u-boot/cmd/fdt.c

1139 lines
28 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2007
* Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com
* Based on code written by:
* Pantelis Antoniou <pantelis.antoniou@gmail.com> and
* Matthew McClintock <msm@freescale.com>
*/
#include <common.h>
#include <command.h>
#include <env.h>
#include <image.h>
#include <linux/ctype.h>
#include <linux/types.h>
#include <asm/global_data.h>
#include <linux/libfdt.h>
#include <fdt_support.h>
#include <mapmem.h>
#include <asm/io.h>
#define MAX_LEVEL 32 /* how deeply nested we will go */
#define SCRATCHPAD 1024 /* bytes of scratchpad memory */
/*
* Global data (for the gd->bd)
*/
DECLARE_GLOBAL_DATA_PTR;
static int fdt_parse_prop(char *const*newval, int count, char *data, int *len);
static int fdt_print(const char *pathp, char *prop, int depth);
static int is_printable_string(const void *data, int len);
/*
* The working_fdt points to our working flattened device tree.
*/
struct fdt_header *working_fdt;
void set_working_fdt_addr(ulong addr)
{
void *buf;
buf = map_sysmem(addr, 0);
working_fdt = buf;
env_set_hex("fdtaddr", addr);
}
/*
* Get a value from the fdt and format it to be set in the environment
*/
static int fdt_value_env_set(const void *nodep, int len,
const char *var, int index)
{
if (is_printable_string(nodep, len)) {
const char *nodec = (const char *)nodep;
int i;
/*
* Iterate over all members in stringlist and find the one at
* offset $index. If no such index exists, indicate failure.
*/
for (i = 0; i < len; i += strlen(nodec) + 1) {
if (index-- > 0)
continue;
env_set(var, nodec + i);
return 0;
}
return 1;
} else if (len == 4) {
char buf[11];
sprintf(buf, "0x%08X", fdt32_to_cpu(*(fdt32_t *)nodep));
env_set(var, buf);
} else if (len%4 == 0 && len <= 20) {
/* Needed to print things like sha1 hashes. */
char buf[41];
int i;
for (i = 0; i < len; i += sizeof(unsigned int))
sprintf(buf + (i * 2), "%08x",
*(unsigned int *)(nodep + i));
env_set(var, buf);
} else {
printf("error: unprintable value\n");
return 1;
}
return 0;
}
static const char * const fdt_member_table[] = {
"magic",
"totalsize",
"off_dt_struct",
"off_dt_strings",
"off_mem_rsvmap",
"version",
"last_comp_version",
"boot_cpuid_phys",
"size_dt_strings",
"size_dt_struct",
};
static int fdt_get_header_value(int argc, char *const argv[])
{
fdt32_t *fdtp = (fdt32_t *)working_fdt;
ulong val;
int i;
if (argv[2][0] != 'g')
return CMD_RET_FAILURE;
for (i = 0; i < ARRAY_SIZE(fdt_member_table); i++) {
if (strcmp(fdt_member_table[i], argv[4]))
continue;
val = fdt32_to_cpu(fdtp[i]);
env_set_hex(argv[3], val);
return CMD_RET_SUCCESS;
}
return CMD_RET_FAILURE;
}
/*
* Flattened Device Tree command, see the help for parameter definitions.
*/
static int do_fdt(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[])
{
if (argc < 2)
return CMD_RET_USAGE;
/* fdt addr: Set the address of the fdt */
if (strncmp(argv[1], "ad", 2) == 0) {
unsigned long addr;
int control = 0;
int quiet = 0;
struct fdt_header *blob;
/* Set the address [and length] of the fdt */
argc -= 2;
argv += 2;
while (argc > 0 && **argv == '-') {
char *arg = *argv;
while (*++arg) {
switch (*arg) {
case 'c':
control = 1;
break;
case 'q':
quiet = 1;
break;
default:
return CMD_RET_USAGE;
}
}
argc--;
argv++;
}
if (argc == 0) {
if (control)
blob = (struct fdt_header *)gd->fdt_blob;
else
blob = working_fdt;
if (!blob || !fdt_valid(&blob))
return 1;
printf("%s fdt: %08lx\n",
control ? "Control" : "Working",
control ? (ulong)map_to_sysmem(blob) :
env_get_hex("fdtaddr", 0));
return 0;
}
addr = hextoul(argv[0], NULL);
blob = map_sysmem(addr, 0);
if ((quiet && fdt_check_header(blob)) ||
(!quiet && !fdt_valid(&blob)))
return 1;
if (control)
gd->fdt_blob = blob;
else
set_working_fdt_addr(addr);
if (argc >= 2) {
int len;
int err;
/* Optional new length */
len = hextoul(argv[1], NULL);
if (len < fdt_totalsize(blob)) {
if (!quiet)
printf("New length %d < existing length %d, ignoring\n",
len, fdt_totalsize(blob));
} else {
/* Open in place with a new length */
err = fdt_open_into(blob, blob, len);
if (!quiet && err != 0) {
printf("libfdt fdt_open_into(): %s\n",
fdt_strerror(err));
}
}
}
return CMD_RET_SUCCESS;
}
if (!working_fdt) {
puts("No FDT memory address configured. Please configure\n"
"the FDT address via \"fdt addr <address>\" command.\n"
"Aborting!\n");
return CMD_RET_FAILURE;
}
/*
* Move the working_fdt
*/
if (strncmp(argv[1], "mo", 2) == 0) {
struct fdt_header *newaddr;
int len;
int err;
if (argc < 4)
return CMD_RET_USAGE;
/*
* Set the address and length of the fdt.
*/
working_fdt = (struct fdt_header *)hextoul(argv[2], NULL);
if (!fdt_valid(&working_fdt))
return 1;
newaddr = (struct fdt_header *)hextoul(argv[3], NULL);
/*
* If the user specifies a length, use that. Otherwise use the
* current length.
*/
if (argc <= 4) {
len = fdt_totalsize(working_fdt);
} else {
len = hextoul(argv[4], NULL);
if (len < fdt_totalsize(working_fdt)) {
printf ("New length 0x%X < existing length "
"0x%X, aborting.\n",
len, fdt_totalsize(working_fdt));
return 1;
}
}
/*
* Copy to the new location.
*/
err = fdt_open_into(working_fdt, newaddr, len);
if (err != 0) {
printf ("libfdt fdt_open_into(): %s\n",
fdt_strerror(err));
return 1;
}
set_working_fdt_addr((ulong)newaddr);
#ifdef CONFIG_OF_SYSTEM_SETUP
/* Call the board-specific fixup routine */
} else if (strncmp(argv[1], "sys", 3) == 0) {
int err = ft_system_setup(working_fdt, gd->bd);
if (err) {
printf("Failed to add system information to FDT: %s\n",
fdt_strerror(err));
return CMD_RET_FAILURE;
}
#endif
/*
* Make a new node
*/
} else if (strncmp(argv[1], "mk", 2) == 0) {
char *pathp; /* path */
char *nodep; /* new node to add */
int nodeoffset; /* node offset from libfdt */
int err;
/*
* Parameters: Node path, new node to be appended to the path.
*/
if (argc < 4)
return CMD_RET_USAGE;
pathp = argv[2];
nodep = argv[3];
nodeoffset = fdt_path_offset (working_fdt, pathp);
if (nodeoffset < 0) {
/*
* Not found or something else bad happened.
*/
printf ("libfdt fdt_path_offset() returned %s\n",
fdt_strerror(nodeoffset));
return 1;
}
err = fdt_add_subnode(working_fdt, nodeoffset, nodep);
if (err < 0) {
printf ("libfdt fdt_add_subnode(): %s\n",
fdt_strerror(err));
return 1;
}
/*
* Set the value of a property in the working_fdt.
*/
} else if (strncmp(argv[1], "se", 2) == 0) {
char *pathp; /* path */
char *prop; /* property */
int nodeoffset; /* node offset from libfdt */
static char data[SCRATCHPAD] __aligned(4);/* property storage */
const void *ptmp;
int len; /* new length of the property */
int ret; /* return value */
/*
* Parameters: Node path, property, optional value.
*/
if (argc < 4)
return CMD_RET_USAGE;
pathp = argv[2];
prop = argv[3];
nodeoffset = fdt_path_offset (working_fdt, pathp);
if (nodeoffset < 0) {
/*
* Not found or something else bad happened.
*/
printf ("libfdt fdt_path_offset() returned %s\n",
fdt_strerror(nodeoffset));
return 1;
}
if (argc == 4) {
len = 0;
} else {
ptmp = fdt_getprop(working_fdt, nodeoffset, prop, &len);
if (len > SCRATCHPAD) {
printf("prop (%d) doesn't fit in scratchpad!\n",
len);
return 1;
}
if (ptmp != NULL)
memcpy(data, ptmp, len);
ret = fdt_parse_prop(&argv[4], argc - 4, data, &len);
if (ret != 0)
return ret;
}
ret = fdt_setprop(working_fdt, nodeoffset, prop, data, len);
if (ret < 0) {
printf ("libfdt fdt_setprop(): %s\n", fdt_strerror(ret));
return 1;
}
/********************************************************************
* Get the value of a property in the working_fdt.
********************************************************************/
} else if (argv[1][0] == 'g') {
char *subcmd; /* sub-command */
char *pathp; /* path */
char *prop; /* property */
char *var; /* variable to store result */
int nodeoffset; /* node offset from libfdt */
const void *nodep; /* property node pointer */
int len = 0; /* new length of the property */
/*
* Parameters: Node path, property, optional value.
*/
if (argc < 5)
return CMD_RET_USAGE;
subcmd = argv[2];
if (argc < 6 && subcmd[0] != 's')
return CMD_RET_USAGE;
var = argv[3];
pathp = argv[4];
prop = argv[5];
nodeoffset = fdt_path_offset(working_fdt, pathp);
if (nodeoffset < 0) {
/*
* Not found or something else bad happened.
*/
printf("libfdt fdt_path_offset() returned %s\n",
fdt_strerror(nodeoffset));
return 1;
}
if (subcmd[0] == 'n' || (subcmd[0] == 's' && argc == 5)) {
int req_index = -1;
int startDepth = fdt_node_depth(
working_fdt, nodeoffset);
int curDepth = startDepth;
int cur_index = -1;
int nextNodeOffset = fdt_next_node(
working_fdt, nodeoffset, &curDepth);
if (subcmd[0] == 'n')
req_index = hextoul(argv[5], NULL);
while (curDepth > startDepth) {
if (curDepth == startDepth + 1)
cur_index++;
if (subcmd[0] == 'n' &&
cur_index == req_index) {
const char *node_name;
node_name = fdt_get_name(working_fdt,
nextNodeOffset,
NULL);
env_set(var, node_name);
return 0;
}
nextNodeOffset = fdt_next_node(
working_fdt, nextNodeOffset, &curDepth);
if (nextNodeOffset < 0)
break;
}
if (subcmd[0] == 's') {
/* get the num nodes at this level */
env_set_ulong(var, cur_index + 1);
} else {
/* node index not found */
printf("libfdt node not found\n");
return 1;
}
} else {
nodep = fdt_getprop(
working_fdt, nodeoffset, prop, &len);
if (len == 0) {
/* no property value */
env_set(var, "");
return 0;
} else if (nodep && len > 0) {
if (subcmd[0] == 'v') {
int index = 0;
int ret;
if (argc == 7)
index = simple_strtoul(argv[6], NULL, 10);
ret = fdt_value_env_set(nodep, len,
var, index);
if (ret != 0)
return ret;
} else if (subcmd[0] == 'a') {
/* Get address */
char buf[11];
sprintf(buf, "0x%p", nodep);
env_set(var, buf);
} else if (subcmd[0] == 's') {
/* Get size */
char buf[11];
sprintf(buf, "0x%08X", len);
env_set(var, buf);
} else
return CMD_RET_USAGE;
return 0;
} else {
printf("libfdt fdt_getprop(): %s\n",
fdt_strerror(len));
return 1;
}
}
/*
* Print (recursive) / List (single level)
*/
} else if ((argv[1][0] == 'p') || (argv[1][0] == 'l')) {
int depth = MAX_LEVEL; /* how deep to print */
char *pathp; /* path */
char *prop; /* property */
int ret; /* return value */
static char root[2] = "/";
/*
* list is an alias for print, but limited to 1 level
*/
if (argv[1][0] == 'l') {
depth = 1;
}
/*
* Get the starting path. The root node is an oddball,
* the offset is zero and has no name.
*/
if (argc == 2)
pathp = root;
else
pathp = argv[2];
if (argc > 3)
prop = argv[3];
else
prop = NULL;
ret = fdt_print(pathp, prop, depth);
if (ret != 0)
return ret;
/*
* Remove a property/node
*/
} else if (strncmp(argv[1], "rm", 2) == 0) {
int nodeoffset; /* node offset from libfdt */
int err;
/*
* Get the path. The root node is an oddball, the offset
* is zero and has no name.
*/
nodeoffset = fdt_path_offset (working_fdt, argv[2]);
if (nodeoffset < 0) {
/*
* Not found or something else bad happened.
*/
printf ("libfdt fdt_path_offset() returned %s\n",
fdt_strerror(nodeoffset));
return 1;
}
/*
* Do the delete. A fourth parameter means delete a property,
* otherwise delete the node.
*/
if (argc > 3) {
err = fdt_delprop(working_fdt, nodeoffset, argv[3]);
if (err < 0) {
printf("libfdt fdt_delprop(): %s\n",
fdt_strerror(err));
return err;
}
} else {
err = fdt_del_node(working_fdt, nodeoffset);
if (err < 0) {
printf("libfdt fdt_del_node(): %s\n",
fdt_strerror(err));
return err;
}
}
/*
* Display header info
*/
} else if (argv[1][0] == 'h') {
if (argc == 5)
return fdt_get_header_value(argc, argv);
u32 version = fdt_version(working_fdt);
printf("magic:\t\t\t0x%x\n", fdt_magic(working_fdt));
printf("totalsize:\t\t0x%x (%d)\n", fdt_totalsize(working_fdt),
fdt_totalsize(working_fdt));
printf("off_dt_struct:\t\t0x%x\n",
fdt_off_dt_struct(working_fdt));
printf("off_dt_strings:\t\t0x%x\n",
fdt_off_dt_strings(working_fdt));
printf("off_mem_rsvmap:\t\t0x%x\n",
fdt_off_mem_rsvmap(working_fdt));
printf("version:\t\t%d\n", version);
printf("last_comp_version:\t%d\n",
fdt_last_comp_version(working_fdt));
if (version >= 2)
printf("boot_cpuid_phys:\t0x%x\n",
fdt_boot_cpuid_phys(working_fdt));
if (version >= 3)
printf("size_dt_strings:\t0x%x\n",
fdt_size_dt_strings(working_fdt));
if (version >= 17)
printf("size_dt_struct:\t\t0x%x\n",
fdt_size_dt_struct(working_fdt));
printf("number mem_rsv:\t\t0x%x\n",
fdt_num_mem_rsv(working_fdt));
printf("\n");
/*
* Set boot cpu id
*/
} else if (strncmp(argv[1], "boo", 3) == 0) {
unsigned long tmp = hextoul(argv[2], NULL);
fdt_set_boot_cpuid_phys(working_fdt, tmp);
/*
* memory command
*/
} else if (strncmp(argv[1], "me", 2) == 0) {
uint64_t addr, size;
int err;
addr = simple_strtoull(argv[2], NULL, 16);
size = simple_strtoull(argv[3], NULL, 16);
err = fdt_fixup_memory(working_fdt, addr, size);
if (err < 0)
return err;
/*
* mem reserve commands
*/
} else if (strncmp(argv[1], "rs", 2) == 0) {
if (argv[2][0] == 'p') {
uint64_t addr, size;
int total = fdt_num_mem_rsv(working_fdt);
int j, err;
printf("index\t\t start\t\t size\n");
printf("-------------------------------"
"-----------------\n");
for (j = 0; j < total; j++) {
err = fdt_get_mem_rsv(working_fdt, j, &addr, &size);
if (err < 0) {
printf("libfdt fdt_get_mem_rsv(): %s\n",
fdt_strerror(err));
return err;
}
printf(" %x\t%08x%08x\t%08x%08x\n", j,
(u32)(addr >> 32),
(u32)(addr & 0xffffffff),
(u32)(size >> 32),
(u32)(size & 0xffffffff));
}
} else if (argv[2][0] == 'a') {
uint64_t addr, size;
int err;
addr = simple_strtoull(argv[3], NULL, 16);
size = simple_strtoull(argv[4], NULL, 16);
err = fdt_add_mem_rsv(working_fdt, addr, size);
if (err < 0) {
printf("libfdt fdt_add_mem_rsv(): %s\n",
fdt_strerror(err));
return err;
}
} else if (argv[2][0] == 'd') {
unsigned long idx = hextoul(argv[3], NULL);
int err = fdt_del_mem_rsv(working_fdt, idx);
if (err < 0) {
printf("libfdt fdt_del_mem_rsv(): %s\n",
fdt_strerror(err));
return err;
}
} else {
/* Unrecognized command */
return CMD_RET_USAGE;
}
}
#ifdef CONFIG_OF_BOARD_SETUP
/* Call the board-specific fixup routine */
else if (strncmp(argv[1], "boa", 3) == 0) {
int err = ft_board_setup(working_fdt, gd->bd);
if (err) {
printf("Failed to update board information in FDT: %s\n",
fdt_strerror(err));
return CMD_RET_FAILURE;
}
#ifdef CONFIG_ARCH_KEYSTONE
ft_board_setup_ex(working_fdt, gd->bd);
#endif
}
#endif
/* Create a chosen node */
else if (strncmp(argv[1], "cho", 3) == 0) {
unsigned long initrd_start = 0, initrd_end = 0;
if ((argc != 2) && (argc != 4))
return CMD_RET_USAGE;
if (argc == 4) {
initrd_start = hextoul(argv[2], NULL);
initrd_end = initrd_start + hextoul(argv[3], NULL) - 1;
}
fdt_chosen(working_fdt);
fdt_initrd(working_fdt, initrd_start, initrd_end);
#if defined(CONFIG_FIT_SIGNATURE)
} else if (strncmp(argv[1], "che", 3) == 0) {
int cfg_noffset;
int ret;
unsigned long addr;
struct fdt_header *blob;
if (!working_fdt)
return CMD_RET_FAILURE;
if (argc > 2) {
addr = hextoul(argv[2], NULL);
blob = map_sysmem(addr, 0);
} else {
blob = (struct fdt_header *)gd->fdt_blob;
}
if (!fdt_valid(&blob))
return 1;
gd->fdt_blob = blob;
cfg_noffset = fit_conf_get_node(working_fdt, NULL);
if (!cfg_noffset) {
printf("Could not find configuration node: %s\n",
fdt_strerror(cfg_noffset));
return CMD_RET_FAILURE;
}
ret = fit_config_verify(working_fdt, cfg_noffset);
if (ret == 0)
return CMD_RET_SUCCESS;
else
return CMD_RET_FAILURE;
#endif
}
#ifdef CONFIG_OF_LIBFDT_OVERLAY
/* apply an overlay */
else if (strncmp(argv[1], "ap", 2) == 0) {
unsigned long addr;
struct fdt_header *blob;
int ret;
if (argc != 3)
return CMD_RET_USAGE;
if (!working_fdt)
return CMD_RET_FAILURE;
addr = hextoul(argv[2], NULL);
blob = map_sysmem(addr, 0);
if (!fdt_valid(&blob))
return CMD_RET_FAILURE;
/* apply method prints messages on error */
ret = fdt_overlay_apply_verbose(working_fdt, blob);
if (ret)
return CMD_RET_FAILURE;
}
#endif
/* resize the fdt */
else if (strncmp(argv[1], "re", 2) == 0) {
uint extrasize;
if (argc > 2)
extrasize = hextoul(argv[2], NULL);
else
extrasize = 0;
fdt_shrink_to_minimum(working_fdt, extrasize);
}
else {
/* Unrecognized command */
return CMD_RET_USAGE;
}
return 0;
}
/****************************************************************************/
/*
* Parse the user's input, partially heuristic. Valid formats:
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
* <0x00112233 4 05> - an array of cells. Numbers follow standard
* C conventions.
* [00 11 22 .. nn] - byte stream
* "string" - If the the value doesn't start with "<" or "[", it is
* treated as a string. Note that the quotes are
* stripped by the parser before we get the string.
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
* newval: An array of strings containing the new property as specified
* on the command line
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
* count: The number of strings in the array
* data: A bytestream to be placed in the property
* len: The length of the resulting bytestream
*/
static int fdt_parse_prop(char * const *newval, int count, char *data, int *len)
{
char *cp; /* temporary char pointer */
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
char *newp; /* temporary newval char pointer */
unsigned long tmp; /* holds converted values */
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
int stridx = 0;
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
*len = 0;
newp = newval[0];
/* An array of cells */
if (*newp == '<') {
newp++;
while ((*newp != '>') && (stridx < count)) {
/*
* Keep searching until we find that last ">"
* That way users don't have to escape the spaces
*/
if (*newp == '\0') {
newp = newval[++stridx];
continue;
}
cp = newp;
tmp = simple_strtoul(cp, &newp, 0);
if (*cp != '?')
*(fdt32_t *)data = cpu_to_fdt32(tmp);
else
newp++;
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
data += 4;
*len += 4;
/* If the ptr didn't advance, something went wrong */
if ((newp - cp) <= 0) {
printf("Sorry, I could not convert \"%s\"\n",
cp);
return 1;
}
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
while (*newp == ' ')
newp++;
}
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
if (*newp != '>') {
printf("Unexpected character '%c'\n", *newp);
return 1;
}
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
} else if (*newp == '[') {
/*
* Byte stream. Convert the values.
*/
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
newp++;
while ((stridx < count) && (*newp != ']')) {
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
while (*newp == ' ')
newp++;
if (*newp == '\0') {
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
newp = newval[++stridx];
continue;
}
if (!isxdigit(*newp))
break;
tmp = hextoul(newp, &newp);
*data++ = tmp & 0xFF;
*len = *len + 1;
}
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
if (*newp != ']') {
printf("Unexpected character '%c'\n", *newp);
return 1;
}
} else {
/*
* Assume it is one or more strings. Copy it into our
* data area for convenience (including the
* terminating '\0's).
*/
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
while (stridx < count) {
size_t length = strlen(newp) + 1;
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
strcpy(data, newp);
data += length;
*len += length;
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
newp = newval[++stridx];
}
}
return 0;
}
/****************************************************************************/
/*
* Heuristic to guess if this is a string or concatenated strings.
*/
static int is_printable_string(const void *data, int len)
{
const char *s = data;
/* zero length is not */
if (len == 0)
return 0;
/* must terminate with zero or '\n' */
if (s[len - 1] != '\0' && s[len - 1] != '\n')
return 0;
/* printable or a null byte (concatenated strings) */
while (((*s == '\0') || isprint(*s) || isspace(*s)) && (len > 0)) {
/*
* If we see a null, there are three possibilities:
* 1) If len == 1, it is the end of the string, printable
* 2) Next character also a null, not printable.
* 3) Next character not a null, continue to check.
*/
if (s[0] == '\0') {
if (len == 1)
return 1;
if (s[1] == '\0')
return 0;
}
s++;
len--;
}
/* Not the null termination, or not done yet: not printable */
if (*s != '\0' || (len != 0))
return 0;
return 1;
}
/*
* Print the property in the best format, a heuristic guess. Print as
* a string, concatenated strings, a byte, word, double word, or (if all
* else fails) it is printed as a stream of bytes.
*/
static void print_data(const void *data, int len)
{
int j;
const char *env_max_dump;
ulong max_dump = ULONG_MAX;
/* no data, don't print */
if (len == 0)
return;
env_max_dump = env_get("fdt_max_dump");
if (env_max_dump)
max_dump = hextoul(env_max_dump, NULL);
/*
* It is a string, but it may have multiple strings (embedded '\0's).
*/
if (is_printable_string(data, len)) {
puts("\"");
j = 0;
while (j < len) {
if (j > 0)
puts("\", \"");
puts(data);
j += strlen(data) + 1;
data += strlen(data) + 1;
}
puts("\"");
return;
}
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
if ((len %4) == 0) {
if (len > max_dump)
printf("* 0x%p [0x%08x]", data, len);
else {
common/cmd_*.c: sparse fixes cmd_boot.c:40:5: warning: symbol 'do_go' was not declared. Should it be static? cmd_bootm.c:164:6: warning: symbol '__arch_preboot_os' was not declared. Should it be static? cmd_bootm.c:477:5: warning: symbol 'do_bootm_subcommand' was not declared. Should it be static? cmd_bootm.c:1022:1: error: directive in argument list cmd_bootm.c:1028:1: error: directive in argument list cmd_bootm.c:1029:1: error: directive in argument list cmd_bootm.c:1036:1: error: directive in argument list cmd_bootm.c:1042:1: error: directive in argument list cmd_bootm.c:1044:1: error: directive in argument list cmd_bootm.c:1045:1: error: directive in argument list cmd_bootm.c:1047:1: error: directive in argument list cmd_bootm.c:1089:5: warning: symbol 'do_iminfo' was not declared. Should it be static? cmd_bootm.c:1176:5: warning: symbol 'do_imls' was not declared. Should it be static? cmd_bootm.c:1654:1: error: directive in argument list cmd_bootm.c:1660:1: error: directive in argument list cmd_console.c:32:5: warning: symbol 'do_coninfo' was not declared. Should it be s cmd_date.c:46:5: warning: symbol 'do_date' was not declared. Should it be static? cmd_echo.c:27:5: warning: symbol 'do_echo' was not declared. Should it be static? cmd_exit.c:27:5: warning: symbol 'do_exit' was not declared. Should it be static? cmd_fat.c:97:5: warning: symbol 'do_fat_ls' was not declared. Should it be static? cmd_fat.c:136:5: warning: symbol 'do_fat_fsinfo' was not declared. Should it be s cmd_fdt.c:66:5: warning: symbol 'do_fdt' was not declared. Should it be static? cmd_fdt.c:542:43: warning: incorrect type in assignment (different base types) cmd_fdt.c:542:43: expected unsigned int [unsigned] [usertype] <noident> cmd_fdt.c:542:43: got restricted __be32 [usertype] <noident> cmd_fdt.c:679:42: warning: cast to restricted __be32 cmd_fdt.c:820:1: error: directive in argument list cmd_fdt.c:822:1: error: directive in argument list cmd_flash.c:292:5: warning: symbol 'do_flinfo' was not declared. Should it be static? cmd_flash.c:324:5: warning: symbol 'do_flerase' was not declared. Should it be static? cmd_flash.c:457:5: warning: symbol 'do_protect' was not declared. Should it be st cmd_help.c:27:5: warning: symbol 'do_help' was not declared. Should it be static? cmd_i2c.c:136:6: warning: symbol '__def_i2c_init_board' was not declared. Should it be static? cmd_i2c.c:144:14: warning: symbol '__def_i2c_get_bus_speed' was not declared. Should it be static? cmd_i2c.c:151:5: warning: symbol '__def_i2c_set_bus_speed' was not declared. Should it be static? cmd_i2c.c:1322:1: error: directive in argument list cmd_i2c.c:1324:1: error: directive in argument list cmd_i2c.c:1326:1: error: directive in argument list cmd_i2c.c:1328:1: error: directive in argument list cmd_i2c.c:1337:1: error: directive in argument list cmd_i2c.c:1339:1: error: directive in argument list cmd_irq.c:27:5: warning: symbol 'do_interrupts' was not declared. Should it be static? cmd_itest.c:133:5: warning: symbol 'binary_test' was not declared. Should it be static? cmd_itest.c:158:5: warning: symbol 'do_itest' was not declared. Should it be stat cmd_load.c:54:5: warning: symbol 'do_load_serial' was not declared. Should it be static? cmd_load.c:431:6: warning: symbol 'his_eol' was not declared. Should it be static? cmd_load.c:432:6: warning: symbol 'his_pad_count' was not declared. Should it be static? cmd_load.c:433:6: warning: symbol 'his_pad_char' was not declared. Should it be static? cmd_load.c:434:6: warning: symbol 'his_quote' was not declared. Should it be static? cmd_load.c:436:5: warning: symbol 'do_load_serial_bin' was not declared. Should it be static? cmd_load.c:549:6: warning: symbol 'send_pad' was not declared. Should it be static? cmd_load.c:558:6: warning: symbol 'ktrans' was not declared. Should it be static? cmd_load.c:568:5: warning: symbol 'chk1' was not declared. Should it be static? cmd_load.c:578:6: warning: symbol 's1_sendpacket' was not declared. Should it be static? cmd_load.c:587:6: warning: symbol 'send_ack' was not declared. Should it be static? cmd_load.c:600:6: warning: symbol 'send_nack' was not declared. Should it be static? cmd_load.c:614:6: warning: symbol 'os_data_init' was not declared. Should it be static? cmd_load.c:615:6: warning: symbol 'os_data_char' was not declared. Should it be static? cmd_load.c:657:6: warning: symbol 'k_data_init' was not declared. Should it be static? cmd_load.c:663:6: warning: symbol 'k_data_save' was not declared. Should it be static? cmd_load.c:669:6: warning: symbol 'k_data_restore' was not declared. Should it be static? cmd_load.c:675:6: warning: symbol 'k_data_char' was not declared. Should it be static? cmd_load.c:693:6: warning: symbol 'send_parms' was not declared. Should it be static? cmd_load.c:694:6: warning: symbol 'send_ptr' was not declared. Should it be static? cmd_load.c:698:6: warning: symbol 'handle_send_packet' was not declared. Should i cmd_mdio.c:60:5: warning: symbol 'mdio_write_ranges' was not declared. Should it be static? cmd_mdio.c:82:5: warning: symbol 'mdio_read_ranges' was not declared. Should it be static? cmd_mdio.c:115:5: warning: symbol 'extract_reg_range' was not declared. Should it be static? cmd_mdio.c:144:5: warning: symbol 'extract_phy_range' was not declared. Should it cmd_mem.c:54:5: warning: symbol 'do_mem_md' was not declared. Should it be static? cmd_mem.c:150:5: warning: symbol 'do_mem_mm' was not declared. Should it be static? cmd_mem.c:154:5: warning: symbol 'do_mem_nm' was not declared. Should it be static? cmd_mem.c:159:5: warning: symbol 'do_mem_mw' was not declared. Should it be static? cmd_mem.c:256:5: warning: symbol 'do_mem_cmp' was not declared. Should it be static? cmd_mem.c:326:5: warning: symbol 'do_mem_cp' was not declared. Should it be static? cmd_mem.c:436:5: warning: symbol 'do_mem_base' was not declared. Should it be static? cmd_mem.c:449:5: warning: symbol 'do_mem_loop' was not declared. Should it be static? cmd_mem.c:595:5: warning: symbol 'do_mem_mtest' was not declared. Should it be static? cmd_mem.c:618:26: warning: Using plain integer as NULL pointer cmd_mem.c:1057:5: warning: symbol 'do_mem_crc' was not declared. Should it be static? cmd_misc.c:30:5: warning: symbol 'do_sleep' was not declared. Should it be static cmd_mmc.c:118:5: warning: symbol 'do_mmcinfo' was not declared. Should it be static? cmd_mmc.c:272:32: warning: Using plain integer as NULL pointer cmd_mmc.c:150:5: warning: symbol 'do_mmcops' was not declared. Should it be stati cmd_mp.c:27:1: warning: symbol 'cpu_cmd' was not declared. Should it be static? cmd_mp.c:85:1: error: directive in argument list cmd_mp.c:88:1: error: directive in argument list cmd_mtdparts.c:150:18: warning: symbol 'mtdids' was not declared. Should it be static? cmd_mtdparts.c:153:18: warning: symbol 'devices' was not declared. Should it be static? cmd_mtdparts.c:713:5: warning: symbol 'mtd_device_validate' was not declared. Should it be static? cmd_mtdparts.c:1887:5: warning: symbol 'do_chpart' was not declared. Should it be static? cmd_mtdparts.c:1925:5: warning: symbol 'do_mtdparts' was not declared. Should it be static? cmd_mtdparts.c:2060:1: error: directive in argument list cmd_mtdparts.c:2063:1: error: directive in argument list cmd_mtdparts.c:2066:1: error: directive in argument list cmd_mtdparts.c:2071:1: error: directive in argument list cmd_mtdparts.c:2073:1: error: directive in argument list cmd_nand.c:377:18: error: bad constant expression cmd_nand.c:431:5: warning: symbol 'do_nand' was not declared. Should it be static? cmd_nand.c:796:1: error: directive in argument list cmd_nand.c:801:1: error: directive in argument list cmd_nand.c:802:1: error: directive in argument list cmd_nand.c:806:1: error: directive in argument list cmd_nand.c:819:1: error: directive in argument list cmd_nand.c:824:1: error: directive in argument list cmd_nand.c:825:1: error: directive in argument list cmd_nand.c:831:1: error: directive in argument list cmd_nand.c:918:5: warning: symbol 'do_nandboot' was not declared. Should it be static? cmd_net.c:33:5: warning: symbol 'do_bootp' was not declared. Should it be static? cmd_net.c:107:5: warning: symbol 'do_dhcp' was not declared. Should it be static? cmd_net.c:120:5: warning: symbol 'do_nfs' was not declared. Should it be static? cmd_nvedit.c:138:5: warning: symbol 'do_env_print' was not declared. Should it be static? cmd_nvedit.c:323:5: warning: symbol '_do_env_set' was not declared. Should it be static? cmd_nvedit.c:435:5: warning: symbol 'do_env_set' was not declared. Should it be static? cmd_nvedit.c:514:5: warning: symbol 'do_env_edit' was not declared. Should it be static? cmd_nvedit.c:620:5: warning: symbol 'do_env_save' was not declared. Should it be static? cmd_nvedit.c:1016:1: error: directive in argument list cmd_nvedit.c:1018:1: error: directive in argument list cmd_nvedit.c:1021:1: error: directive in argument list cmd_nvedit.c:1023:1: error: directive in argument list cmd_nvedit.c:1024:1: error: directive in argument list cmd_nvedit.c:1026:1: error: directive in argument list cmd_nvedit.c:1027:1: error: directive in argument list cmd_nvedit.c:1029:1: error: directive in argument list cmd_nvedit.c:1030:1: error: directive in argument list cmd_nvedit.c:1032:1: error: directive in argument list cmd_nvedit.c:1034:1: error: directive in argument list cmd_nvedit.c:1036:1: error: directive in argument list cmd_nvedit.c:1037:1: error: directive in argument list cmd_nvedit.c:1039:1: error: directive in argument list cmd_pci.c:38:17: warning: symbol 'ShortPCIListing' was not declared. Should it be static? cmd_pci.c:38:22: warning: 'ShortPCIListing' defined but not used [-Wunused-variable] cmd_pci.c:411:5: warning: symbol 'do_pci' was not declared. Should it be static? cmd_pci.c:494:1: error: directive in argument list cmd_pci.c:497:1: error: directive in argument list cmd_reginfo.c:40:5: warning: symbol 'do_reginfo' was not declared. Should it be static? cmd_sata.c:31:5: warning: symbol 'sata_curr_device' was not declared. Should it be static? note -> ata_piix.c doesn't seem to use 'sata_curr_device'; deleted. cmd_sata.c:32:18: warning: symbol 'sata_dev_desc' was not declared. Should it be static? cmd_sata.c:70:5: warning: symbol 'do_sata' was not declared. Should it be static? cmd_setexpr.c:53:5: warning: symbol 'do_setexpr' was not declared. Should it be static? cmd_source.c:186:1: error: directive in argument list cmd_source.c:190:1: error: directive in argument list cmd_test.c:27:5: warning: symbol 'do_test' was not declared. Should it be static? cmd_test.c:153:5: warning: symbol 'do_false' was not declared. Should it be static? cmd_test.c:164:5: warning: symbol 'do_true' was not declared. Should it be static cmd_usb.c:43:6: warning: symbol 'usb_get_class_desc' was not declared. Should it be static? cmd_usb.c:69:6: warning: symbol 'usb_display_class_sub' was not declared. Should it be static? cmd_usb.c:151:6: warning: symbol 'usb_display_string' was not declared. Should it be static? cmd_usb.c:161:6: warning: symbol 'usb_display_desc' was not declared. Should it be static? cmd_usb.c:195:6: warning: symbol 'usb_display_conf_desc' was not declared. Should it be static? cmd_usb.c:210:6: warning: symbol 'usb_display_if_desc' was not declared. Should it be static? cmd_usb.c:227:6: warning: symbol 'usb_display_ep_desc' was not declared. Should it be static? cmd_usb.c:252:6: warning: symbol 'usb_display_config' was not declared. Should it be static? cmd_usb.c:283:6: warning: symbol 'usb_show_tree_graph' was not declared. Should it be static? cmd_usb.c:343:6: warning: symbol 'usb_show_tree' was not declared. Should it be static? cmd_usb.c:356:5: warning: symbol 'do_usbboot' was not declared. Should it be static? cmd_usb.c:366:5: warning: symbol 'do_usb' was not declared. Should it be static? cmd_version.c:31:5: warning: symbol 'do_version' was not declared. Should it be s cmd_ximg.c:46:1: warning: symbol 'do_imgextract' was not declared. Should it be static? cmd_ximg.c:272:1: error: directive in argument list cmd_ximg.c:276:1: error: directive in argument list Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
2012-10-29 13:34:31 +00:00
const __be32 *p;
printf("<");
for (j = 0, p = data; j < len/4; j++)
printf("0x%08x%s", fdt32_to_cpu(p[j]),
j < (len/4 - 1) ? " " : "");
printf(">");
}
Fix fdt set command to conform to dts spec The fdt set command was treating properties specified as <00> and <0011> as byte streams, rather than as an array of cells. As we already have syntax for expressing the desire for a stream of bytes ([ xx xx ...]), we should use the <> syntax to describe arrays of cells, which are always 32-bits per element. If we imagine this likely (IMHO) scenario: > fdt set /ethernet-phy@1 reg <1> With the old code, this would create a bad fdt, since the reg cell would be made to be one byte in length. But the cell must be 4 bytes, so this would break mysteriously. Also, the dts spec calls for constants inside the angle brackets (<>) to conform to C constant standards as they pertain to base. Take this scenario: > fdt set /ethernet@f00 reg <0xe250000\ 0x1000> The old fdt command would complain that it couldn't parse that. Or, if you wanted to specify that a certain clock ran at 33 MHz, you'd be required to do this: > fdt set /mydev clock <1f78a40> Whereas the new code will accept decimal numbers. While I was in there, I extended the fdt command parser to handle property strings which are split across multiple arguments: > fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 > > fdt p /ethernet@f00 ethernet@f00 { interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>; }; Lastly, the fdt print code was rearranged slightly to print arrays of cells if the length of the property is a multiple of 4 bytes, and to not print leading zeros. Signed-off-by: Andy Fleming <afleming@freescale.com>
2008-04-01 01:45:56 +00:00
} else { /* anything else... hexdump */
if (len > max_dump)
printf("* 0x%p [0x%08x]", data, len);
else {
const u8 *s;
printf("[");
for (j = 0, s = data; j < len; j++)
printf("%02x%s", s[j], j < len - 1 ? " " : "");
printf("]");
}
}
}
/****************************************************************************/
/*
* Recursively print (a portion of) the working_fdt. The depth parameter
* determines how deeply nested the fdt is printed.
*/
static int fdt_print(const char *pathp, char *prop, int depth)
{
static char tabs[MAX_LEVEL+1] =
"\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
"\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t";
const void *nodep; /* property node pointer */
int nodeoffset; /* node offset from libfdt */
int nextoffset; /* next node offset from libfdt */
uint32_t tag; /* tag */
int len; /* length of the property */
int level = 0; /* keep track of nesting level */
const struct fdt_property *fdt_prop;
nodeoffset = fdt_path_offset (working_fdt, pathp);
if (nodeoffset < 0) {
/*
* Not found or something else bad happened.
*/
printf ("libfdt fdt_path_offset() returned %s\n",
fdt_strerror(nodeoffset));
return 1;
}
/*
* The user passed in a property as well as node path.
* Print only the given property and then return.
*/
if (prop) {
nodep = fdt_getprop (working_fdt, nodeoffset, prop, &len);
if (len == 0) {
/* no property value */
printf("%s %s\n", pathp, prop);
return 0;
} else if (nodep && len > 0) {
printf("%s = ", prop);
print_data (nodep, len);
printf("\n");
return 0;
} else {
printf ("libfdt fdt_getprop(): %s\n",
fdt_strerror(len));
return 1;
}
}
/*
* The user passed in a node path and no property,
* print the node and all subnodes.
*/
while(level >= 0) {
tag = fdt_next_tag(working_fdt, nodeoffset, &nextoffset);
switch(tag) {
case FDT_BEGIN_NODE:
pathp = fdt_get_name(working_fdt, nodeoffset, NULL);
if (level <= depth) {
if (pathp == NULL)
pathp = "/* NULL pointer error */";
if (*pathp == '\0')
pathp = "/"; /* root is nameless */
printf("%s%s {\n",
&tabs[MAX_LEVEL - level], pathp);
}
level++;
if (level >= MAX_LEVEL) {
printf("Nested too deep, aborting.\n");
return 1;
}
break;
case FDT_END_NODE:
level--;
if (level <= depth)
printf("%s};\n", &tabs[MAX_LEVEL - level]);
if (level == 0) {
level = -1; /* exit the loop */
}
break;
case FDT_PROP:
fdt_prop = fdt_offset_ptr(working_fdt, nodeoffset,
sizeof(*fdt_prop));
pathp = fdt_string(working_fdt,
fdt32_to_cpu(fdt_prop->nameoff));
len = fdt32_to_cpu(fdt_prop->len);
nodep = fdt_prop->data;
if (len < 0) {
printf ("libfdt fdt_getprop(): %s\n",
fdt_strerror(len));
return 1;
} else if (len == 0) {
/* the property has no value */
if (level <= depth)
printf("%s%s;\n",
&tabs[MAX_LEVEL - level],
pathp);
} else {
if (level <= depth) {
printf("%s%s = ",
&tabs[MAX_LEVEL - level],
pathp);
print_data (nodep, len);
printf(";\n");
}
}
break;
case FDT_NOP:
printf("%s/* NOP */\n", &tabs[MAX_LEVEL - level]);
break;
case FDT_END:
return 1;
default:
if (level <= depth)
printf("Unknown tag 0x%08X\n", tag);
return 1;
}
nodeoffset = nextoffset;
}
return 0;
}
/********************************************************************/
common/cmd_*.c: sparse fixes cmd_boot.c:40:5: warning: symbol 'do_go' was not declared. Should it be static? cmd_bootm.c:164:6: warning: symbol '__arch_preboot_os' was not declared. Should it be static? cmd_bootm.c:477:5: warning: symbol 'do_bootm_subcommand' was not declared. Should it be static? cmd_bootm.c:1022:1: error: directive in argument list cmd_bootm.c:1028:1: error: directive in argument list cmd_bootm.c:1029:1: error: directive in argument list cmd_bootm.c:1036:1: error: directive in argument list cmd_bootm.c:1042:1: error: directive in argument list cmd_bootm.c:1044:1: error: directive in argument list cmd_bootm.c:1045:1: error: directive in argument list cmd_bootm.c:1047:1: error: directive in argument list cmd_bootm.c:1089:5: warning: symbol 'do_iminfo' was not declared. Should it be static? cmd_bootm.c:1176:5: warning: symbol 'do_imls' was not declared. Should it be static? cmd_bootm.c:1654:1: error: directive in argument list cmd_bootm.c:1660:1: error: directive in argument list cmd_console.c:32:5: warning: symbol 'do_coninfo' was not declared. Should it be s cmd_date.c:46:5: warning: symbol 'do_date' was not declared. Should it be static? cmd_echo.c:27:5: warning: symbol 'do_echo' was not declared. Should it be static? cmd_exit.c:27:5: warning: symbol 'do_exit' was not declared. Should it be static? cmd_fat.c:97:5: warning: symbol 'do_fat_ls' was not declared. Should it be static? cmd_fat.c:136:5: warning: symbol 'do_fat_fsinfo' was not declared. Should it be s cmd_fdt.c:66:5: warning: symbol 'do_fdt' was not declared. Should it be static? cmd_fdt.c:542:43: warning: incorrect type in assignment (different base types) cmd_fdt.c:542:43: expected unsigned int [unsigned] [usertype] <noident> cmd_fdt.c:542:43: got restricted __be32 [usertype] <noident> cmd_fdt.c:679:42: warning: cast to restricted __be32 cmd_fdt.c:820:1: error: directive in argument list cmd_fdt.c:822:1: error: directive in argument list cmd_flash.c:292:5: warning: symbol 'do_flinfo' was not declared. Should it be static? cmd_flash.c:324:5: warning: symbol 'do_flerase' was not declared. Should it be static? cmd_flash.c:457:5: warning: symbol 'do_protect' was not declared. Should it be st cmd_help.c:27:5: warning: symbol 'do_help' was not declared. Should it be static? cmd_i2c.c:136:6: warning: symbol '__def_i2c_init_board' was not declared. Should it be static? cmd_i2c.c:144:14: warning: symbol '__def_i2c_get_bus_speed' was not declared. Should it be static? cmd_i2c.c:151:5: warning: symbol '__def_i2c_set_bus_speed' was not declared. Should it be static? cmd_i2c.c:1322:1: error: directive in argument list cmd_i2c.c:1324:1: error: directive in argument list cmd_i2c.c:1326:1: error: directive in argument list cmd_i2c.c:1328:1: error: directive in argument list cmd_i2c.c:1337:1: error: directive in argument list cmd_i2c.c:1339:1: error: directive in argument list cmd_irq.c:27:5: warning: symbol 'do_interrupts' was not declared. Should it be static? cmd_itest.c:133:5: warning: symbol 'binary_test' was not declared. Should it be static? cmd_itest.c:158:5: warning: symbol 'do_itest' was not declared. Should it be stat cmd_load.c:54:5: warning: symbol 'do_load_serial' was not declared. Should it be static? cmd_load.c:431:6: warning: symbol 'his_eol' was not declared. Should it be static? cmd_load.c:432:6: warning: symbol 'his_pad_count' was not declared. Should it be static? cmd_load.c:433:6: warning: symbol 'his_pad_char' was not declared. Should it be static? cmd_load.c:434:6: warning: symbol 'his_quote' was not declared. Should it be static? cmd_load.c:436:5: warning: symbol 'do_load_serial_bin' was not declared. Should it be static? cmd_load.c:549:6: warning: symbol 'send_pad' was not declared. Should it be static? cmd_load.c:558:6: warning: symbol 'ktrans' was not declared. Should it be static? cmd_load.c:568:5: warning: symbol 'chk1' was not declared. Should it be static? cmd_load.c:578:6: warning: symbol 's1_sendpacket' was not declared. Should it be static? cmd_load.c:587:6: warning: symbol 'send_ack' was not declared. Should it be static? cmd_load.c:600:6: warning: symbol 'send_nack' was not declared. Should it be static? cmd_load.c:614:6: warning: symbol 'os_data_init' was not declared. Should it be static? cmd_load.c:615:6: warning: symbol 'os_data_char' was not declared. Should it be static? cmd_load.c:657:6: warning: symbol 'k_data_init' was not declared. Should it be static? cmd_load.c:663:6: warning: symbol 'k_data_save' was not declared. Should it be static? cmd_load.c:669:6: warning: symbol 'k_data_restore' was not declared. Should it be static? cmd_load.c:675:6: warning: symbol 'k_data_char' was not declared. Should it be static? cmd_load.c:693:6: warning: symbol 'send_parms' was not declared. Should it be static? cmd_load.c:694:6: warning: symbol 'send_ptr' was not declared. Should it be static? cmd_load.c:698:6: warning: symbol 'handle_send_packet' was not declared. Should i cmd_mdio.c:60:5: warning: symbol 'mdio_write_ranges' was not declared. Should it be static? cmd_mdio.c:82:5: warning: symbol 'mdio_read_ranges' was not declared. Should it be static? cmd_mdio.c:115:5: warning: symbol 'extract_reg_range' was not declared. Should it be static? cmd_mdio.c:144:5: warning: symbol 'extract_phy_range' was not declared. Should it cmd_mem.c:54:5: warning: symbol 'do_mem_md' was not declared. Should it be static? cmd_mem.c:150:5: warning: symbol 'do_mem_mm' was not declared. Should it be static? cmd_mem.c:154:5: warning: symbol 'do_mem_nm' was not declared. Should it be static? cmd_mem.c:159:5: warning: symbol 'do_mem_mw' was not declared. Should it be static? cmd_mem.c:256:5: warning: symbol 'do_mem_cmp' was not declared. Should it be static? cmd_mem.c:326:5: warning: symbol 'do_mem_cp' was not declared. Should it be static? cmd_mem.c:436:5: warning: symbol 'do_mem_base' was not declared. Should it be static? cmd_mem.c:449:5: warning: symbol 'do_mem_loop' was not declared. Should it be static? cmd_mem.c:595:5: warning: symbol 'do_mem_mtest' was not declared. Should it be static? cmd_mem.c:618:26: warning: Using plain integer as NULL pointer cmd_mem.c:1057:5: warning: symbol 'do_mem_crc' was not declared. Should it be static? cmd_misc.c:30:5: warning: symbol 'do_sleep' was not declared. Should it be static cmd_mmc.c:118:5: warning: symbol 'do_mmcinfo' was not declared. Should it be static? cmd_mmc.c:272:32: warning: Using plain integer as NULL pointer cmd_mmc.c:150:5: warning: symbol 'do_mmcops' was not declared. Should it be stati cmd_mp.c:27:1: warning: symbol 'cpu_cmd' was not declared. Should it be static? cmd_mp.c:85:1: error: directive in argument list cmd_mp.c:88:1: error: directive in argument list cmd_mtdparts.c:150:18: warning: symbol 'mtdids' was not declared. Should it be static? cmd_mtdparts.c:153:18: warning: symbol 'devices' was not declared. Should it be static? cmd_mtdparts.c:713:5: warning: symbol 'mtd_device_validate' was not declared. Should it be static? cmd_mtdparts.c:1887:5: warning: symbol 'do_chpart' was not declared. Should it be static? cmd_mtdparts.c:1925:5: warning: symbol 'do_mtdparts' was not declared. Should it be static? cmd_mtdparts.c:2060:1: error: directive in argument list cmd_mtdparts.c:2063:1: error: directive in argument list cmd_mtdparts.c:2066:1: error: directive in argument list cmd_mtdparts.c:2071:1: error: directive in argument list cmd_mtdparts.c:2073:1: error: directive in argument list cmd_nand.c:377:18: error: bad constant expression cmd_nand.c:431:5: warning: symbol 'do_nand' was not declared. Should it be static? cmd_nand.c:796:1: error: directive in argument list cmd_nand.c:801:1: error: directive in argument list cmd_nand.c:802:1: error: directive in argument list cmd_nand.c:806:1: error: directive in argument list cmd_nand.c:819:1: error: directive in argument list cmd_nand.c:824:1: error: directive in argument list cmd_nand.c:825:1: error: directive in argument list cmd_nand.c:831:1: error: directive in argument list cmd_nand.c:918:5: warning: symbol 'do_nandboot' was not declared. Should it be static? cmd_net.c:33:5: warning: symbol 'do_bootp' was not declared. Should it be static? cmd_net.c:107:5: warning: symbol 'do_dhcp' was not declared. Should it be static? cmd_net.c:120:5: warning: symbol 'do_nfs' was not declared. Should it be static? cmd_nvedit.c:138:5: warning: symbol 'do_env_print' was not declared. Should it be static? cmd_nvedit.c:323:5: warning: symbol '_do_env_set' was not declared. Should it be static? cmd_nvedit.c:435:5: warning: symbol 'do_env_set' was not declared. Should it be static? cmd_nvedit.c:514:5: warning: symbol 'do_env_edit' was not declared. Should it be static? cmd_nvedit.c:620:5: warning: symbol 'do_env_save' was not declared. Should it be static? cmd_nvedit.c:1016:1: error: directive in argument list cmd_nvedit.c:1018:1: error: directive in argument list cmd_nvedit.c:1021:1: error: directive in argument list cmd_nvedit.c:1023:1: error: directive in argument list cmd_nvedit.c:1024:1: error: directive in argument list cmd_nvedit.c:1026:1: error: directive in argument list cmd_nvedit.c:1027:1: error: directive in argument list cmd_nvedit.c:1029:1: error: directive in argument list cmd_nvedit.c:1030:1: error: directive in argument list cmd_nvedit.c:1032:1: error: directive in argument list cmd_nvedit.c:1034:1: error: directive in argument list cmd_nvedit.c:1036:1: error: directive in argument list cmd_nvedit.c:1037:1: error: directive in argument list cmd_nvedit.c:1039:1: error: directive in argument list cmd_pci.c:38:17: warning: symbol 'ShortPCIListing' was not declared. Should it be static? cmd_pci.c:38:22: warning: 'ShortPCIListing' defined but not used [-Wunused-variable] cmd_pci.c:411:5: warning: symbol 'do_pci' was not declared. Should it be static? cmd_pci.c:494:1: error: directive in argument list cmd_pci.c:497:1: error: directive in argument list cmd_reginfo.c:40:5: warning: symbol 'do_reginfo' was not declared. Should it be static? cmd_sata.c:31:5: warning: symbol 'sata_curr_device' was not declared. Should it be static? note -> ata_piix.c doesn't seem to use 'sata_curr_device'; deleted. cmd_sata.c:32:18: warning: symbol 'sata_dev_desc' was not declared. Should it be static? cmd_sata.c:70:5: warning: symbol 'do_sata' was not declared. Should it be static? cmd_setexpr.c:53:5: warning: symbol 'do_setexpr' was not declared. Should it be static? cmd_source.c:186:1: error: directive in argument list cmd_source.c:190:1: error: directive in argument list cmd_test.c:27:5: warning: symbol 'do_test' was not declared. Should it be static? cmd_test.c:153:5: warning: symbol 'do_false' was not declared. Should it be static? cmd_test.c:164:5: warning: symbol 'do_true' was not declared. Should it be static cmd_usb.c:43:6: warning: symbol 'usb_get_class_desc' was not declared. Should it be static? cmd_usb.c:69:6: warning: symbol 'usb_display_class_sub' was not declared. Should it be static? cmd_usb.c:151:6: warning: symbol 'usb_display_string' was not declared. Should it be static? cmd_usb.c:161:6: warning: symbol 'usb_display_desc' was not declared. Should it be static? cmd_usb.c:195:6: warning: symbol 'usb_display_conf_desc' was not declared. Should it be static? cmd_usb.c:210:6: warning: symbol 'usb_display_if_desc' was not declared. Should it be static? cmd_usb.c:227:6: warning: symbol 'usb_display_ep_desc' was not declared. Should it be static? cmd_usb.c:252:6: warning: symbol 'usb_display_config' was not declared. Should it be static? cmd_usb.c:283:6: warning: symbol 'usb_show_tree_graph' was not declared. Should it be static? cmd_usb.c:343:6: warning: symbol 'usb_show_tree' was not declared. Should it be static? cmd_usb.c:356:5: warning: symbol 'do_usbboot' was not declared. Should it be static? cmd_usb.c:366:5: warning: symbol 'do_usb' was not declared. Should it be static? cmd_version.c:31:5: warning: symbol 'do_version' was not declared. Should it be s cmd_ximg.c:46:1: warning: symbol 'do_imgextract' was not declared. Should it be static? cmd_ximg.c:272:1: error: directive in argument list cmd_ximg.c:276:1: error: directive in argument list Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
2012-10-29 13:34:31 +00:00
#ifdef CONFIG_SYS_LONGHELP
static char fdt_help_text[] =
"addr [-c] [-q] <addr> [<size>] - Set the [control] fdt location to <addr>\n"
#ifdef CONFIG_OF_LIBFDT_OVERLAY
"fdt apply <addr> - Apply overlay to the DT\n"
#endif
#ifdef CONFIG_OF_BOARD_SETUP
"fdt boardsetup - Do board-specific set up\n"
#endif
#ifdef CONFIG_OF_SYSTEM_SETUP
"fdt systemsetup - Do system-specific set up\n"
#endif
"fdt move <fdt> <newaddr> <length> - Copy the fdt to <addr> and make it active\n"
"fdt resize [<extrasize>] - Resize fdt to size + padding to 4k addr + some optional <extrasize> if needed\n"
"fdt print <path> [<prop>] - Recursive print starting at <path>\n"
"fdt list <path> [<prop>] - Print one level starting at <path>\n"
"fdt get value <var> <path> <prop> [<index>] - Get <property> and store in <var>\n"
" In case of stringlist property, use optional <index>\n"
" to select string within the stringlist. Default is 0.\n"
"fdt get name <var> <path> <index> - Get name of node <index> and store in <var>\n"
"fdt get addr <var> <path> <prop> - Get start address of <property> and store in <var>\n"
"fdt get size <var> <path> [<prop>] - Get size of [<property>] or num nodes and store in <var>\n"
"fdt set <path> <prop> [<val>] - Set <property> [to <val>]\n"
"fdt mknode <path> <node> - Create a new node after <path>\n"
"fdt rm <path> [<prop>] - Delete the node or <property>\n"
"fdt header [get <var> <member>] - Display header info\n"
" get - get header member <member> and store it in <var>\n"
"fdt bootcpu <id> - Set boot cpuid\n"
"fdt memory <addr> <size> - Add/Update memory node\n"
"fdt rsvmem print - Show current mem reserves\n"
"fdt rsvmem add <addr> <size> - Add a mem reserve\n"
"fdt rsvmem delete <index> - Delete a mem reserves\n"
"fdt chosen [<start> <size>] - Add/update the /chosen branch in the tree\n"
" <start>/<size> - initrd start addr/size\n"
#if defined(CONFIG_FIT_SIGNATURE)
"fdt checksign [<addr>] - check FIT signature\n"
" <start> - addr of key blob\n"
" default gd->fdt_blob\n"
#endif
"NOTE: Dereference aliases by omitting the leading '/', "
common/cmd_*.c: sparse fixes cmd_boot.c:40:5: warning: symbol 'do_go' was not declared. Should it be static? cmd_bootm.c:164:6: warning: symbol '__arch_preboot_os' was not declared. Should it be static? cmd_bootm.c:477:5: warning: symbol 'do_bootm_subcommand' was not declared. Should it be static? cmd_bootm.c:1022:1: error: directive in argument list cmd_bootm.c:1028:1: error: directive in argument list cmd_bootm.c:1029:1: error: directive in argument list cmd_bootm.c:1036:1: error: directive in argument list cmd_bootm.c:1042:1: error: directive in argument list cmd_bootm.c:1044:1: error: directive in argument list cmd_bootm.c:1045:1: error: directive in argument list cmd_bootm.c:1047:1: error: directive in argument list cmd_bootm.c:1089:5: warning: symbol 'do_iminfo' was not declared. Should it be static? cmd_bootm.c:1176:5: warning: symbol 'do_imls' was not declared. Should it be static? cmd_bootm.c:1654:1: error: directive in argument list cmd_bootm.c:1660:1: error: directive in argument list cmd_console.c:32:5: warning: symbol 'do_coninfo' was not declared. Should it be s cmd_date.c:46:5: warning: symbol 'do_date' was not declared. Should it be static? cmd_echo.c:27:5: warning: symbol 'do_echo' was not declared. Should it be static? cmd_exit.c:27:5: warning: symbol 'do_exit' was not declared. Should it be static? cmd_fat.c:97:5: warning: symbol 'do_fat_ls' was not declared. Should it be static? cmd_fat.c:136:5: warning: symbol 'do_fat_fsinfo' was not declared. Should it be s cmd_fdt.c:66:5: warning: symbol 'do_fdt' was not declared. Should it be static? cmd_fdt.c:542:43: warning: incorrect type in assignment (different base types) cmd_fdt.c:542:43: expected unsigned int [unsigned] [usertype] <noident> cmd_fdt.c:542:43: got restricted __be32 [usertype] <noident> cmd_fdt.c:679:42: warning: cast to restricted __be32 cmd_fdt.c:820:1: error: directive in argument list cmd_fdt.c:822:1: error: directive in argument list cmd_flash.c:292:5: warning: symbol 'do_flinfo' was not declared. Should it be static? cmd_flash.c:324:5: warning: symbol 'do_flerase' was not declared. Should it be static? cmd_flash.c:457:5: warning: symbol 'do_protect' was not declared. Should it be st cmd_help.c:27:5: warning: symbol 'do_help' was not declared. Should it be static? cmd_i2c.c:136:6: warning: symbol '__def_i2c_init_board' was not declared. Should it be static? cmd_i2c.c:144:14: warning: symbol '__def_i2c_get_bus_speed' was not declared. Should it be static? cmd_i2c.c:151:5: warning: symbol '__def_i2c_set_bus_speed' was not declared. Should it be static? cmd_i2c.c:1322:1: error: directive in argument list cmd_i2c.c:1324:1: error: directive in argument list cmd_i2c.c:1326:1: error: directive in argument list cmd_i2c.c:1328:1: error: directive in argument list cmd_i2c.c:1337:1: error: directive in argument list cmd_i2c.c:1339:1: error: directive in argument list cmd_irq.c:27:5: warning: symbol 'do_interrupts' was not declared. Should it be static? cmd_itest.c:133:5: warning: symbol 'binary_test' was not declared. Should it be static? cmd_itest.c:158:5: warning: symbol 'do_itest' was not declared. Should it be stat cmd_load.c:54:5: warning: symbol 'do_load_serial' was not declared. Should it be static? cmd_load.c:431:6: warning: symbol 'his_eol' was not declared. Should it be static? cmd_load.c:432:6: warning: symbol 'his_pad_count' was not declared. Should it be static? cmd_load.c:433:6: warning: symbol 'his_pad_char' was not declared. Should it be static? cmd_load.c:434:6: warning: symbol 'his_quote' was not declared. Should it be static? cmd_load.c:436:5: warning: symbol 'do_load_serial_bin' was not declared. Should it be static? cmd_load.c:549:6: warning: symbol 'send_pad' was not declared. Should it be static? cmd_load.c:558:6: warning: symbol 'ktrans' was not declared. Should it be static? cmd_load.c:568:5: warning: symbol 'chk1' was not declared. Should it be static? cmd_load.c:578:6: warning: symbol 's1_sendpacket' was not declared. Should it be static? cmd_load.c:587:6: warning: symbol 'send_ack' was not declared. Should it be static? cmd_load.c:600:6: warning: symbol 'send_nack' was not declared. Should it be static? cmd_load.c:614:6: warning: symbol 'os_data_init' was not declared. Should it be static? cmd_load.c:615:6: warning: symbol 'os_data_char' was not declared. Should it be static? cmd_load.c:657:6: warning: symbol 'k_data_init' was not declared. Should it be static? cmd_load.c:663:6: warning: symbol 'k_data_save' was not declared. Should it be static? cmd_load.c:669:6: warning: symbol 'k_data_restore' was not declared. Should it be static? cmd_load.c:675:6: warning: symbol 'k_data_char' was not declared. Should it be static? cmd_load.c:693:6: warning: symbol 'send_parms' was not declared. Should it be static? cmd_load.c:694:6: warning: symbol 'send_ptr' was not declared. Should it be static? cmd_load.c:698:6: warning: symbol 'handle_send_packet' was not declared. Should i cmd_mdio.c:60:5: warning: symbol 'mdio_write_ranges' was not declared. Should it be static? cmd_mdio.c:82:5: warning: symbol 'mdio_read_ranges' was not declared. Should it be static? cmd_mdio.c:115:5: warning: symbol 'extract_reg_range' was not declared. Should it be static? cmd_mdio.c:144:5: warning: symbol 'extract_phy_range' was not declared. Should it cmd_mem.c:54:5: warning: symbol 'do_mem_md' was not declared. Should it be static? cmd_mem.c:150:5: warning: symbol 'do_mem_mm' was not declared. Should it be static? cmd_mem.c:154:5: warning: symbol 'do_mem_nm' was not declared. Should it be static? cmd_mem.c:159:5: warning: symbol 'do_mem_mw' was not declared. Should it be static? cmd_mem.c:256:5: warning: symbol 'do_mem_cmp' was not declared. Should it be static? cmd_mem.c:326:5: warning: symbol 'do_mem_cp' was not declared. Should it be static? cmd_mem.c:436:5: warning: symbol 'do_mem_base' was not declared. Should it be static? cmd_mem.c:449:5: warning: symbol 'do_mem_loop' was not declared. Should it be static? cmd_mem.c:595:5: warning: symbol 'do_mem_mtest' was not declared. Should it be static? cmd_mem.c:618:26: warning: Using plain integer as NULL pointer cmd_mem.c:1057:5: warning: symbol 'do_mem_crc' was not declared. Should it be static? cmd_misc.c:30:5: warning: symbol 'do_sleep' was not declared. Should it be static cmd_mmc.c:118:5: warning: symbol 'do_mmcinfo' was not declared. Should it be static? cmd_mmc.c:272:32: warning: Using plain integer as NULL pointer cmd_mmc.c:150:5: warning: symbol 'do_mmcops' was not declared. Should it be stati cmd_mp.c:27:1: warning: symbol 'cpu_cmd' was not declared. Should it be static? cmd_mp.c:85:1: error: directive in argument list cmd_mp.c:88:1: error: directive in argument list cmd_mtdparts.c:150:18: warning: symbol 'mtdids' was not declared. Should it be static? cmd_mtdparts.c:153:18: warning: symbol 'devices' was not declared. Should it be static? cmd_mtdparts.c:713:5: warning: symbol 'mtd_device_validate' was not declared. Should it be static? cmd_mtdparts.c:1887:5: warning: symbol 'do_chpart' was not declared. Should it be static? cmd_mtdparts.c:1925:5: warning: symbol 'do_mtdparts' was not declared. Should it be static? cmd_mtdparts.c:2060:1: error: directive in argument list cmd_mtdparts.c:2063:1: error: directive in argument list cmd_mtdparts.c:2066:1: error: directive in argument list cmd_mtdparts.c:2071:1: error: directive in argument list cmd_mtdparts.c:2073:1: error: directive in argument list cmd_nand.c:377:18: error: bad constant expression cmd_nand.c:431:5: warning: symbol 'do_nand' was not declared. Should it be static? cmd_nand.c:796:1: error: directive in argument list cmd_nand.c:801:1: error: directive in argument list cmd_nand.c:802:1: error: directive in argument list cmd_nand.c:806:1: error: directive in argument list cmd_nand.c:819:1: error: directive in argument list cmd_nand.c:824:1: error: directive in argument list cmd_nand.c:825:1: error: directive in argument list cmd_nand.c:831:1: error: directive in argument list cmd_nand.c:918:5: warning: symbol 'do_nandboot' was not declared. Should it be static? cmd_net.c:33:5: warning: symbol 'do_bootp' was not declared. Should it be static? cmd_net.c:107:5: warning: symbol 'do_dhcp' was not declared. Should it be static? cmd_net.c:120:5: warning: symbol 'do_nfs' was not declared. Should it be static? cmd_nvedit.c:138:5: warning: symbol 'do_env_print' was not declared. Should it be static? cmd_nvedit.c:323:5: warning: symbol '_do_env_set' was not declared. Should it be static? cmd_nvedit.c:435:5: warning: symbol 'do_env_set' was not declared. Should it be static? cmd_nvedit.c:514:5: warning: symbol 'do_env_edit' was not declared. Should it be static? cmd_nvedit.c:620:5: warning: symbol 'do_env_save' was not declared. Should it be static? cmd_nvedit.c:1016:1: error: directive in argument list cmd_nvedit.c:1018:1: error: directive in argument list cmd_nvedit.c:1021:1: error: directive in argument list cmd_nvedit.c:1023:1: error: directive in argument list cmd_nvedit.c:1024:1: error: directive in argument list cmd_nvedit.c:1026:1: error: directive in argument list cmd_nvedit.c:1027:1: error: directive in argument list cmd_nvedit.c:1029:1: error: directive in argument list cmd_nvedit.c:1030:1: error: directive in argument list cmd_nvedit.c:1032:1: error: directive in argument list cmd_nvedit.c:1034:1: error: directive in argument list cmd_nvedit.c:1036:1: error: directive in argument list cmd_nvedit.c:1037:1: error: directive in argument list cmd_nvedit.c:1039:1: error: directive in argument list cmd_pci.c:38:17: warning: symbol 'ShortPCIListing' was not declared. Should it be static? cmd_pci.c:38:22: warning: 'ShortPCIListing' defined but not used [-Wunused-variable] cmd_pci.c:411:5: warning: symbol 'do_pci' was not declared. Should it be static? cmd_pci.c:494:1: error: directive in argument list cmd_pci.c:497:1: error: directive in argument list cmd_reginfo.c:40:5: warning: symbol 'do_reginfo' was not declared. Should it be static? cmd_sata.c:31:5: warning: symbol 'sata_curr_device' was not declared. Should it be static? note -> ata_piix.c doesn't seem to use 'sata_curr_device'; deleted. cmd_sata.c:32:18: warning: symbol 'sata_dev_desc' was not declared. Should it be static? cmd_sata.c:70:5: warning: symbol 'do_sata' was not declared. Should it be static? cmd_setexpr.c:53:5: warning: symbol 'do_setexpr' was not declared. Should it be static? cmd_source.c:186:1: error: directive in argument list cmd_source.c:190:1: error: directive in argument list cmd_test.c:27:5: warning: symbol 'do_test' was not declared. Should it be static? cmd_test.c:153:5: warning: symbol 'do_false' was not declared. Should it be static? cmd_test.c:164:5: warning: symbol 'do_true' was not declared. Should it be static cmd_usb.c:43:6: warning: symbol 'usb_get_class_desc' was not declared. Should it be static? cmd_usb.c:69:6: warning: symbol 'usb_display_class_sub' was not declared. Should it be static? cmd_usb.c:151:6: warning: symbol 'usb_display_string' was not declared. Should it be static? cmd_usb.c:161:6: warning: symbol 'usb_display_desc' was not declared. Should it be static? cmd_usb.c:195:6: warning: symbol 'usb_display_conf_desc' was not declared. Should it be static? cmd_usb.c:210:6: warning: symbol 'usb_display_if_desc' was not declared. Should it be static? cmd_usb.c:227:6: warning: symbol 'usb_display_ep_desc' was not declared. Should it be static? cmd_usb.c:252:6: warning: symbol 'usb_display_config' was not declared. Should it be static? cmd_usb.c:283:6: warning: symbol 'usb_show_tree_graph' was not declared. Should it be static? cmd_usb.c:343:6: warning: symbol 'usb_show_tree' was not declared. Should it be static? cmd_usb.c:356:5: warning: symbol 'do_usbboot' was not declared. Should it be static? cmd_usb.c:366:5: warning: symbol 'do_usb' was not declared. Should it be static? cmd_version.c:31:5: warning: symbol 'do_version' was not declared. Should it be s cmd_ximg.c:46:1: warning: symbol 'do_imgextract' was not declared. Should it be static? cmd_ximg.c:272:1: error: directive in argument list cmd_ximg.c:276:1: error: directive in argument list Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
2012-10-29 13:34:31 +00:00
"e.g. fdt print ethernet0.";
#endif
U_BOOT_CMD(
fdt, 255, 0, do_fdt,
"flattened device tree utility commands", fdt_help_text
);