u-boot/drivers/video/da8xx-fb.c

1045 lines
26 KiB
C
Raw Normal View History

/*
* Porting to u-boot:
*
* (C) Copyright 2011
* Stefano Babic, DENX Software Engineering, sbabic@denx.de.
*
* Copyright (C) 2008-2009 MontaVista Software Inc.
* Copyright (C) 2008-2009 Texas Instruments Inc
*
* Based on the LCD driver for TI Avalanche processors written by
* Ajay Singh and Shalom Hai.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <video_fb.h>
#include <linux/list.h>
#include <linux/fb.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/arch/hardware.h>
#include "videomodes.h"
#include "da8xx-fb.h"
#if !defined(DA8XX_LCD_CNTL_BASE)
#define DA8XX_LCD_CNTL_BASE DAVINCI_LCD_CNTL_BASE
#endif
#define DRIVER_NAME "da8xx_lcdc"
#define LCD_VERSION_1 1
#define LCD_VERSION_2 2
/* LCD Status Register */
#define LCD_END_OF_FRAME1 (1 << 9)
#define LCD_END_OF_FRAME0 (1 << 8)
#define LCD_PL_LOAD_DONE (1 << 6)
#define LCD_FIFO_UNDERFLOW (1 << 5)
#define LCD_SYNC_LOST (1 << 2)
/* LCD DMA Control Register */
#define LCD_DMA_BURST_SIZE(x) ((x) << 4)
#define LCD_DMA_BURST_1 0x0
#define LCD_DMA_BURST_2 0x1
#define LCD_DMA_BURST_4 0x2
#define LCD_DMA_BURST_8 0x3
#define LCD_DMA_BURST_16 0x4
#define LCD_V1_END_OF_FRAME_INT_ENA (1 << 2)
#define LCD_V2_END_OF_FRAME0_INT_ENA (1 << 8)
#define LCD_V2_END_OF_FRAME1_INT_ENA (1 << 9)
#define LCD_DUAL_FRAME_BUFFER_ENABLE (1 << 0)
#define LCD_V2_TFT_24BPP_MODE (1 << 25)
#define LCD_V2_TFT_24BPP_UNPACK (1 << 26)
/* LCD Control Register */
#define LCD_CLK_DIVISOR(x) ((x) << 8)
#define LCD_RASTER_MODE 0x01
/* LCD Raster Control Register */
#define LCD_PALETTE_LOAD_MODE(x) ((x) << 20)
#define PALETTE_AND_DATA 0x00
#define PALETTE_ONLY 0x01
#define DATA_ONLY 0x02
#define LCD_MONO_8BIT_MODE (1 << 9)
#define LCD_RASTER_ORDER (1 << 8)
#define LCD_TFT_MODE (1 << 7)
#define LCD_V1_UNDERFLOW_INT_ENA (1 << 6)
#define LCD_V2_UNDERFLOW_INT_ENA (1 << 5)
#define LCD_V1_PL_INT_ENA (1 << 4)
#define LCD_V2_PL_INT_ENA (1 << 6)
#define LCD_MONOCHROME_MODE (1 << 1)
#define LCD_RASTER_ENABLE (1 << 0)
#define LCD_TFT_ALT_ENABLE (1 << 23)
#define LCD_STN_565_ENABLE (1 << 24)
#define LCD_V2_DMA_CLK_EN (1 << 2)
#define LCD_V2_LIDD_CLK_EN (1 << 1)
#define LCD_V2_CORE_CLK_EN (1 << 0)
#define LCD_V2_LPP_B10 26
#define LCD_V2_TFT_24BPP_MODE (1 << 25)
#define LCD_V2_TFT_24BPP_UNPACK (1 << 26)
/* LCD Raster Timing 2 Register */
#define LCD_AC_BIAS_TRANSITIONS_PER_INT(x) ((x) << 16)
#define LCD_AC_BIAS_FREQUENCY(x) ((x) << 8)
#define LCD_SYNC_CTRL (1 << 25)
#define LCD_SYNC_EDGE (1 << 24)
#define LCD_INVERT_PIXEL_CLOCK (1 << 22)
#define LCD_INVERT_LINE_CLOCK (1 << 21)
#define LCD_INVERT_FRAME_CLOCK (1 << 20)
/* Clock registers available only on Version 2 */
#define LCD_CLK_MAIN_RESET (1 << 3)
/* LCD Block */
struct da8xx_lcd_regs {
u32 revid;
u32 ctrl;
u32 stat;
u32 lidd_ctrl;
u32 lidd_cs0_conf;
u32 lidd_cs0_addr;
u32 lidd_cs0_data;
u32 lidd_cs1_conf;
u32 lidd_cs1_addr;
u32 lidd_cs1_data;
u32 raster_ctrl;
u32 raster_timing_0;
u32 raster_timing_1;
u32 raster_timing_2;
u32 raster_subpanel;
u32 reserved;
u32 dma_ctrl;
u32 dma_frm_buf_base_addr_0;
u32 dma_frm_buf_ceiling_addr_0;
u32 dma_frm_buf_base_addr_1;
u32 dma_frm_buf_ceiling_addr_1;
u32 resv1;
u32 raw_stat;
u32 masked_stat;
u32 int_ena_set;
u32 int_ena_clr;
u32 end_of_int_ind;
/* Clock registers available only on Version 2 */
u32 clk_ena;
u32 clk_reset;
};
#define LCD_NUM_BUFFERS 1
#define WSI_TIMEOUT 50
#define PALETTE_SIZE 256
#define LEFT_MARGIN 64
#define RIGHT_MARGIN 64
#define UPPER_MARGIN 32
#define LOWER_MARGIN 32
#define WAIT_FOR_FRAME_DONE true
#define NO_WAIT_FOR_FRAME_DONE false
#define calc_fbsize() (panel.plnSizeX * panel.plnSizeY * panel.gdfBytesPP)
static struct da8xx_lcd_regs *da8xx_fb_reg_base;
DECLARE_GLOBAL_DATA_PTR;
/* graphics setup */
static GraphicDevice gpanel;
static const struct da8xx_panel *lcd_panel;
static struct fb_info *da8xx_fb_info;
static int bits_x_pixel;
static unsigned int lcd_revision;
const struct lcd_ctrl_config *da8xx_lcd_cfg;
static inline unsigned int lcdc_read(u32 *addr)
{
return (unsigned int)readl(addr);
}
static inline void lcdc_write(unsigned int val, u32 *addr)
{
writel(val, addr);
}
struct da8xx_fb_par {
u32 p_palette_base;
unsigned char *v_palette_base;
dma_addr_t vram_phys;
unsigned long vram_size;
void *vram_virt;
unsigned int dma_start;
unsigned int dma_end;
struct clk *lcdc_clk;
int irq;
unsigned short pseudo_palette[16];
unsigned int palette_sz;
unsigned int pxl_clk;
int blank;
int vsync_flag;
int vsync_timeout;
};
/* Variable Screen Information */
static struct fb_var_screeninfo da8xx_fb_var = {
.xoffset = 0,
.yoffset = 0,
.transp = {0, 0, 0},
.nonstd = 0,
.activate = 0,
.height = -1,
.width = -1,
.pixclock = 46666, /* 46us - AUO display */
.accel_flags = 0,
.left_margin = LEFT_MARGIN,
.right_margin = RIGHT_MARGIN,
.upper_margin = UPPER_MARGIN,
.lower_margin = LOWER_MARGIN,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED
};
static struct fb_fix_screeninfo da8xx_fb_fix = {
.id = "DA8xx FB Drv",
.type = FB_TYPE_PACKED_PIXELS,
.type_aux = 0,
.visual = FB_VISUAL_PSEUDOCOLOR,
.xpanstep = 0,
.ypanstep = 1,
.ywrapstep = 0,
.accel = FB_ACCEL_NONE
};
/* Enable the Raster Engine of the LCD Controller */
static inline void lcd_enable_raster(void)
{
u32 reg;
/* Put LCDC in reset for several cycles */
if (lcd_revision == LCD_VERSION_2)
lcdc_write(LCD_CLK_MAIN_RESET,
&da8xx_fb_reg_base->clk_reset);
udelay(1000);
/* Bring LCDC out of reset */
if (lcd_revision == LCD_VERSION_2)
lcdc_write(0,
&da8xx_fb_reg_base->clk_reset);
udelay(1000);
reg = lcdc_read(&da8xx_fb_reg_base->raster_ctrl);
if (!(reg & LCD_RASTER_ENABLE))
lcdc_write(reg | LCD_RASTER_ENABLE,
&da8xx_fb_reg_base->raster_ctrl);
}
/* Disable the Raster Engine of the LCD Controller */
static inline void lcd_disable_raster(bool wait_for_frame_done)
{
u32 reg;
u32 loop_cnt = 0;
u32 stat;
u32 i = 0;
if (wait_for_frame_done)
loop_cnt = 5000;
reg = lcdc_read(&da8xx_fb_reg_base->raster_ctrl);
if (reg & LCD_RASTER_ENABLE)
lcdc_write(reg & ~LCD_RASTER_ENABLE,
&da8xx_fb_reg_base->raster_ctrl);
/* Wait for the current frame to complete */
do {
if (lcd_revision == LCD_VERSION_1)
stat = lcdc_read(&da8xx_fb_reg_base->stat);
else
stat = lcdc_read(&da8xx_fb_reg_base->raw_stat);
mdelay(1);
} while (!(stat & 0x01) && (i++ < loop_cnt));
if (lcd_revision == LCD_VERSION_1)
lcdc_write(stat, &da8xx_fb_reg_base->stat);
else
lcdc_write(stat, &da8xx_fb_reg_base->raw_stat);
if ((loop_cnt != 0) && (i >= loop_cnt)) {
printf("LCD Controller timed out\n");
return;
}
}
static void lcd_blit(int load_mode, struct da8xx_fb_par *par)
{
u32 start;
u32 end;
u32 reg_ras;
u32 reg_dma;
u32 reg_int;
/* init reg to clear PLM (loading mode) fields */
reg_ras = lcdc_read(&da8xx_fb_reg_base->raster_ctrl);
reg_ras &= ~(3 << 20);
reg_dma = lcdc_read(&da8xx_fb_reg_base->dma_ctrl);
if (load_mode == LOAD_DATA) {
start = par->dma_start;
end = par->dma_end;
reg_ras |= LCD_PALETTE_LOAD_MODE(DATA_ONLY);
if (lcd_revision == LCD_VERSION_1) {
reg_dma |= LCD_V1_END_OF_FRAME_INT_ENA;
} else {
reg_int = lcdc_read(&da8xx_fb_reg_base->int_ena_set) |
LCD_V2_END_OF_FRAME0_INT_ENA |
LCD_V2_END_OF_FRAME1_INT_ENA |
LCD_V2_UNDERFLOW_INT_ENA | LCD_SYNC_LOST;
lcdc_write(reg_int, &da8xx_fb_reg_base->int_ena_set);
}
#if (LCD_NUM_BUFFERS == 2)
reg_dma |= LCD_DUAL_FRAME_BUFFER_ENABLE;
lcdc_write(start, &da8xx_fb_reg_base->dma_frm_buf_base_addr_0);
lcdc_write(end, &da8xx_fb_reg_base->dma_frm_buf_ceiling_addr_0);
lcdc_write(start, &da8xx_fb_reg_base->dma_frm_buf_base_addr_1);
lcdc_write(end, &da8xx_fb_reg_base->dma_frm_buf_ceiling_addr_1);
#else
reg_dma &= ~LCD_DUAL_FRAME_BUFFER_ENABLE;
lcdc_write(start, &da8xx_fb_reg_base->dma_frm_buf_base_addr_0);
lcdc_write(end, &da8xx_fb_reg_base->dma_frm_buf_ceiling_addr_0);
lcdc_write(0, &da8xx_fb_reg_base->dma_frm_buf_base_addr_1);
lcdc_write(0, &da8xx_fb_reg_base->dma_frm_buf_ceiling_addr_1);
#endif
} else if (load_mode == LOAD_PALETTE) {
start = par->p_palette_base;
end = start + par->palette_sz - 1;
reg_ras |= LCD_PALETTE_LOAD_MODE(PALETTE_ONLY);
if (lcd_revision == LCD_VERSION_1) {
reg_ras |= LCD_V1_PL_INT_ENA;
} else {
reg_int = lcdc_read(&da8xx_fb_reg_base->int_ena_set) |
LCD_V2_PL_INT_ENA;
lcdc_write(reg_int, &da8xx_fb_reg_base->int_ena_set);
}
lcdc_write(start, &da8xx_fb_reg_base->dma_frm_buf_base_addr_0);
lcdc_write(end, &da8xx_fb_reg_base->dma_frm_buf_ceiling_addr_0);
}
lcdc_write(reg_dma, &da8xx_fb_reg_base->dma_ctrl);
lcdc_write(reg_ras, &da8xx_fb_reg_base->raster_ctrl);
/*
* The Raster enable bit must be set after all other control fields are
* set.
*/
lcd_enable_raster();
}
/* Configure the Burst Size of DMA */
static int lcd_cfg_dma(int burst_size)
{
u32 reg;
reg = lcdc_read(&da8xx_fb_reg_base->dma_ctrl) & 0x00000001;
switch (burst_size) {
case 1:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_1);
break;
case 2:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_2);
break;
case 4:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_4);
break;
case 8:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_8);
break;
case 16:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_16);
break;
default:
return -EINVAL;
}
lcdc_write(reg, &da8xx_fb_reg_base->dma_ctrl);
return 0;
}
static void lcd_cfg_ac_bias(int period, int transitions_per_int)
{
u32 reg;
/* Set the AC Bias Period and Number of Transisitons per Interrupt */
reg = lcdc_read(&da8xx_fb_reg_base->raster_timing_2) & 0xFFF00000;
reg |= LCD_AC_BIAS_FREQUENCY(period) |
LCD_AC_BIAS_TRANSITIONS_PER_INT(transitions_per_int);
lcdc_write(reg, &da8xx_fb_reg_base->raster_timing_2);
}
static void lcd_cfg_horizontal_sync(int back_porch, int pulse_width,
int front_porch)
{
u32 reg;
reg = lcdc_read(&da8xx_fb_reg_base->raster_timing_0) & 0xf;
reg |= ((back_porch & 0xff) << 24)
| ((front_porch & 0xff) << 16)
| ((pulse_width & 0x3f) << 10);
lcdc_write(reg, &da8xx_fb_reg_base->raster_timing_0);
}
static void lcd_cfg_vertical_sync(int back_porch, int pulse_width,
int front_porch)
{
u32 reg;
reg = lcdc_read(&da8xx_fb_reg_base->raster_timing_1) & 0x3ff;
reg |= ((back_porch & 0xff) << 24)
| ((front_porch & 0xff) << 16)
| ((pulse_width & 0x3f) << 10);
lcdc_write(reg, &da8xx_fb_reg_base->raster_timing_1);
}
static int lcd_cfg_display(const struct lcd_ctrl_config *cfg)
{
u32 reg;
u32 reg_int;
reg = lcdc_read(&da8xx_fb_reg_base->raster_ctrl) & ~(LCD_TFT_MODE |
LCD_MONO_8BIT_MODE |
LCD_MONOCHROME_MODE);
switch (cfg->p_disp_panel->panel_shade) {
case MONOCHROME:
reg |= LCD_MONOCHROME_MODE;
if (cfg->mono_8bit_mode)
reg |= LCD_MONO_8BIT_MODE;
break;
case COLOR_ACTIVE:
reg |= LCD_TFT_MODE;
if (cfg->tft_alt_mode)
reg |= LCD_TFT_ALT_ENABLE;
break;
case COLOR_PASSIVE:
if (cfg->stn_565_mode)
reg |= LCD_STN_565_ENABLE;
break;
default:
return -EINVAL;
}
/* enable additional interrupts here */
if (lcd_revision == LCD_VERSION_1) {
reg |= LCD_V1_UNDERFLOW_INT_ENA;
} else {
reg_int = lcdc_read(&da8xx_fb_reg_base->int_ena_set) |
LCD_V2_UNDERFLOW_INT_ENA;
lcdc_write(reg_int, &da8xx_fb_reg_base->int_ena_set);
}
lcdc_write(reg, &da8xx_fb_reg_base->raster_ctrl);
reg = lcdc_read(&da8xx_fb_reg_base->raster_timing_2);
if (cfg->sync_ctrl)
reg |= LCD_SYNC_CTRL;
else
reg &= ~LCD_SYNC_CTRL;
if (cfg->sync_edge)
reg |= LCD_SYNC_EDGE;
else
reg &= ~LCD_SYNC_EDGE;
if (cfg->invert_line_clock)
reg |= LCD_INVERT_LINE_CLOCK;
else
reg &= ~LCD_INVERT_LINE_CLOCK;
if (cfg->invert_frm_clock)
reg |= LCD_INVERT_FRAME_CLOCK;
else
reg &= ~LCD_INVERT_FRAME_CLOCK;
lcdc_write(reg, &da8xx_fb_reg_base->raster_timing_2);
return 0;
}
static int lcd_cfg_frame_buffer(struct da8xx_fb_par *par, u32 width, u32 height,
u32 bpp, u32 raster_order)
{
u32 reg;
/* Set the Panel Width */
/* Pixels per line = (PPL + 1)*16 */
if (lcd_revision == LCD_VERSION_1) {
/*
* 0x3F in bits 4..9 gives max horisontal resolution = 1024
* pixels
*/
width &= 0x3f0;
} else {
/*
* 0x7F in bits 4..10 gives max horizontal resolution = 2048
* pixels.
*/
width &= 0x7f0;
}
reg = lcdc_read(&da8xx_fb_reg_base->raster_timing_0);
reg &= 0xfffffc00;
if (lcd_revision == LCD_VERSION_1) {
reg |= ((width >> 4) - 1) << 4;
} else {
width = (width >> 4) - 1;
reg |= ((width & 0x3f) << 4) | ((width & 0x40) >> 3);
}
lcdc_write(reg, &da8xx_fb_reg_base->raster_timing_0);
/* Set the Panel Height */
/* Set bits 9:0 of Lines Per Pixel */
reg = lcdc_read(&da8xx_fb_reg_base->raster_timing_1);
reg = ((height - 1) & 0x3ff) | (reg & 0xfffffc00);
lcdc_write(reg, &da8xx_fb_reg_base->raster_timing_1);
/* Set bit 10 of Lines Per Pixel */
if (lcd_revision == LCD_VERSION_2) {
reg = lcdc_read(&da8xx_fb_reg_base->raster_timing_2);
reg |= ((height - 1) & 0x400) << 16;
lcdc_write(reg, &da8xx_fb_reg_base->raster_timing_2);
}
/* Set the Raster Order of the Frame Buffer */
reg = lcdc_read(&da8xx_fb_reg_base->raster_ctrl) & ~(1 << 8);
if (raster_order)
reg |= LCD_RASTER_ORDER;
if (bpp == 24)
reg |= (LCD_TFT_MODE | LCD_V2_TFT_24BPP_MODE);
else if (bpp == 32)
reg |= (LCD_TFT_MODE | LCD_V2_TFT_24BPP_MODE
| LCD_V2_TFT_24BPP_UNPACK);
lcdc_write(reg, &da8xx_fb_reg_base->raster_ctrl);
switch (bpp) {
case 1:
case 2:
case 4:
case 16:
case 24:
case 32:
par->palette_sz = 16 * 2;
break;
case 8:
par->palette_sz = 256 * 2;
break;
default:
return -EINVAL;
}
return 0;
}
static int fb_setcolreg(unsigned regno, unsigned red, unsigned green,
unsigned blue, unsigned transp,
struct fb_info *info)
{
struct da8xx_fb_par *par = info->par;
unsigned short *palette = (unsigned short *) par->v_palette_base;
u_short pal;
int update_hw = 0;
if (regno > 255)
return 1;
if (info->fix.visual == FB_VISUAL_DIRECTCOLOR)
return 1;
if (info->var.bits_per_pixel == 8) {
red >>= 4;
green >>= 8;
blue >>= 12;
pal = (red & 0x0f00);
pal |= (green & 0x00f0);
pal |= (blue & 0x000f);
if (palette[regno] != pal) {
update_hw = 1;
palette[regno] = pal;
}
} else if ((info->var.bits_per_pixel == 16) && regno < 16) {
red >>= (16 - info->var.red.length);
red <<= info->var.red.offset;
green >>= (16 - info->var.green.length);
green <<= info->var.green.offset;
blue >>= (16 - info->var.blue.length);
blue <<= info->var.blue.offset;
par->pseudo_palette[regno] = red | green | blue;
if (palette[0] != 0x4000) {
update_hw = 1;
palette[0] = 0x4000;
}
} else if (((info->var.bits_per_pixel == 32) && regno < 32) ||
((info->var.bits_per_pixel == 24) && regno < 24)) {
red >>= (24 - info->var.red.length);
red <<= info->var.red.offset;
green >>= (24 - info->var.green.length);
green <<= info->var.green.offset;
blue >>= (24 - info->var.blue.length);
blue <<= info->var.blue.offset;
par->pseudo_palette[regno] = red | green | blue;
if (palette[0] != 0x4000) {
update_hw = 1;
palette[0] = 0x4000;
}
}
/* Update the palette in the h/w as needed. */
if (update_hw)
lcd_blit(LOAD_PALETTE, par);
return 0;
}
static void lcd_reset(struct da8xx_fb_par *par)
{
/* Disable the Raster if previously Enabled */
lcd_disable_raster(NO_WAIT_FOR_FRAME_DONE);
/* DMA has to be disabled */
lcdc_write(0, &da8xx_fb_reg_base->dma_ctrl);
lcdc_write(0, &da8xx_fb_reg_base->raster_ctrl);
if (lcd_revision == LCD_VERSION_2) {
lcdc_write(0, &da8xx_fb_reg_base->int_ena_set);
/* Write 1 to reset */
lcdc_write(LCD_CLK_MAIN_RESET, &da8xx_fb_reg_base->clk_reset);
lcdc_write(0, &da8xx_fb_reg_base->clk_reset);
}
}
static void lcd_calc_clk_divider(struct da8xx_fb_par *par)
{
unsigned int lcd_clk, div;
/* Get clock from sysclk2 */
lcd_clk = clk_get(2);
div = lcd_clk / par->pxl_clk;
debug("LCD Clock: %d Divider: %d PixClk: %d\n",
lcd_clk, div, par->pxl_clk);
/* Configure the LCD clock divisor. */
lcdc_write(LCD_CLK_DIVISOR(div) |
(LCD_RASTER_MODE & 0x1), &da8xx_fb_reg_base->ctrl);
if (lcd_revision == LCD_VERSION_2)
lcdc_write(LCD_V2_DMA_CLK_EN | LCD_V2_LIDD_CLK_EN |
LCD_V2_CORE_CLK_EN,
&da8xx_fb_reg_base->clk_ena);
}
static int lcd_init(struct da8xx_fb_par *par, const struct lcd_ctrl_config *cfg,
const struct da8xx_panel *panel)
{
u32 bpp;
int ret = 0;
lcd_reset(par);
/* Calculate the divider */
lcd_calc_clk_divider(par);
if (panel->invert_pxl_clk)
lcdc_write((lcdc_read(&da8xx_fb_reg_base->raster_timing_2) |
LCD_INVERT_PIXEL_CLOCK),
&da8xx_fb_reg_base->raster_timing_2);
else
lcdc_write((lcdc_read(&da8xx_fb_reg_base->raster_timing_2) &
~LCD_INVERT_PIXEL_CLOCK),
&da8xx_fb_reg_base->raster_timing_2);
/* Configure the DMA burst size. */
ret = lcd_cfg_dma(cfg->dma_burst_sz);
if (ret < 0)
return ret;
/* Configure the AC bias properties. */
lcd_cfg_ac_bias(cfg->ac_bias, cfg->ac_bias_intrpt);
/* Configure the vertical and horizontal sync properties. */
lcd_cfg_vertical_sync(panel->vbp, panel->vsw, panel->vfp);
lcd_cfg_horizontal_sync(panel->hbp, panel->hsw, panel->hfp);
/* Configure for disply */
ret = lcd_cfg_display(cfg);
if (ret < 0)
return ret;
if ((QVGA != cfg->p_disp_panel->panel_type) &&
(WVGA != cfg->p_disp_panel->panel_type))
return -EINVAL;
if (cfg->bpp <= cfg->p_disp_panel->max_bpp &&
cfg->bpp >= cfg->p_disp_panel->min_bpp)
bpp = cfg->bpp;
else
bpp = cfg->p_disp_panel->max_bpp;
if (bpp == 12)
bpp = 16;
ret = lcd_cfg_frame_buffer(par, (unsigned int)panel->width,
(unsigned int)panel->height, bpp,
cfg->raster_order);
if (ret < 0)
return ret;
/* Configure FDD */
lcdc_write((lcdc_read(&da8xx_fb_reg_base->raster_ctrl) & 0xfff00fff) |
(cfg->fdd << 12), &da8xx_fb_reg_base->raster_ctrl);
return 0;
}
static void lcdc_dma_start(void)
{
struct da8xx_fb_par *par = da8xx_fb_info->par;
lcdc_write(par->dma_start,
&da8xx_fb_reg_base->dma_frm_buf_base_addr_0);
lcdc_write(par->dma_end,
&da8xx_fb_reg_base->dma_frm_buf_ceiling_addr_0);
lcdc_write(0,
&da8xx_fb_reg_base->dma_frm_buf_base_addr_1);
lcdc_write(0,
&da8xx_fb_reg_base->dma_frm_buf_ceiling_addr_1);
}
static u32 lcdc_irq_handler_rev01(void)
{
struct da8xx_fb_par *par = da8xx_fb_info->par;
u32 stat = lcdc_read(&da8xx_fb_reg_base->stat);
u32 reg_ras;
if ((stat & LCD_SYNC_LOST) && (stat & LCD_FIFO_UNDERFLOW)) {
debug("LCD_SYNC_LOST\n");
lcd_disable_raster(NO_WAIT_FOR_FRAME_DONE);
lcdc_write(stat, &da8xx_fb_reg_base->stat);
lcd_enable_raster();
return LCD_SYNC_LOST;
} else if (stat & LCD_PL_LOAD_DONE) {
debug("LCD_PL_LOAD_DONE\n");
/*
* Must disable raster before changing state of any control bit.
* And also must be disabled before clearing the PL loading
* interrupt via the following write to the status register. If
* this is done after then one gets multiple PL done interrupts.
*/
lcd_disable_raster(NO_WAIT_FOR_FRAME_DONE);
lcdc_write(stat, &da8xx_fb_reg_base->stat);
/* Disable PL completion inerrupt */
reg_ras = lcdc_read(&da8xx_fb_reg_base->raster_ctrl);
reg_ras &= ~LCD_V1_PL_INT_ENA;
lcdc_write(reg_ras, &da8xx_fb_reg_base->raster_ctrl);
/* Setup and start data loading mode */
lcd_blit(LOAD_DATA, par);
return LCD_PL_LOAD_DONE;
} else {
lcdc_write(stat, &da8xx_fb_reg_base->stat);
if (stat & LCD_END_OF_FRAME0)
debug("LCD_END_OF_FRAME0\n");
lcdc_write(par->dma_start,
&da8xx_fb_reg_base->dma_frm_buf_base_addr_0);
lcdc_write(par->dma_end,
&da8xx_fb_reg_base->dma_frm_buf_ceiling_addr_0);
par->vsync_flag = 1;
return LCD_END_OF_FRAME0;
}
return stat;
}
static u32 lcdc_irq_handler_rev02(void)
{
struct da8xx_fb_par *par = da8xx_fb_info->par;
u32 stat = lcdc_read(&da8xx_fb_reg_base->masked_stat);
u32 reg_int;
if ((stat & LCD_SYNC_LOST) && (stat & LCD_FIFO_UNDERFLOW)) {
debug("LCD_SYNC_LOST\n");
lcd_disable_raster(NO_WAIT_FOR_FRAME_DONE);
lcdc_write(stat, &da8xx_fb_reg_base->masked_stat);
lcd_enable_raster();
lcdc_write(0, &da8xx_fb_reg_base->end_of_int_ind);
return LCD_SYNC_LOST;
} else if (stat & LCD_PL_LOAD_DONE) {
debug("LCD_PL_LOAD_DONE\n");
/*
* Must disable raster before changing state of any control bit.
* And also must be disabled before clearing the PL loading
* interrupt via the following write to the status register. If
* this is done after then one gets multiple PL done interrupts.
*/
lcd_disable_raster(NO_WAIT_FOR_FRAME_DONE);
lcdc_write(stat, &da8xx_fb_reg_base->masked_stat);
/* Disable PL completion inerrupt */
reg_int = lcdc_read(&da8xx_fb_reg_base->int_ena_clr) |
(LCD_V2_PL_INT_ENA);
lcdc_write(reg_int, &da8xx_fb_reg_base->int_ena_clr);
/* Setup and start data loading mode */
lcd_blit(LOAD_DATA, par);
lcdc_write(0, &da8xx_fb_reg_base->end_of_int_ind);
return LCD_PL_LOAD_DONE;
} else {
lcdc_write(stat, &da8xx_fb_reg_base->masked_stat);
if (stat & LCD_END_OF_FRAME0)
debug("LCD_END_OF_FRAME0\n");
lcdc_write(par->dma_start,
&da8xx_fb_reg_base->dma_frm_buf_base_addr_0);
lcdc_write(par->dma_end,
&da8xx_fb_reg_base->dma_frm_buf_ceiling_addr_0);
par->vsync_flag = 1;
lcdc_write(0, &da8xx_fb_reg_base->end_of_int_ind);
return LCD_END_OF_FRAME0;
}
lcdc_write(0, &da8xx_fb_reg_base->end_of_int_ind);
return stat;
}
static u32 lcdc_irq_handler(void)
{
if (lcd_revision == LCD_VERSION_1)
return lcdc_irq_handler_rev01();
else
return lcdc_irq_handler_rev02();
}
static u32 wait_for_event(u32 event)
{
u32 timeout = 50000;
u32 ret;
do {
ret = lcdc_irq_handler();
udelay(1000);
} while (!(ret & event));
if (timeout <= 0) {
printf("%s: event %d not hit\n", __func__, event);
return -1;
}
return 0;
}
void *video_hw_init(void)
{
struct da8xx_fb_par *par;
u32 size;
u32 rev;
char *p;
if (!lcd_panel) {
printf("Display not initialized\n");
return NULL;
}
gpanel.winSizeX = lcd_panel->width;
gpanel.winSizeY = lcd_panel->height;
gpanel.plnSizeX = lcd_panel->width;
gpanel.plnSizeY = lcd_panel->height;
switch (bits_x_pixel) {
case 32:
gpanel.gdfBytesPP = 4;
gpanel.gdfIndex = GDF_32BIT_X888RGB;
break;
case 24:
gpanel.gdfBytesPP = 4;
gpanel.gdfIndex = GDF_32BIT_X888RGB;
break;
case 16:
gpanel.gdfBytesPP = 2;
gpanel.gdfIndex = GDF_16BIT_565RGB;
break;
default:
gpanel.gdfBytesPP = 1;
gpanel.gdfIndex = GDF__8BIT_INDEX;
break;
}
da8xx_fb_reg_base = (struct da8xx_lcd_regs *)DA8XX_LCD_CNTL_BASE;
/* Determine LCD IP Version */
rev = lcdc_read(&da8xx_fb_reg_base->revid);
switch (rev) {
case 0x4C100102:
lcd_revision = LCD_VERSION_1;
break;
case 0x4F200800:
case 0x4F201000:
lcd_revision = LCD_VERSION_2;
break;
default:
printf("Unknown PID Reg value 0x%x, defaulting to LCD revision 1\n",
rev);
lcd_revision = LCD_VERSION_1;
break;
}
debug("rev: 0x%x Resolution: %dx%d %d\n", rev,
gpanel.winSizeX,
gpanel.winSizeY,
da8xx_lcd_cfg->bpp);
size = sizeof(struct fb_info) + sizeof(struct da8xx_fb_par);
da8xx_fb_info = malloc(size);
debug("da8xx_fb_info at %x\n", (unsigned int)da8xx_fb_info);
if (!da8xx_fb_info) {
printf("Memory allocation failed for fb_info\n");
return NULL;
}
memset(da8xx_fb_info, 0, size);
p = (char *)da8xx_fb_info;
da8xx_fb_info->par = p + sizeof(struct fb_info);
debug("da8xx_par at %x\n", (unsigned int)da8xx_fb_info->par);
par = da8xx_fb_info->par;
par->pxl_clk = lcd_panel->pxl_clk;
if (lcd_init(par, da8xx_lcd_cfg, lcd_panel) < 0) {
printf("lcd_init failed\n");
goto err_release_fb;
}
/* allocate frame buffer */
par->vram_size = lcd_panel->width * lcd_panel->height *
da8xx_lcd_cfg->bpp;
par->vram_size = par->vram_size * LCD_NUM_BUFFERS / 8;
par->vram_virt = malloc(par->vram_size);
par->vram_phys = (dma_addr_t) par->vram_virt;
debug("Requesting 0x%x bytes for framebuffer at 0x%x\n",
(unsigned int)par->vram_size,
(unsigned int)par->vram_virt);
if (!par->vram_virt) {
printf("GLCD: malloc for frame buffer failed\n");
goto err_release_fb;
}
gd->fb_base = (int)par->vram_virt;
gpanel.frameAdrs = (unsigned int)par->vram_virt;
da8xx_fb_info->screen_base = (char *) par->vram_virt;
da8xx_fb_fix.smem_start = gpanel.frameAdrs;
da8xx_fb_fix.smem_len = par->vram_size;
da8xx_fb_fix.line_length = (lcd_panel->width * da8xx_lcd_cfg->bpp) / 8;
par->dma_start = par->vram_phys;
par->dma_end = par->dma_start + lcd_panel->height *
da8xx_fb_fix.line_length - 1;
/* allocate palette buffer */
par->v_palette_base = malloc(PALETTE_SIZE);
if (!par->v_palette_base) {
printf("GLCD: malloc for palette buffer failed\n");
goto err_release_fb_mem;
}
memset(par->v_palette_base, 0, PALETTE_SIZE);
par->p_palette_base = (unsigned int)par->v_palette_base;
/* Initialize par */
da8xx_fb_info->var.bits_per_pixel = da8xx_lcd_cfg->bpp;
da8xx_fb_var.xres = lcd_panel->width;
da8xx_fb_var.xres_virtual = lcd_panel->width;
da8xx_fb_var.yres = lcd_panel->height;
da8xx_fb_var.yres_virtual = lcd_panel->height * LCD_NUM_BUFFERS;
da8xx_fb_var.grayscale =
da8xx_lcd_cfg->p_disp_panel->panel_shade == MONOCHROME ? 1 : 0;
da8xx_fb_var.bits_per_pixel = da8xx_lcd_cfg->bpp;
da8xx_fb_var.hsync_len = lcd_panel->hsw;
da8xx_fb_var.vsync_len = lcd_panel->vsw;
/* Initialize fbinfo */
da8xx_fb_info->flags = FBINFO_FLAG_DEFAULT;
da8xx_fb_info->fix = da8xx_fb_fix;
da8xx_fb_info->var = da8xx_fb_var;
da8xx_fb_info->pseudo_palette = par->pseudo_palette;
da8xx_fb_info->fix.visual = (da8xx_fb_info->var.bits_per_pixel <= 8) ?
FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR;
/* Clear interrupt */
memset((void *)par->vram_virt, 0, par->vram_size);
lcd_disable_raster(NO_WAIT_FOR_FRAME_DONE);
if (lcd_revision == LCD_VERSION_1)
lcdc_write(0xFFFF, &da8xx_fb_reg_base->stat);
else
lcdc_write(0xFFFF, &da8xx_fb_reg_base->masked_stat);
debug("Palette at 0x%x size %d\n", par->p_palette_base,
par->palette_sz);
lcdc_dma_start();
/* Load a default palette */
fb_setcolreg(0, 0, 0, 0, 0xffff, da8xx_fb_info);
/* Check that the palette is loaded */
wait_for_event(LCD_PL_LOAD_DONE);
/* Wait until DMA is working */
wait_for_event(LCD_END_OF_FRAME0);
return (void *)&gpanel;
err_release_fb_mem:
free(par->vram_virt);
err_release_fb:
free(da8xx_fb_info);
return NULL;
}
void da8xx_video_init(const struct da8xx_panel *panel,
const struct lcd_ctrl_config *lcd_cfg, int bits_pixel)
{
lcd_panel = panel;
da8xx_lcd_cfg = lcd_cfg;
bits_x_pixel = bits_pixel;
}