u-boot/drivers/tpm/tpm_tis_st33zp24_spi.c

674 lines
16 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* STMicroelectronics TPM ST33ZP24 SPI UBOOT driver
*
* Copyright (C) 2016, STMicroelectronics - All Rights Reserved
* Author(s): Christophe Ricard <christophe-h.ricard@st.com> for STMicroelectronics.
*
* Description: Device driver for ST33ZP24 SPI TPM TCG.
*
* This device driver implements the TPM interface as defined in
* the TCG TPM Interface Spec version 1.21, revision 1.0 and the
* STMicroelectronics Protocol Stack Specification version 1.2.0.
*/
#include <common.h>
#include <dm.h>
#include <fdtdec.h>
#include <spi.h>
#include <tpm-v1.h>
#include <errno.h>
#include <linux/types.h>
#include <asm/unaligned.h>
#include <linux/compat.h>
#include "tpm_tis.h"
#include "tpm_internal.h"
#define TPM_ACCESS 0x0
#define TPM_STS 0x18
#define TPM_DATA_FIFO 0x24
#define LOCALITY0 0
#define TPM_DATA_FIFO 0x24
#define TPM_INTF_CAPABILITY 0x14
#define TPM_DUMMY_BYTE 0x00
#define TPM_WRITE_DIRECTION 0x80
#define MAX_SPI_LATENCY 15
#define LOCALITY0 0
#define ST33ZP24_OK 0x5A
#define ST33ZP24_UNDEFINED_ERR 0x80
#define ST33ZP24_BADLOCALITY 0x81
#define ST33ZP24_TISREGISTER_UKNOWN 0x82
#define ST33ZP24_LOCALITY_NOT_ACTIVATED 0x83
#define ST33ZP24_HASH_END_BEFORE_HASH_START 0x84
#define ST33ZP24_BAD_COMMAND_ORDER 0x85
#define ST33ZP24_INCORECT_RECEIVED_LENGTH 0x86
#define ST33ZP24_TPM_FIFO_OVERFLOW 0x89
#define ST33ZP24_UNEXPECTED_READ_FIFO 0x8A
#define ST33ZP24_UNEXPECTED_WRITE_FIFO 0x8B
#define ST33ZP24_CMDRDY_SET_WHEN_PROCESSING_HASH_END 0x90
#define ST33ZP24_DUMMY_BYTES 0x00
/*
* TPM command can be up to 2048 byte, A TPM response can be up to
* 1024 byte.
* Between command and response, there are latency byte (up to 15
* usually on st33zp24 2 are enough).
*
* Overall when sending a command and expecting an answer we need if
* worst case:
* 2048 (for the TPM command) + 1024 (for the TPM answer). We need
* some latency byte before the answer is available (max 15).
* We have 2048 + 1024 + 15.
*/
#define ST33ZP24_SPI_BUFFER_SIZE (TPM_BUFSIZE + (TPM_BUFSIZE / 2) +\
MAX_SPI_LATENCY)
struct st33zp24_spi_phy {
int latency;
u8 tx_buf[ST33ZP24_SPI_BUFFER_SIZE];
u8 rx_buf[ST33ZP24_SPI_BUFFER_SIZE];
};
static int st33zp24_spi_status_to_errno(u8 code)
{
switch (code) {
case ST33ZP24_OK:
return 0;
case ST33ZP24_UNDEFINED_ERR:
case ST33ZP24_BADLOCALITY:
case ST33ZP24_TISREGISTER_UKNOWN:
case ST33ZP24_LOCALITY_NOT_ACTIVATED:
case ST33ZP24_HASH_END_BEFORE_HASH_START:
case ST33ZP24_BAD_COMMAND_ORDER:
case ST33ZP24_UNEXPECTED_READ_FIFO:
case ST33ZP24_UNEXPECTED_WRITE_FIFO:
case ST33ZP24_CMDRDY_SET_WHEN_PROCESSING_HASH_END:
return -EPROTO;
case ST33ZP24_INCORECT_RECEIVED_LENGTH:
case ST33ZP24_TPM_FIFO_OVERFLOW:
return -EMSGSIZE;
case ST33ZP24_DUMMY_BYTES:
return -ENOSYS;
}
return code;
}
/*
* st33zp24_spi_send
* Send byte to TPM register according to the ST33ZP24 SPI protocol.
* @param: tpm, the chip description
* @param: tpm_register, the tpm tis register where the data should be written
* @param: tpm_data, the tpm_data to write inside the tpm_register
* @param: tpm_size, The length of the data
* @return: should be zero if success else a negative error code.
*/
static int st33zp24_spi_write(struct udevice *dev, u8 tpm_register,
const u8 *tpm_data, size_t tpm_size)
{
int total_length = 0, ret;
struct spi_slave *slave = dev_get_parent_priv(dev);
struct st33zp24_spi_phy *phy = dev_get_platdata(dev);
u8 *tx_buf = (u8 *)phy->tx_buf;
u8 *rx_buf = phy->rx_buf;
tx_buf[total_length++] = TPM_WRITE_DIRECTION | LOCALITY0;
tx_buf[total_length++] = tpm_register;
if (tpm_size > 0 && tpm_register == TPM_DATA_FIFO) {
tx_buf[total_length++] = tpm_size >> 8;
tx_buf[total_length++] = tpm_size;
}
memcpy(tx_buf + total_length, tpm_data, tpm_size);
total_length += tpm_size;
memset(tx_buf + total_length, TPM_DUMMY_BYTE, phy->latency);
total_length += phy->latency;
ret = spi_claim_bus(slave);
if (ret < 0)
return ret;
ret = spi_xfer(slave, total_length * 8, tx_buf, rx_buf,
SPI_XFER_BEGIN | SPI_XFER_END);
if (ret < 0)
return ret;
spi_release_bus(slave);
if (ret == 0)
ret = rx_buf[total_length - 1];
return st33zp24_spi_status_to_errno(ret);
}
/*
* spi_st33zp24_spi_read8_reg
* Recv byte from the TIS register according to the ST33ZP24 SPI protocol.
* @param: tpm, the chip description
* @param: tpm_loc, the locality to read register from
* @param: tpm_register, the tpm tis register where the data should be read
* @param: tpm_data, the TPM response
* @param: tpm_size, tpm TPM response size to read.
* @return: should be zero if success else a negative error code.
*/
static u8 st33zp24_spi_read8_reg(struct udevice *dev, u8 tpm_register,
u8 *tpm_data, size_t tpm_size)
{
int total_length = 0, ret;
struct spi_slave *slave = dev_get_parent_priv(dev);
struct st33zp24_spi_phy *phy = dev_get_platdata(dev);
u8 *tx_buf = (u8 *)phy->tx_buf;
u8 *rx_buf = phy->rx_buf;
/* Pre-Header */
tx_buf[total_length++] = LOCALITY0;
tx_buf[total_length++] = tpm_register;
memset(&tx_buf[total_length], TPM_DUMMY_BYTE,
phy->latency + tpm_size);
total_length += phy->latency + tpm_size;
ret = spi_claim_bus(slave);
if (ret < 0)
return 0;
ret = spi_xfer(slave, total_length * 8, tx_buf, rx_buf,
SPI_XFER_BEGIN | SPI_XFER_END);
if (ret < 0)
return 0;
spi_release_bus(slave);
if (tpm_size > 0 && ret == 0) {
ret = rx_buf[total_length - tpm_size - 1];
memcpy(tpm_data, rx_buf + total_length - tpm_size, tpm_size);
}
return ret;
}
/*
* st33zp24_spi_recv
* Recv byte from the TIS register according to the ST33ZP24 SPI protocol.
* @param: phy_id, the phy description
* @param: tpm_register, the tpm tis register where the data should be read
* @param: tpm_data, the TPM response
* @param: tpm_size, tpm TPM response size to read.
* @return: number of byte read successfully: should be one if success.
*/
static int st33zp24_spi_read(struct udevice *dev, u8 tpm_register,
u8 *tpm_data, size_t tpm_size)
{
int ret;
ret = st33zp24_spi_read8_reg(dev, tpm_register, tpm_data, tpm_size);
if (!st33zp24_spi_status_to_errno(ret))
return tpm_size;
return ret;
}
static int st33zp24_spi_evaluate_latency(struct udevice *dev)
{
int latency = 1, status = 0;
u8 data = 0;
struct st33zp24_spi_phy *phy = dev_get_platdata(dev);
while (!status && latency < MAX_SPI_LATENCY) {
phy->latency = latency;
status = st33zp24_spi_read8_reg(dev, TPM_INTF_CAPABILITY,
&data, 1);
latency++;
}
if (status < 0)
return status;
if (latency == MAX_SPI_LATENCY)
return -ENODEV;
return latency - 1;
}
/*
* st33zp24_spi_release_locality release the active locality
* @param: chip, the tpm chip description.
*/
static void st33zp24_spi_release_locality(struct udevice *dev)
{
u8 data = TPM_ACCESS_ACTIVE_LOCALITY;
st33zp24_spi_write(dev, TPM_ACCESS, &data, 1);
}
/*
* st33zp24_spi_check_locality if the locality is active
* @param: chip, the tpm chip description
* @return: the active locality or -EACCES.
*/
static int st33zp24_spi_check_locality(struct udevice *dev)
{
u8 data;
u8 status;
struct tpm_chip *chip = dev_get_priv(dev);
status = st33zp24_spi_read(dev, TPM_ACCESS, &data, 1);
if (status && (data &
(TPM_ACCESS_ACTIVE_LOCALITY | TPM_ACCESS_VALID)) ==
(TPM_ACCESS_ACTIVE_LOCALITY | TPM_ACCESS_VALID))
return chip->locality;
return -EACCES;
}
/*
* st33zp24_spi_request_locality request the TPM locality
* @param: chip, the chip description
* @return: the active locality or negative value.
*/
static int st33zp24_spi_request_locality(struct udevice *dev)
{
unsigned long start, stop;
long ret;
u8 data;
struct tpm_chip *chip = dev_get_priv(dev);
if (st33zp24_spi_check_locality(dev) == chip->locality)
return chip->locality;
data = TPM_ACCESS_REQUEST_USE;
ret = st33zp24_spi_write(dev, TPM_ACCESS, &data, 1);
if (ret < 0)
return ret;
/* wait for locality activated */
start = get_timer(0);
stop = chip->timeout_a;
do {
if (st33zp24_spi_check_locality(dev) >= 0)
return chip->locality;
udelay(TPM_TIMEOUT_MS * 1000);
} while (get_timer(start) < stop);
return -EACCES;
}
/*
* st33zp24_spi_status return the TPM_STS register
* @param: chip, the tpm chip description
* @return: the TPM_STS register value.
*/
static u8 st33zp24_spi_status(struct udevice *dev)
{
u8 data;
st33zp24_spi_read(dev, TPM_STS, &data, 1);
return data;
}
/*
* st33zp24_spi_get_burstcount return the burstcount address 0x19 0x1A
* @param: chip, the chip description
* return: the burstcount or -TPM_DRIVER_ERR in case of error.
*/
static int st33zp24_spi_get_burstcount(struct udevice *dev)
{
struct tpm_chip *chip = dev_get_priv(dev);
unsigned long start, stop;
int burstcnt, status;
u8 tpm_reg, temp;
/* wait for burstcount */
start = get_timer(0);
stop = chip->timeout_d;
do {
tpm_reg = TPM_STS + 1;
status = st33zp24_spi_read(dev, tpm_reg, &temp, 1);
if (status < 0)
return -EBUSY;
tpm_reg = TPM_STS + 2;
burstcnt = temp;
status = st33zp24_spi_read(dev, tpm_reg, &temp, 1);
if (status < 0)
return -EBUSY;
burstcnt |= temp << 8;
if (burstcnt)
return burstcnt;
udelay(TIS_SHORT_TIMEOUT_MS * 1000);
} while (get_timer(start) < stop);
return -EBUSY;
}
/*
* st33zp24_spi_cancel, cancel the current command execution or
* set STS to COMMAND READY.
* @param: chip, tpm_chip description.
*/
static void st33zp24_spi_cancel(struct udevice *dev)
{
u8 data;
data = TPM_STS_COMMAND_READY;
st33zp24_spi_write(dev, TPM_STS, &data, 1);
}
/*
* st33zp24_spi_wait_for_stat wait for a TPM_STS value
* @param: chip, the tpm chip description
* @param: mask, the value mask to wait
* @param: timeout, the timeout
* @param: status,
* @return: the tpm status, 0 if success, -ETIME if timeout is reached.
*/
static int st33zp24_spi_wait_for_stat(struct udevice *dev, u8 mask,
unsigned long timeout, int *status)
{
unsigned long start, stop;
/* Check current status */
*status = st33zp24_spi_status(dev);
if ((*status & mask) == mask)
return 0;
start = get_timer(0);
stop = timeout;
do {
udelay(TPM_TIMEOUT_MS * 1000);
*status = st33zp24_spi_status(dev);
if ((*status & mask) == mask)
return 0;
} while (get_timer(start) < stop);
return -ETIME;
}
/*
* st33zp24_spi_recv_data receive data
* @param: chip, the tpm chip description
* @param: buf, the buffer where the data are received
* @param: count, the number of data to receive
* @return: the number of bytes read from TPM FIFO.
*/
static int st33zp24_spi_recv_data(struct udevice *dev, u8 *buf, size_t count)
{
struct tpm_chip *chip = dev_get_priv(dev);
int size = 0, burstcnt, len, ret, status;
while (size < count &&
st33zp24_spi_wait_for_stat(dev, TPM_STS_DATA_AVAIL | TPM_STS_VALID,
chip->timeout_c, &status) == 0) {
burstcnt = st33zp24_spi_get_burstcount(dev);
if (burstcnt < 0)
return burstcnt;
len = min_t(int, burstcnt, count - size);
ret = st33zp24_spi_read(dev, TPM_DATA_FIFO, buf + size, len);
if (ret < 0)
return ret;
size += len;
}
return size;
}
/*
* st33zp24_spi_recv received TPM response through TPM phy.
* @param: chip, tpm_chip description.
* @param: buf, the buffer to store data.
* @param: count, the number of bytes that can received (sizeof buf).
* @return: Returns zero in case of success else -EIO.
*/
static int st33zp24_spi_recv(struct udevice *dev, u8 *buf, size_t count)
{
struct tpm_chip *chip = dev_get_priv(dev);
int size;
unsigned int expected;
if (!chip)
return -ENODEV;
if (count < TPM_HEADER_SIZE) {
size = -EIO;
goto out;
}
size = st33zp24_spi_recv_data(dev, buf, TPM_HEADER_SIZE);
if (size < TPM_HEADER_SIZE) {
debug("TPM error, unable to read header\n");
goto out;
}
expected = get_unaligned_be32(buf + 2);
if (expected > count || expected < TPM_HEADER_SIZE) {
size = -EIO;
goto out;
}
size += st33zp24_spi_recv_data(dev, &buf[TPM_HEADER_SIZE],
expected - TPM_HEADER_SIZE);
if (size < expected) {
debug("TPM error, unable to read remaining bytes of result\n");
size = -EIO;
goto out;
}
out:
st33zp24_spi_cancel(dev);
st33zp24_spi_release_locality(dev);
return size;
}
/*
* st33zp24_spi_send send TPM commands through TPM phy.
* @param: chip, tpm_chip description.
* @param: buf, the buffer to send.
* @param: len, the number of bytes to send.
* @return: Returns zero in case of success else the negative error code.
*/
static int st33zp24_spi_send(struct udevice *dev, const u8 *buf, size_t len)
{
struct tpm_chip *chip = dev_get_priv(dev);
u32 i, size;
int burstcnt, ret, status;
u8 data, tpm_stat;
if (!chip)
return -ENODEV;
if (len < TPM_HEADER_SIZE)
return -EIO;
ret = st33zp24_spi_request_locality(dev);
if (ret < 0)
return ret;
tpm_stat = st33zp24_spi_status(dev);
if ((tpm_stat & TPM_STS_COMMAND_READY) == 0) {
st33zp24_spi_cancel(dev);
if (st33zp24_spi_wait_for_stat(dev, TPM_STS_COMMAND_READY,
chip->timeout_b, &status) < 0) {
ret = -ETIME;
goto out_err;
}
}
for (i = 0; i < len - 1;) {
burstcnt = st33zp24_spi_get_burstcount(dev);
if (burstcnt < 0)
return burstcnt;
size = min_t(int, len - i - 1, burstcnt);
ret = st33zp24_spi_write(dev, TPM_DATA_FIFO, buf + i, size);
if (ret < 0)
goto out_err;
i += size;
}
tpm_stat = st33zp24_spi_status(dev);
if ((tpm_stat & TPM_STS_DATA_EXPECT) == 0) {
ret = -EIO;
goto out_err;
}
ret = st33zp24_spi_write(dev, TPM_DATA_FIFO, buf + len - 1, 1);
if (ret < 0)
goto out_err;
tpm_stat = st33zp24_spi_status(dev);
if ((tpm_stat & TPM_STS_DATA_EXPECT) != 0) {
ret = -EIO;
goto out_err;
}
data = TPM_STS_GO;
ret = st33zp24_spi_write(dev, TPM_STS, &data, 1);
if (ret < 0)
goto out_err;
return len;
out_err:
st33zp24_spi_cancel(dev);
st33zp24_spi_release_locality(dev);
return ret;
}
static int st33zp24_spi_cleanup(struct udevice *dev)
{
st33zp24_spi_cancel(dev);
/*
* The TPM needs some time to clean up here,
* so we sleep rather than keeping the bus busy
*/
mdelay(2);
st33zp24_spi_release_locality(dev);
return 0;
}
static int st33zp24_spi_init(struct udevice *dev)
{
struct tpm_chip *chip = dev_get_priv(dev);
struct st33zp24_spi_phy *phy = dev_get_platdata(dev);
chip->is_open = 1;
/* Default timeouts - these could move to the device tree */
chip->timeout_a = TIS_SHORT_TIMEOUT_MS;
chip->timeout_b = TIS_LONG_TIMEOUT_MS;
chip->timeout_c = TIS_SHORT_TIMEOUT_MS;
chip->timeout_d = TIS_SHORT_TIMEOUT_MS;
chip->locality = LOCALITY0;
phy->latency = st33zp24_spi_evaluate_latency(dev);
if (phy->latency <= 0)
return -ENODEV;
/*
* A timeout query to TPM can be placed here.
* Standard timeout values are used so far
*/
return 0;
}
static int st33zp24_spi_open(struct udevice *dev)
{
struct tpm_chip *chip = dev_get_priv(dev);
int rc;
debug("%s: start\n", __func__);
if (chip->is_open)
return -EBUSY;
rc = st33zp24_spi_init(dev);
if (rc < 0)
chip->is_open = 0;
return rc;
}
static int st33zp24_spi_close(struct udevice *dev)
{
struct tpm_chip *chip = dev_get_priv(dev);
if (chip->is_open) {
st33zp24_spi_release_locality(dev);
chip->is_open = 0;
chip->vend_dev = 0;
}
return 0;
}
static int st33zp24_spi_get_desc(struct udevice *dev, char *buf, int size)
{
struct tpm_chip *chip = dev_get_priv(dev);
if (size < 50)
return -ENOSPC;
return snprintf(buf, size, "1.2 TPM (%s, chip type %s device-id 0x%x)",
chip->is_open ? "open" : "closed",
dev->name,
chip->vend_dev >> 16);
}
const struct tpm_ops st33zp24_spi_tpm_ops = {
.open = st33zp24_spi_open,
.close = st33zp24_spi_close,
.recv = st33zp24_spi_recv,
.send = st33zp24_spi_send,
.cleanup = st33zp24_spi_cleanup,
.get_desc = st33zp24_spi_get_desc,
};
static int st33zp24_spi_probe(struct udevice *dev)
{
struct tpm_chip_priv *uc_priv = dev_get_uclass_priv(dev);
uc_priv->duration_ms[TPM_SHORT] = TIS_SHORT_TIMEOUT_MS;
uc_priv->duration_ms[TPM_MEDIUM] = TIS_LONG_TIMEOUT_MS;
uc_priv->duration_ms[TPM_LONG] = TIS_LONG_TIMEOUT_MS;
uc_priv->retry_time_ms = TPM_TIMEOUT_MS;
debug("ST33ZP24 SPI TPM from STMicroelectronics found\n");
return 0;
}
static int st33zp24_spi_remove(struct udevice *dev)
{
st33zp24_spi_release_locality(dev);
return 0;
}
static const struct udevice_id st33zp24_spi_ids[] = {
{ .compatible = "st,st33zp24-spi" },
{ }
};
U_BOOT_DRIVER(st33zp24_spi_spi) = {
.name = "st33zp24-spi",
.id = UCLASS_TPM,
.of_match = of_match_ptr(st33zp24_spi_ids),
.probe = st33zp24_spi_probe,
.remove = st33zp24_spi_remove,
.ops = &st33zp24_spi_tpm_ops,
.priv_auto_alloc_size = sizeof(struct tpm_chip),
.platdata_auto_alloc_size = sizeof(struct st33zp24_spi_phy),
};