2002-03-08 23:11:41 +00:00
|
|
|
/*-------------------------------------------------------------------------
|
|
|
|
* Filename: mini_inflate.c
|
|
|
|
* Version: $Id: mini_inflate.c,v 1.3 2002/01/24 22:58:42 rfeany Exp $
|
|
|
|
* Copyright: Copyright (C) 2001, Russ Dill
|
|
|
|
* Author: Russ Dill <Russ.Dill@asu.edu>
|
|
|
|
* Description: Mini inflate implementation (RFC 1951)
|
|
|
|
*-----------------------------------------------------------------------*/
|
|
|
|
/*
|
2013-07-08 07:37:19 +00:00
|
|
|
* SPDX-License-Identifier: GPL-2.0+
|
2002-03-08 23:11:41 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <config.h>
|
|
|
|
#include <jffs2/mini_inflate.h>
|
|
|
|
|
|
|
|
/* The order that the code lengths in section 3.2.7 are in */
|
|
|
|
static unsigned char huffman_order[] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5,
|
|
|
|
11, 4, 12, 3, 13, 2, 14, 1, 15};
|
|
|
|
|
2017-10-10 16:42:39 +00:00
|
|
|
static inline void cramfs_memset(int *s, const int c, size n)
|
2002-03-08 23:11:41 +00:00
|
|
|
{
|
|
|
|
n--;
|
|
|
|
for (;n > 0; n--) s[n] = c;
|
|
|
|
s[0] = c;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* associate a stream with a block of data and reset the stream */
|
|
|
|
static void init_stream(struct bitstream *stream, unsigned char *data,
|
|
|
|
void *(*inflate_memcpy)(void *, const void *, size))
|
|
|
|
{
|
|
|
|
stream->error = NO_ERROR;
|
|
|
|
stream->memcpy = inflate_memcpy;
|
|
|
|
stream->decoded = 0;
|
|
|
|
stream->data = data;
|
|
|
|
stream->bit = 0; /* The first bit of the stream is the lsb of the
|
|
|
|
* first byte */
|
|
|
|
|
|
|
|
/* really sorry about all this initialization, think of a better way,
|
|
|
|
* let me know and it will get cleaned up */
|
|
|
|
stream->codes.bits = 8;
|
|
|
|
stream->codes.num_symbols = 19;
|
|
|
|
stream->codes.lengths = stream->code_lengths;
|
|
|
|
stream->codes.symbols = stream->code_symbols;
|
|
|
|
stream->codes.count = stream->code_count;
|
|
|
|
stream->codes.first = stream->code_first;
|
|
|
|
stream->codes.pos = stream->code_pos;
|
|
|
|
|
|
|
|
stream->lengths.bits = 16;
|
|
|
|
stream->lengths.num_symbols = 288;
|
|
|
|
stream->lengths.lengths = stream->length_lengths;
|
|
|
|
stream->lengths.symbols = stream->length_symbols;
|
|
|
|
stream->lengths.count = stream->length_count;
|
|
|
|
stream->lengths.first = stream->length_first;
|
|
|
|
stream->lengths.pos = stream->length_pos;
|
|
|
|
|
|
|
|
stream->distance.bits = 16;
|
|
|
|
stream->distance.num_symbols = 32;
|
|
|
|
stream->distance.lengths = stream->distance_lengths;
|
|
|
|
stream->distance.symbols = stream->distance_symbols;
|
|
|
|
stream->distance.count = stream->distance_count;
|
|
|
|
stream->distance.first = stream->distance_first;
|
|
|
|
stream->distance.pos = stream->distance_pos;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/* pull 'bits' bits out of the stream. The last bit pulled it returned as the
|
|
|
|
* msb. (section 3.1.1)
|
|
|
|
*/
|
2017-10-10 16:42:39 +00:00
|
|
|
static inline unsigned long pull_bits(struct bitstream *stream,
|
|
|
|
const unsigned int bits)
|
2002-03-08 23:11:41 +00:00
|
|
|
{
|
|
|
|
unsigned long ret;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
for (i = 0; i < bits; i++) {
|
|
|
|
ret += ((*(stream->data) >> stream->bit) & 1) << i;
|
|
|
|
|
|
|
|
/* if, before incrementing, we are on bit 7,
|
|
|
|
* go to the lsb of the next byte */
|
|
|
|
if (stream->bit++ == 7) {
|
|
|
|
stream->bit = 0;
|
|
|
|
stream->data++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2017-10-10 16:42:39 +00:00
|
|
|
static inline int pull_bit(struct bitstream *stream)
|
2002-03-08 23:11:41 +00:00
|
|
|
{
|
|
|
|
int ret = ((*(stream->data) >> stream->bit) & 1);
|
|
|
|
if (stream->bit++ == 7) {
|
|
|
|
stream->bit = 0;
|
|
|
|
stream->data++;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* discard bits up to the next whole byte */
|
|
|
|
static void discard_bits(struct bitstream *stream)
|
|
|
|
{
|
|
|
|
if (stream->bit != 0) {
|
|
|
|
stream->bit = 0;
|
|
|
|
stream->data++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* No decompression, the data is all literals (section 3.2.4) */
|
|
|
|
static void decompress_none(struct bitstream *stream, unsigned char *dest)
|
|
|
|
{
|
|
|
|
unsigned int length;
|
|
|
|
|
|
|
|
discard_bits(stream);
|
|
|
|
length = *(stream->data++);
|
|
|
|
length += *(stream->data++) << 8;
|
|
|
|
pull_bits(stream, 16); /* throw away the inverse of the size */
|
|
|
|
|
|
|
|
stream->decoded += length;
|
|
|
|
stream->memcpy(dest, stream->data, length);
|
|
|
|
stream->data += length;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Read in a symbol from the stream (section 3.2.2) */
|
|
|
|
static int read_symbol(struct bitstream *stream, struct huffman_set *set)
|
|
|
|
{
|
|
|
|
int bits = 0;
|
|
|
|
int code = 0;
|
|
|
|
while (!(set->count[bits] && code < set->first[bits] +
|
|
|
|
set->count[bits])) {
|
|
|
|
code = (code << 1) + pull_bit(stream);
|
|
|
|
if (++bits > set->bits) {
|
|
|
|
/* error decoding (corrupted data?) */
|
|
|
|
stream->error = CODE_NOT_FOUND;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return set->symbols[set->pos[bits] + code - set->first[bits]];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* decompress a stream of data encoded with the passed length and distance
|
|
|
|
* huffman codes */
|
|
|
|
static void decompress_huffman(struct bitstream *stream, unsigned char *dest)
|
|
|
|
{
|
|
|
|
struct huffman_set *lengths = &(stream->lengths);
|
|
|
|
struct huffman_set *distance = &(stream->distance);
|
|
|
|
|
|
|
|
int symbol, length, dist, i;
|
|
|
|
|
|
|
|
do {
|
|
|
|
if ((symbol = read_symbol(stream, lengths)) < 0) return;
|
|
|
|
if (symbol < 256) {
|
|
|
|
*(dest++) = symbol; /* symbol is a literal */
|
|
|
|
stream->decoded++;
|
|
|
|
} else if (symbol > 256) {
|
|
|
|
/* Determine the length of the repitition
|
|
|
|
* (section 3.2.5) */
|
|
|
|
if (symbol < 265) length = symbol - 254;
|
|
|
|
else if (symbol == 285) length = 258;
|
|
|
|
else {
|
|
|
|
length = pull_bits(stream, (symbol - 261) >> 2);
|
|
|
|
length += (4 << ((symbol - 261) >> 2)) + 3;
|
|
|
|
length += ((symbol - 1) % 4) <<
|
|
|
|
((symbol - 261) >> 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Determine how far back to go */
|
|
|
|
if ((symbol = read_symbol(stream, distance)) < 0)
|
|
|
|
return;
|
|
|
|
if (symbol < 4) dist = symbol + 1;
|
|
|
|
else {
|
|
|
|
dist = pull_bits(stream, (symbol - 2) >> 1);
|
|
|
|
dist += (2 << ((symbol - 2) >> 1)) + 1;
|
|
|
|
dist += (symbol % 2) << ((symbol - 2) >> 1);
|
|
|
|
}
|
|
|
|
stream->decoded += length;
|
|
|
|
for (i = 0; i < length; i++) {
|
|
|
|
*dest = dest[-dist];
|
|
|
|
dest++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} while (symbol != 256); /* 256 is the end of the data block */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fill the lookup tables (section 3.2.2) */
|
|
|
|
static void fill_code_tables(struct huffman_set *set)
|
|
|
|
{
|
|
|
|
int code = 0, i, length;
|
|
|
|
|
|
|
|
/* fill in the first code of each bit length, and the pos pointer */
|
|
|
|
set->pos[0] = 0;
|
|
|
|
for (i = 1; i < set->bits; i++) {
|
|
|
|
code = (code + set->count[i - 1]) << 1;
|
|
|
|
set->first[i] = code;
|
|
|
|
set->pos[i] = set->pos[i - 1] + set->count[i - 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fill in the table of symbols in order of their huffman code */
|
|
|
|
for (i = 0; i < set->num_symbols; i++) {
|
|
|
|
if ((length = set->lengths[i]))
|
|
|
|
set->symbols[set->pos[length]++] = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* reset the pos pointer */
|
|
|
|
for (i = 1; i < set->bits; i++) set->pos[i] -= set->count[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
static void init_code_tables(struct huffman_set *set)
|
|
|
|
{
|
|
|
|
cramfs_memset(set->lengths, 0, set->num_symbols);
|
|
|
|
cramfs_memset(set->count, 0, set->bits);
|
|
|
|
cramfs_memset(set->first, 0, set->bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* read in the huffman codes for dynamic decoding (section 3.2.7) */
|
|
|
|
static void decompress_dynamic(struct bitstream *stream, unsigned char *dest)
|
|
|
|
{
|
|
|
|
/* I tried my best to minimize the memory footprint here, while still
|
|
|
|
* keeping up performance. I really dislike the _lengths[] tables, but
|
|
|
|
* I see no way of eliminating them without a sizable performance
|
|
|
|
* impact. The first struct table keeps track of stats on each bit
|
|
|
|
* length. The _length table keeps a record of the bit length of each
|
|
|
|
* symbol. The _symbols table is for looking up symbols by the huffman
|
|
|
|
* code (the pos element points to the first place in the symbol table
|
|
|
|
* where that bit length occurs). I also hate the initization of these
|
|
|
|
* structs, if someone knows how to compact these, lemme know. */
|
|
|
|
|
|
|
|
struct huffman_set *codes = &(stream->codes);
|
|
|
|
struct huffman_set *lengths = &(stream->lengths);
|
|
|
|
struct huffman_set *distance = &(stream->distance);
|
|
|
|
|
|
|
|
int hlit = pull_bits(stream, 5) + 257;
|
|
|
|
int hdist = pull_bits(stream, 5) + 1;
|
|
|
|
int hclen = pull_bits(stream, 4) + 4;
|
|
|
|
int length, curr_code, symbol, i, last_code;
|
|
|
|
|
|
|
|
last_code = 0;
|
|
|
|
|
|
|
|
init_code_tables(codes);
|
|
|
|
init_code_tables(lengths);
|
|
|
|
init_code_tables(distance);
|
|
|
|
|
|
|
|
/* fill in the count of each bit length' as well as the lengths
|
|
|
|
* table */
|
|
|
|
for (i = 0; i < hclen; i++) {
|
|
|
|
length = pull_bits(stream, 3);
|
|
|
|
codes->lengths[huffman_order[i]] = length;
|
|
|
|
if (length) codes->count[length]++;
|
|
|
|
|
|
|
|
}
|
|
|
|
fill_code_tables(codes);
|
|
|
|
|
|
|
|
/* Do the same for the length codes, being carefull of wrap through
|
|
|
|
* to the distance table */
|
|
|
|
curr_code = 0;
|
|
|
|
while (curr_code < hlit) {
|
|
|
|
if ((symbol = read_symbol(stream, codes)) < 0) return;
|
|
|
|
if (symbol == 0) {
|
|
|
|
curr_code++;
|
|
|
|
last_code = 0;
|
|
|
|
} else if (symbol < 16) { /* Literal length */
|
|
|
|
lengths->lengths[curr_code] = last_code = symbol;
|
|
|
|
lengths->count[symbol]++;
|
|
|
|
curr_code++;
|
|
|
|
} else if (symbol == 16) { /* repeat the last symbol 3 - 6
|
|
|
|
* times */
|
|
|
|
length = 3 + pull_bits(stream, 2);
|
|
|
|
for (;length; length--, curr_code++)
|
|
|
|
if (curr_code < hlit) {
|
|
|
|
lengths->lengths[curr_code] =
|
|
|
|
last_code;
|
|
|
|
lengths->count[last_code]++;
|
|
|
|
} else { /* wrap to the distance table */
|
|
|
|
distance->lengths[curr_code - hlit] =
|
|
|
|
last_code;
|
|
|
|
distance->count[last_code]++;
|
|
|
|
}
|
|
|
|
} else if (symbol == 17) { /* repeat a bit length 0 */
|
|
|
|
curr_code += 3 + pull_bits(stream, 3);
|
|
|
|
last_code = 0;
|
|
|
|
} else { /* same, but more times */
|
|
|
|
curr_code += 11 + pull_bits(stream, 7);
|
|
|
|
last_code = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fill_code_tables(lengths);
|
|
|
|
|
|
|
|
/* Fill the distance table, don't need to worry about wrapthrough
|
|
|
|
* here */
|
|
|
|
curr_code -= hlit;
|
|
|
|
while (curr_code < hdist) {
|
|
|
|
if ((symbol = read_symbol(stream, codes)) < 0) return;
|
|
|
|
if (symbol == 0) {
|
|
|
|
curr_code++;
|
|
|
|
last_code = 0;
|
|
|
|
} else if (symbol < 16) {
|
|
|
|
distance->lengths[curr_code] = last_code = symbol;
|
|
|
|
distance->count[symbol]++;
|
|
|
|
curr_code++;
|
|
|
|
} else if (symbol == 16) {
|
|
|
|
length = 3 + pull_bits(stream, 2);
|
|
|
|
for (;length; length--, curr_code++) {
|
|
|
|
distance->lengths[curr_code] =
|
|
|
|
last_code;
|
|
|
|
distance->count[last_code]++;
|
|
|
|
}
|
|
|
|
} else if (symbol == 17) {
|
|
|
|
curr_code += 3 + pull_bits(stream, 3);
|
|
|
|
last_code = 0;
|
|
|
|
} else {
|
|
|
|
curr_code += 11 + pull_bits(stream, 7);
|
|
|
|
last_code = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fill_code_tables(distance);
|
|
|
|
|
|
|
|
decompress_huffman(stream, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* fill in the length and distance huffman codes for fixed encoding
|
|
|
|
* (section 3.2.6) */
|
|
|
|
static void decompress_fixed(struct bitstream *stream, unsigned char *dest)
|
|
|
|
{
|
|
|
|
/* let gcc fill in the initial values */
|
|
|
|
struct huffman_set *lengths = &(stream->lengths);
|
|
|
|
struct huffman_set *distance = &(stream->distance);
|
|
|
|
|
|
|
|
cramfs_memset(lengths->count, 0, 16);
|
|
|
|
cramfs_memset(lengths->first, 0, 16);
|
|
|
|
cramfs_memset(lengths->lengths, 8, 144);
|
|
|
|
cramfs_memset(lengths->lengths + 144, 9, 112);
|
|
|
|
cramfs_memset(lengths->lengths + 256, 7, 24);
|
|
|
|
cramfs_memset(lengths->lengths + 280, 8, 8);
|
|
|
|
lengths->count[7] = 24;
|
|
|
|
lengths->count[8] = 152;
|
|
|
|
lengths->count[9] = 112;
|
|
|
|
|
|
|
|
cramfs_memset(distance->count, 0, 16);
|
|
|
|
cramfs_memset(distance->first, 0, 16);
|
|
|
|
cramfs_memset(distance->lengths, 5, 32);
|
|
|
|
distance->count[5] = 32;
|
|
|
|
|
|
|
|
|
|
|
|
fill_code_tables(lengths);
|
|
|
|
fill_code_tables(distance);
|
|
|
|
|
|
|
|
|
|
|
|
decompress_huffman(stream, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* returns the number of bytes decoded, < 0 if there was an error. Note that
|
|
|
|
* this function assumes that the block starts on a byte boundry
|
|
|
|
* (non-compliant, but I don't see where this would happen). section 3.2.3 */
|
|
|
|
long decompress_block(unsigned char *dest, unsigned char *source,
|
|
|
|
void *(*inflate_memcpy)(void *, const void *, size))
|
|
|
|
{
|
|
|
|
int bfinal, btype;
|
|
|
|
struct bitstream stream;
|
|
|
|
|
|
|
|
init_stream(&stream, source, inflate_memcpy);
|
|
|
|
do {
|
|
|
|
bfinal = pull_bit(&stream);
|
|
|
|
btype = pull_bits(&stream, 2);
|
|
|
|
if (btype == NO_COMP) decompress_none(&stream, dest + stream.decoded);
|
|
|
|
else if (btype == DYNAMIC_COMP)
|
|
|
|
decompress_dynamic(&stream, dest + stream.decoded);
|
|
|
|
else if (btype == FIXED_COMP) decompress_fixed(&stream, dest + stream.decoded);
|
|
|
|
else stream.error = COMP_UNKNOWN;
|
|
|
|
} while (!bfinal && !stream.error);
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
putstr("decompress_block start\r\n");
|
|
|
|
putLabeledWord("stream.error = ",stream.error);
|
|
|
|
putLabeledWord("stream.decoded = ",stream.decoded);
|
|
|
|
putLabeledWord("dest = ",dest);
|
|
|
|
putstr("decompress_block end\r\n");
|
|
|
|
#endif
|
|
|
|
return stream.error ? -stream.error : stream.decoded;
|
|
|
|
}
|