAXLEN_LEN) {
cfg->max_rx_len = CPGMAC_REG_MAXLEN_LEN;
ret = GMACSL_RET_WARN_MAXLEN_TOO_BIG;
}
/* Must wait if the device is undergoing reset */
for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) {
v = readl(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET);
if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) !=
CPGMAC_REG_RESET_VAL_RESET)
break;
}
if (i == DEVICE_EMACSL_RESET_POLL_COUNT)
return GMACSL_RET_CONFIG_FAIL_RESET_ACTIVE;
writel(cfg->max_rx_len, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_MAXLEN);
writel(cfg->ctl, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_CTL);
#ifndef CONFIG_SOC_K2HK
/* Map RX packet flow priority to 0 */
writel(0, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RX_PRI_MAP);
#endif
return ret;
}
int ethss_config(u32 ctl, u32 max_pkt_size)
{
u32 i;
/* Max length register */
writel(max_pkt_size, DEVICE_CPSW_BASE + CPSW_REG_MAXLEN);
/* Control register */
writel(ctl, DEVICE_CPSW_BASE + CPSW_REG_CTL);
/* All statistics enabled by default */
writel(CPSW_REG_VAL_STAT_ENABLE_ALL,
DEVICE_CPSW_BASE + CPSW_REG_STAT_PORT_EN);
/* Reset and enable the ALE */
writel(CPSW_REG_VAL_ALE_CTL_RESET_AND_ENABLE |
CPSW_REG_VAL_ALE_CTL_BYPASS,
DEVICE_CPSW_BASE + CPSW_REG_ALE_CONTROL);
/* All ports put into forward mode */
for (i = 0; i < DEVICE_CPSW_NUM_PORTS; i++)
writel(CPSW_REG_VAL_PORTCTL_FORWARD_MODE,
DEVICE_CPSW_BASE + CPSW_REG_ALE_PORTCTL(i));
return 0;
}
int ethss_start(void)
{
int i;
struct mac_sl_cfg cfg;
cfg.max_rx_len = MAX_SIZE_STREAM_BUFFER;
cfg.ctl = GMACSL_ENABLE | GMACSL_RX_ENABLE_EXT_CTL;
for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++) {
mac_sl_reset(i);
mac_sl_config(i, &cfg);
}
return 0;
}
int ethss_stop(void)
{
int i;
for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++)
mac_sl_reset(i);
return 0;
}
struct ks2_serdes ks2_serdes_sgmii_156p25mhz = {
.clk = SERDES_CLOCK_156P25M,
.rate = SERDES_RATE_5G,
.rate_mode = SERDES_QUARTER_RATE,
.intf = SERDES_PHY_SGMII,
.loopback = 0,
};
#ifndef CONFIG_SOC_K2G
static void keystone2_net_serdes_setup(void)
{
ks2_serdes_init(CONFIG_KSNET_SERDES_SGMII_BASE,
&ks2_serdes_sgmii_156p25mhz,
CONFIG_KSNET_SERDES_LANES_PER_SGMII);
#if defined(CONFIG_SOC_K2E) || defined(CONFIG_SOC_K2L)
ks2_serdes_init(CONFIG_KSNET_SERDES_SGMII2_BASE,
&ks2_serdes_sgmii_156p25mhz,
CONFIG_KSNET_SERDES_LANES_PER_SGMII);
#endif
/* wait till setup */
udelay(5000);
}
#endif
static int ks2_eth_start(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
#ifdef CONFIG_SOC_K2G
keystone_rgmii_config(priv->phydev);
#else
keystone_sgmii_config(priv->phydev, priv->slave_port - 1,
priv->sgmii_link_type);
#endif
udelay(10000);
/* On chip switch configuration */
ethss_config(target_get_switch_ctl(), SWITCH_MAX_PKT_SIZE);
qm_init();
if (ksnav_init(priv->netcp_pktdma, &priv->net_rx_buffs)) {
pr_err("ksnav_init failed\n");
goto err_knav_init;
}
/*
* Streaming switch configuration. If not present this
* statement is defined to void in target.h.
* If present this is usually defined to a series of register writes
*/
hw_config_streaming_switch();
if (priv->has_mdio) {
phy_startup(priv->phydev);
if (priv->phydev->link == 0) {
pr_err("phy startup failed\n");
goto err_phy_start;
}
}
emac_gigabit_enable(dev);
ethss_start();
priv->emac_open = true;
return 0;
err_phy_start:
ksnav_close(priv->netcp_pktdma);
err_knav_init:
qm_close();
return -EFAULT;
}
static int ks2_eth_send(struct udevice *dev, void *packet, int length)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
genphy_update_link(priv->phydev);
if (priv->phydev->link == 0)
return -1;
if (length < EMAC_MIN_ETHERNET_PKT_SIZE)
length = EMAC_MIN_ETHERNET_PKT_SIZE;
return ksnav_send(priv->netcp_pktdma, (u32 *)packet,
length, (priv->slave_port) << 16);
}
static int ks2_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
int pkt_size;
u32 *pkt = NULL;
priv->hd = ksnav_recv(priv->netcp_pktdma, &pkt, &pkt_size);
if (priv->hd == NULL)
return -EAGAIN;
*packetp = (uchar *)pkt;
return pkt_size;
}
static int ks2_eth_free_pkt(struct udevice *dev, uchar *packet,
int length)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
ksnav_release_rxhd(priv->netcp_pktdma, priv->hd);
return 0;
}
static void ks2_eth_stop(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
if (!priv->emac_open)
return;
ethss_stop();
ksnav_close(priv->netcp_pktdma);
qm_close();
phy_shutdown(priv->phydev);
priv->emac_open = false;
}
int ks2_eth_read_rom_hwaddr(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
u32 maca = 0;
u32 macb = 0;
/* Read the e-fuse mac address */
if (priv->slave_port == 1) {
maca = __raw_readl(MAC_ID_BASE_ADDR);
macb = __raw_readl(MAC_ID_BASE_ADDR + 4);
}
pdata->enetaddr[0] = (macb >> 8) & 0xff;
pdata->enetaddr[1] = (macb >> 0) & 0xff;
pdata->enetaddr[2] = (maca >> 24) & 0xff;
pdata->enetaddr[3] = (maca >> 16) & 0xff;
pdata->enetaddr[4] = (maca >> 8) & 0xff;
pdata->enetaddr[5] = (maca >> 0) & 0xff;
return 0;
}
int ks2_eth_write_hwaddr(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
writel(mac_hi(pdata->enetaddr),
DEVICE_EMACSW_BASE(pdata->iobase, priv->slave_port - 1) +
CPGMACSL_REG_SA_HI);
writel(mac_lo(pdata->enetaddr),
DEVICE_EMACSW_BASE(pdata->iobase, priv->slave_port - 1) +
CPGMACSL_REG_SA_LO);
return 0;
}
static int ks2_eth_probe(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
struct mii_dev *mdio_bus;
priv->dev = dev;
priv->emac_open = false;
/* These clock enables has to be moved to common location */
if (cpu_is_k2g())
writel(KS2_ETHERNET_RGMII, KS2_ETHERNET_CFG);
/* By default, select PA PLL clock as PA clock source */
#ifndef CONFIG_SOC_K2G
if (psc_enable_module(KS2_LPSC_PA))
return -EACCES;
#endif
if (psc_enable_module(KS2_LPSC_CPGMAC))
return -EACCES;
if (psc_enable_module(KS2_LPSC_CRYPTO))
return -EACCES;
if (cpu_is_k2e() || cpu_is_k2l())
pll_pa_clk_sel();
priv->net_rx_buffs.buff_ptr = rx_buffs;
priv->net_rx_buffs.num_buffs = RX_BUFF_NUMS;
priv->net_rx_buffs.buff_len = RX_BUFF_LEN;
if (priv->slave_port == 1) {
#ifndef CONFIG_SOC_K2G
keystone2_net_serdes_setup();
#endif
/*
* Register MDIO bus for slave 0 only, other slave have
* to re-use the same
*/
mdio_bus = cpsw_mdio_init("ethernet-mdio",
priv->mdio_base,
EMAC_MDIO_CLOCK_FREQ,
EMAC_MDIO_BUS_FREQ,
false);
if (!mdio_bus) {
pr_err("MDIO alloc failed\n");
return -ENOMEM;
}
priv->mdio_bus = mdio_bus;
} else {
/* Get the MDIO bus from slave 0 device */
struct ks2_eth_priv *parent_priv;
parent_priv = dev_get_priv(dev->parent);
priv->mdio_bus = parent_priv->mdio_bus;
priv->mdio_base = parent_priv->mdio_base;
}
priv->netcp_pktdma = &netcp_pktdma;
if (priv->has_mdio) {
priv->phydev = phy_connect(priv->mdio_bus, priv->phy_addr,
dev, priv->phy_if);
#ifdef CONFIG_DM_ETH
if (ofnode_valid(priv->phy_ofnode))
priv->phydev->node = priv->phy_ofnode;
#endif
phy_config(priv->phydev);
}
return 0;
}
int ks2_eth_remove(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
cpsw_mdio_free(priv->mdio_bus);
return 0;
}
static const struct eth_ops ks2_eth_ops = {
.start = ks2_eth_start,
.send = ks2_eth_send,
.recv = ks2_eth_recv,
.free_pkt = ks2_eth_free_pkt,
.stop = ks2_eth_stop,
.read_rom_hwaddr = ks2_eth_read_rom_hwaddr,
.write_hwaddr = ks2_eth_write_hwaddr,
};
static int ks2_bind_one_slave(struct udevice *dev, ofnode slave, ofnode *gbe_0)
{
char *slave_name;
u32 slave_no;
int ret;
if (ofnode_read_u32(slave, "slave-port", &slave_no))
return 0;
if (gbe_0 && slave_no == 0) {
/* This is the current eth device */
*gbe_0 = slave;
return 0;
}
/* Slave devices to be registered */
slave_name = malloc(20);
snprintf(slave_name, 20, "netcp@slave-%d", slave_no);
ret = device_bind_driver_to_node(dev, "eth_ks2_sl", slave_name, slave,
NULL);
if (ret)
pr_err("ks2_net - not able to bind slave interfaces\n");
return ret;
}
static int ks2_eth_bind_slaves(struct udevice *dev, ofnode gbe, ofnode *gbe_0)
{
ofnode interfaces, sec_slave, slave;
int ret;
interfaces = ofnode_find_subnode(gbe, "interfaces");
ofnode_for_each_subnode(slave, interfaces) {
ret = ks2_bind_one_slave(dev, slave, gbe_0);
if (ret)
return ret;
}
sec_slave = ofnode_find_subnode(gbe, "secondary-slave-ports");
ofnode_for_each_subnode(slave, sec_slave) {
ret = ks2_bind_one_slave(dev, slave, NULL);
if (ret)
return ret;
}
return 0;
}
static int ks2_eth_parse_slave_interface(ofnode netcp, ofnode slave,
struct ks2_eth_priv *priv,
struct eth_pdata *pdata)
{
struct ofnode_phandle_args dma_args;
ofnode phy, mdio;
int dma_count;
priv->slave_port = ofnode_read_s32_default(slave, "slave-port", -1);
priv->net_rx_buffs.rx_flow = priv->slave_port * 8;
/* U-Boot slave port number starts with 1 instead of 0 */
priv->slave_port += 1;
dma_count = ofnode_count_phandle_with_args(netcp, "ti,navigator-dmas",
NULL, 1);
if (priv->slave_port < dma_count &&
!ofnode_parse_phandle_with_args(netcp, "ti,navigator-dmas", NULL, 1,
priv->slave_port - 1, &dma_args))
priv->net_rx_buffs.rx_flow = dma_args.args[0];
priv->link_type = ofnode_read_s32_default(slave, "link-interface", -1);
phy = ofnode_get_phy_node(slave);
priv->phy_ofnode = phy;
if (ofnode_valid(phy)) {
priv->phy_addr = ofnode_read_s32_default(phy, "reg", -1);
mdio = ofnode_get_parent(phy);
if (!ofnode_valid(mdio)) {
pr_err("mdio dt not found\n");
return -ENODEV;
}
priv->mdio_base = ofnode_get_addr(mdio);
}
if (priv->link_type == LINK_TYPE_SGMII_MAC_TO_PHY_MODE) {
priv->phy_if = PHY_INTERFACE_MODE_SGMII;
pdata->phy_interface = priv->phy_if;
priv->sgmii_link_type = SGMII_LINK_MAC_PHY;
priv->has_mdio = true;
} else if (priv->link_type == LINK_TYPE_RGMII_LINK_MAC_PHY) {
priv->phy_if = ofnode_read_phy_mode(slave);
if (priv->phy_if == PHY_INTERFACE_MODE_NA)
priv->phy_if = PHY_INTERFACE_MODE_RGMII;
pdata->phy_interface = priv->phy_if;
if (priv->phy_if != PHY_INTERFACE_MODE_RGMII &&
priv->phy_if != PHY_INTERFACE_MODE_RGMII_ID &&
priv->phy_if != PHY_INTERFACE_MODE_RGMII_RXID &&
priv->phy_if != PHY_INTERFACE_MODE_RGMII_TXID) {
pr_err("invalid phy-mode\n");
return -EINVAL;
}
priv->has_mdio = true;
}
return 0;
}
static int ks2_sl_eth_of_to_plat(struct udevice *dev)
{
ofnode slave, interfaces, gbe, netcp_devices, netcp;
struct ks2_eth_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
slave = dev_ofnode(dev);
interfaces = ofnode_get_parent(slave);
gbe = ofnode_get_parent(interfaces);
netcp_devices = ofnode_get_parent(gbe);
netcp = ofnode_get_parent(netcp_devices);
ks2_eth_parse_slave_interface(netcp, slave, priv, pdata);
pdata->iobase = ofnode_get_addr(netcp);
return 0;
}
static int ks2_eth_of_to_plat(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
ofnode netcp_devices, gbe, gbe_0;
netcp_devices = dev_read_subnode(dev, "netcp-devices");
gbe = ofnode_find_subnode(netcp_devices, "gbe");
gbe_0 = ofnode_null();
ks2_eth_bind_slaves(dev, gbe, &gbe_0);
ks2_eth_parse_slave_interface(dev_ofnode(dev), gbe_0, priv, pdata);
pdata->iobase = dev_read_addr(dev);
return 0;
}
static const struct udevice_id ks2_eth_ids[] = {
{ .compatible = "ti,netcp-1.0" },
{ }
};
U_BOOT_DRIVER(eth_ks2_slave) = {
.name = "eth_ks2_sl",
.id = UCLASS_ETH,
.of_to_plat = ks2_sl_eth_of_to_plat,
.probe = ks2_eth_probe,
.remove = ks2_eth_remove,
.ops = &ks2_eth_ops,
.priv_auto = sizeof(struct ks2_eth_priv),
.plat_auto = sizeof(struct eth_pdata),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};
U_BOOT_DRIVER(eth_ks2) = {
.name = "eth_ks2",
.id = UCLASS_ETH,
.of_match = ks2_eth_ids,
.of_to_plat = ks2_eth_of_to_plat,
.probe = ks2_eth_probe,
.remove = ks2_eth_remove,
.ops = &ks2_eth_ops,
.priv_auto = sizeof(struct ks2_eth_priv),
.plat_auto = sizeof(struct eth_pdata),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};