u-boot/test/dm/eth.c

698 lines
19 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015 National Instruments
*
* (C) Copyright 2015
* Joe Hershberger <joe.hershberger@ni.com>
*/
#include <common.h>
#include <dm.h>
#include <env.h>
#include <fdtdec.h>
#include <log.h>
#include <malloc.h>
#include <net.h>
#include <net6.h>
#include <asm/eth.h>
#include <dm/test.h>
#include <dm/device-internal.h>
#include <dm/uclass-internal.h>
#include <test/test.h>
#include <test/ut.h>
#include <ndisc.h>
#define DM_TEST_ETH_NUM 4
#if IS_ENABLED(CONFIG_IPV6)
static int dm_test_string_to_ip6(struct unit_test_state *uts)
{
char *str;
struct test_ip6_pair {
char *string_addr;
struct in6_addr ip6_addr;
};
struct in6_addr ip6 = {0};
/* Correct statements */
struct test_ip6_pair test_suite[] = {
{"2001:db8::0:1234:1", {.s6_addr32[0] = 0xb80d0120,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0x00000000,
.s6_addr32[3] = 0x01003412}},
{"2001:0db8:0000:0000:0000:0000:1234:0001",
{.s6_addr32[0] = 0xb80d0120,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0x00000000,
.s6_addr32[3] = 0x01003412}},
{"::1", {.s6_addr32[0] = 0x00000000,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0x00000000,
.s6_addr32[3] = 0x01000000}},
{"::ffff:192.168.1.1", {.s6_addr32[0] = 0x00000000,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffff0000,
.s6_addr32[3] = 0x0101a8c0}},
};
for (int i = 0; i < ARRAY_SIZE(test_suite); ++i) {
ut_assertok(string_to_ip6(test_suite[i].string_addr,
strlen(test_suite[i].string_addr), &ip6));
ut_asserteq_mem(&ip6, &test_suite[i].ip6_addr,
sizeof(struct in6_addr));
}
/* Incorrect statements */
str = "hello:world";
ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
str = "2001:db8::0::0";
ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
str = "2001:db8:192.168.1.1::1";
ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
str = "192.168.1.1";
ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
return 0;
}
DM_TEST(dm_test_string_to_ip6, 0);
static int dm_test_csum_ipv6_magic(struct unit_test_state *uts)
{
unsigned short csum = 0xbeef;
/* Predefined correct parameters */
unsigned short correct_csum = 0xd8ac;
struct in6_addr saddr = {.s6_addr32[0] = 0x000080fe,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffe9f242,
.s6_addr32[3] = 0xe8f66dfe};
struct in6_addr daddr = {.s6_addr32[0] = 0x000080fe,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffd5b372,
.s6_addr32[3] = 0x3ef692fe};
u16 len = 1460;
unsigned short proto = 17;
unsigned int head_csum = 0x91f0;
csum = csum_ipv6_magic(&saddr, &daddr, len, proto, head_csum);
ut_asserteq(csum, correct_csum);
/* Broke a parameter */
proto--;
csum = csum_ipv6_magic(&saddr, &daddr, len, proto, head_csum);
ut_assert(csum != correct_csum);
return 0;
}
DM_TEST(dm_test_csum_ipv6_magic, 0);
static int dm_test_ip6_addr_in_subnet(struct unit_test_state *uts)
{
struct in6_addr our = {.s6_addr32[0] = 0x000080fe,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffe9f242,
.s6_addr32[3] = 0xe8f66dfe};
struct in6_addr neigh1 = {.s6_addr32[0] = 0x000080fe,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffd5b372,
.s6_addr32[3] = 0x3ef692fe};
struct in6_addr neigh2 = {.s6_addr32[0] = 0x60480120,
.s6_addr32[1] = 0x00006048,
.s6_addr32[2] = 0x00000000,
.s6_addr32[3] = 0x00008888};
/* in */
ut_assert(ip6_addr_in_subnet(&our, &neigh1, 64));
/* outside */
ut_assert(!ip6_addr_in_subnet(&our, &neigh2, 64));
ut_assert(!ip6_addr_in_subnet(&our, &neigh1, 128));
return 0;
}
DM_TEST(dm_test_ip6_addr_in_subnet, 0);
static int dm_test_ip6_make_snma(struct unit_test_state *uts)
{
struct in6_addr mult = {0};
struct in6_addr correct_addr = {
.s6_addr32[0] = 0x000002ff,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0x01000000,
.s6_addr32[3] = 0xe8f66dff};
struct in6_addr addr = { .s6_addr32[0] = 0x000080fe,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffe9f242,
.s6_addr32[3] = 0xe8f66dfe};
ip6_make_snma(&mult, &addr);
ut_asserteq_mem(&mult, &correct_addr, sizeof(struct in6_addr));
return 0;
}
DM_TEST(dm_test_ip6_make_snma, 0);
static int dm_test_ip6_make_lladdr(struct unit_test_state *uts)
{
struct in6_addr generated_lladdr = {0};
struct in6_addr correct_lladdr = {
.s6_addr32[0] = 0x000080fe,
.s6_addr32[1] = 0x00000000,
.s6_addr32[2] = 0xffabf33a,
.s6_addr32[3] = 0xfbb352fe};
const unsigned char mac[6] = {0x38, 0xf3, 0xab, 0x52, 0xb3, 0xfb};
ip6_make_lladdr(&generated_lladdr, mac);
ut_asserteq_mem(&generated_lladdr, &correct_lladdr,
sizeof(struct in6_addr));
return 0;
}
DM_TEST(dm_test_ip6_make_lladdr, UT_TESTF_SCAN_FDT);
#endif
static int dm_test_eth(struct unit_test_state *uts)
{
net_ping_ip = string_to_ip("1.1.2.2");
env_set("ethact", "eth@10002000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
env_set("ethact", "eth@10003000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10003000", env_get("ethact"));
env_set("ethact", "eth@10004000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10004000", env_get("ethact"));
return 0;
}
DM_TEST(dm_test_eth, UT_TESTF_SCAN_FDT);
static int dm_test_eth_alias(struct unit_test_state *uts)
{
net_ping_ip = string_to_ip("1.1.2.2");
env_set("ethact", "eth0");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
env_set("ethact", "eth6");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10004000", env_get("ethact"));
sandbox: Add a DSA sandbox driver and unit test The DSA sandbox driver is used for unit testing the DSA class code. It implements a simple 2 port switch plus 1 CPU port, and uses a very simple tag to identify the ports. The DSA sandbox device is connected via CPU port to a regular Ethernet sandbox device, called 'dsa-test-eth, managed by the existing eth sandbox driver. The 'dsa-test-eth' is not intended for testing the eth class code however, but it is used to emulate traffic through the 'lan0' and 'lan1' front pannel switch ports. To achieve this the dsa sandbox driver registers a tx handler for the 'dsa-test-eth' device. The switch ports, labeled as 'lan0' and 'lan1', are also registered as eth devices by the dsa class code this time. So pinging through these switch ports is as easy as: => setenv ethact lan0 => ping 1.2.3.5 Unit tests for the dsa class code were also added. The 'dsa_probe' test exercises most API functions from dsa.h. The 'dsa' unit test simply exercises ARP/ICMP traffic through the two switch ports, including tag injection and extraction, with the help of the dsa sandbox driver. I took care to minimize the impact on the existing eth unit tests, though some adjustments needed to be made with the addition of extra eth interfaces used by the dsa unit tests. The additional eth interfaces also require MAC addresses, these have been added to the sandbox default environment. Signed-off-by: Alex Marginean <alexandru.marginean@nxp.com> Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Reviewed-by: Simon Glass <sjg@chromium.org> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Message-Id: <20210216224804.3355044-5-olteanv@gmail.com> Signed-off-by: Bin Meng <bmeng.cn@gmail.com> Reviewed-by: Priyanka Jain <priyanka.jain@nxp.com>
2021-03-14 12:14:57 +00:00
/* Expected to fail since eth1 is not defined in the device tree */
env_set("ethact", "eth1");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
env_set("ethact", "eth5");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10003000", env_get("ethact"));
return 0;
}
DM_TEST(dm_test_eth_alias, UT_TESTF_SCAN_FDT);
static int dm_test_eth_prime(struct unit_test_state *uts)
{
net_ping_ip = string_to_ip("1.1.2.2");
/* Expected to be "eth@10003000" because of ethprime variable */
env_set("ethact", NULL);
env_set("ethprime", "eth5");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10003000", env_get("ethact"));
/* Expected to be "eth@10002000" because it is first */
env_set("ethact", NULL);
env_set("ethprime", NULL);
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
return 0;
}
DM_TEST(dm_test_eth_prime, UT_TESTF_SCAN_FDT);
/**
* This test case is trying to test the following scenario:
* - All ethernet devices are not probed
* - "ethaddr" for all ethernet devices are not set
* - "ethact" is set to a valid ethernet device name
*
* With Sandbox default test configuration, all ethernet devices are
* probed after power-up, so we have to manually create such scenario:
* - Remove all ethernet devices
* - Remove all "ethaddr" environment variables
* - Set "ethact" to the first ethernet device
*
* Do a ping test to see if anything goes wrong.
*/
static int dm_test_eth_act(struct unit_test_state *uts)
{
struct udevice *dev[DM_TEST_ETH_NUM];
const char *ethname[DM_TEST_ETH_NUM] = {"eth@10002000", "eth@10003000",
"sbe5", "eth@10004000"};
const char *addrname[DM_TEST_ETH_NUM] = {"ethaddr", "eth5addr",
"eth3addr", "eth6addr"};
char ethaddr[DM_TEST_ETH_NUM][18];
int i;
memset(ethaddr, '\0', sizeof(ethaddr));
net_ping_ip = string_to_ip("1.1.2.2");
/* Prepare the test scenario */
for (i = 0; i < DM_TEST_ETH_NUM; i++) {
ut_assertok(uclass_find_device_by_name(UCLASS_ETH,
ethname[i], &dev[i]));
ut_assertok(device_remove(dev[i], DM_REMOVE_NORMAL));
/* Invalidate MAC address */
strncpy(ethaddr[i], env_get(addrname[i]), 17);
/* Must disable access protection for ethaddr before clearing */
env_set(".flags", addrname[i]);
env_set(addrname[i], NULL);
}
/* Set ethact to "eth@10002000" */
env_set("ethact", ethname[0]);
/* Segment fault might happen if something is wrong */
ut_asserteq(-ENODEV, net_loop(PING));
for (i = 0; i < DM_TEST_ETH_NUM; i++) {
/* Restore the env */
env_set(".flags", addrname[i]);
env_set(addrname[i], ethaddr[i]);
/* Probe the device again */
ut_assertok(device_probe(dev[i]));
}
env_set(".flags", NULL);
env_set("ethact", NULL);
return 0;
}
DM_TEST(dm_test_eth_act, UT_TESTF_SCAN_FDT);
/* Ensure that all addresses are loaded properly */
static int dm_test_ethaddr(struct unit_test_state *uts)
{
static const char *const addr[] = {
"02:00:11:22:33:44",
"02:00:11:22:33:48", /* dsa slave */
"02:00:11:22:33:45",
"02:00:11:22:33:48", /* dsa master */
"02:00:11:22:33:46",
"02:00:11:22:33:47",
"02:00:11:22:33:48", /* dsa slave */
"02:00:11:22:33:49",
};
int i;
for (i = 0; i < ARRAY_SIZE(addr); i++) {
char addrname[10];
if (i)
snprintf(addrname, sizeof(addrname), "eth%daddr", i + 1);
else
strcpy(addrname, "ethaddr");
ut_asserteq_str(addr[i], env_get(addrname));
}
return 0;
}
DM_TEST(dm_test_ethaddr, UT_TESTF_SCAN_FDT);
/* The asserts include a return on fail; cleanup in the caller */
static int _dm_test_eth_rotate1(struct unit_test_state *uts)
{
/* Make sure that the default is to rotate to the next interface */
env_set("ethact", "eth@10004000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
/* If ethrotate is no, then we should fail on a bad MAC */
env_set("ethact", "eth@10004000");
env_set("ethrotate", "no");
ut_asserteq(-EINVAL, net_loop(PING));
ut_asserteq_str("eth@10004000", env_get("ethact"));
return 0;
}
static int _dm_test_eth_rotate2(struct unit_test_state *uts)
{
/* Make sure we can skip invalid devices */
env_set("ethact", "eth@10004000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10004000", env_get("ethact"));
/* Make sure we can handle device name which is not eth# */
env_set("ethact", "sbe5");
ut_assertok(net_loop(PING));
ut_asserteq_str("sbe5", env_get("ethact"));
return 0;
}
static int dm_test_eth_rotate(struct unit_test_state *uts)
{
char ethaddr[18];
int retval;
/* Set target IP to mock ping */
net_ping_ip = string_to_ip("1.1.2.2");
/* Invalidate eth1's MAC address */
memset(ethaddr, '\0', sizeof(ethaddr));
strncpy(ethaddr, env_get("eth6addr"), 17);
/* Must disable access protection for eth6addr before clearing */
env_set(".flags", "eth6addr");
env_set("eth6addr", NULL);
retval = _dm_test_eth_rotate1(uts);
/* Restore the env */
env_set("eth6addr", ethaddr);
env_set("ethrotate", NULL);
if (!retval) {
/* Invalidate eth0's MAC address */
strncpy(ethaddr, env_get("ethaddr"), 17);
/* Must disable access protection for ethaddr before clearing */
env_set(".flags", "ethaddr");
env_set("ethaddr", NULL);
retval = _dm_test_eth_rotate2(uts);
/* Restore the env */
env_set("ethaddr", ethaddr);
}
/* Restore the env */
env_set(".flags", NULL);
return retval;
}
DM_TEST(dm_test_eth_rotate, UT_TESTF_SCAN_FDT);
/* The asserts include a return on fail; cleanup in the caller */
static int _dm_test_net_retry(struct unit_test_state *uts)
{
/*
* eth1 is disabled and netretry is yes, so the ping should succeed and
* the active device should be eth0
*/
sandbox_eth_disable_response(1, true);
sandbox: Add a DSA sandbox driver and unit test The DSA sandbox driver is used for unit testing the DSA class code. It implements a simple 2 port switch plus 1 CPU port, and uses a very simple tag to identify the ports. The DSA sandbox device is connected via CPU port to a regular Ethernet sandbox device, called 'dsa-test-eth, managed by the existing eth sandbox driver. The 'dsa-test-eth' is not intended for testing the eth class code however, but it is used to emulate traffic through the 'lan0' and 'lan1' front pannel switch ports. To achieve this the dsa sandbox driver registers a tx handler for the 'dsa-test-eth' device. The switch ports, labeled as 'lan0' and 'lan1', are also registered as eth devices by the dsa class code this time. So pinging through these switch ports is as easy as: => setenv ethact lan0 => ping 1.2.3.5 Unit tests for the dsa class code were also added. The 'dsa_probe' test exercises most API functions from dsa.h. The 'dsa' unit test simply exercises ARP/ICMP traffic through the two switch ports, including tag injection and extraction, with the help of the dsa sandbox driver. I took care to minimize the impact on the existing eth unit tests, though some adjustments needed to be made with the addition of extra eth interfaces used by the dsa unit tests. The additional eth interfaces also require MAC addresses, these have been added to the sandbox default environment. Signed-off-by: Alex Marginean <alexandru.marginean@nxp.com> Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Reviewed-by: Simon Glass <sjg@chromium.org> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Message-Id: <20210216224804.3355044-5-olteanv@gmail.com> Signed-off-by: Bin Meng <bmeng.cn@gmail.com> Reviewed-by: Priyanka Jain <priyanka.jain@nxp.com>
2021-03-14 12:14:57 +00:00
env_set("ethact", "lan1");
env_set("netretry", "yes");
sandbox_eth_skip_timeout();
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
/*
* eth1 is disabled and netretry is no, so the ping should fail and the
* active device should be eth1
*/
sandbox: Add a DSA sandbox driver and unit test The DSA sandbox driver is used for unit testing the DSA class code. It implements a simple 2 port switch plus 1 CPU port, and uses a very simple tag to identify the ports. The DSA sandbox device is connected via CPU port to a regular Ethernet sandbox device, called 'dsa-test-eth, managed by the existing eth sandbox driver. The 'dsa-test-eth' is not intended for testing the eth class code however, but it is used to emulate traffic through the 'lan0' and 'lan1' front pannel switch ports. To achieve this the dsa sandbox driver registers a tx handler for the 'dsa-test-eth' device. The switch ports, labeled as 'lan0' and 'lan1', are also registered as eth devices by the dsa class code this time. So pinging through these switch ports is as easy as: => setenv ethact lan0 => ping 1.2.3.5 Unit tests for the dsa class code were also added. The 'dsa_probe' test exercises most API functions from dsa.h. The 'dsa' unit test simply exercises ARP/ICMP traffic through the two switch ports, including tag injection and extraction, with the help of the dsa sandbox driver. I took care to minimize the impact on the existing eth unit tests, though some adjustments needed to be made with the addition of extra eth interfaces used by the dsa unit tests. The additional eth interfaces also require MAC addresses, these have been added to the sandbox default environment. Signed-off-by: Alex Marginean <alexandru.marginean@nxp.com> Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Reviewed-by: Simon Glass <sjg@chromium.org> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Message-Id: <20210216224804.3355044-5-olteanv@gmail.com> Signed-off-by: Bin Meng <bmeng.cn@gmail.com> Reviewed-by: Priyanka Jain <priyanka.jain@nxp.com>
2021-03-14 12:14:57 +00:00
env_set("ethact", "lan1");
env_set("netretry", "no");
sandbox_eth_skip_timeout();
ut_asserteq(-ENONET, net_loop(PING));
sandbox: Add a DSA sandbox driver and unit test The DSA sandbox driver is used for unit testing the DSA class code. It implements a simple 2 port switch plus 1 CPU port, and uses a very simple tag to identify the ports. The DSA sandbox device is connected via CPU port to a regular Ethernet sandbox device, called 'dsa-test-eth, managed by the existing eth sandbox driver. The 'dsa-test-eth' is not intended for testing the eth class code however, but it is used to emulate traffic through the 'lan0' and 'lan1' front pannel switch ports. To achieve this the dsa sandbox driver registers a tx handler for the 'dsa-test-eth' device. The switch ports, labeled as 'lan0' and 'lan1', are also registered as eth devices by the dsa class code this time. So pinging through these switch ports is as easy as: => setenv ethact lan0 => ping 1.2.3.5 Unit tests for the dsa class code were also added. The 'dsa_probe' test exercises most API functions from dsa.h. The 'dsa' unit test simply exercises ARP/ICMP traffic through the two switch ports, including tag injection and extraction, with the help of the dsa sandbox driver. I took care to minimize the impact on the existing eth unit tests, though some adjustments needed to be made with the addition of extra eth interfaces used by the dsa unit tests. The additional eth interfaces also require MAC addresses, these have been added to the sandbox default environment. Signed-off-by: Alex Marginean <alexandru.marginean@nxp.com> Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Reviewed-by: Simon Glass <sjg@chromium.org> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Message-Id: <20210216224804.3355044-5-olteanv@gmail.com> Signed-off-by: Bin Meng <bmeng.cn@gmail.com> Reviewed-by: Priyanka Jain <priyanka.jain@nxp.com>
2021-03-14 12:14:57 +00:00
ut_asserteq_str("lan1", env_get("ethact"));
return 0;
}
static int dm_test_net_retry(struct unit_test_state *uts)
{
int retval;
net_ping_ip = string_to_ip("1.1.2.2");
retval = _dm_test_net_retry(uts);
/* Restore the env */
env_set("netretry", NULL);
sandbox_eth_disable_response(1, false);
return retval;
}
DM_TEST(dm_test_net_retry, UT_TESTF_SCAN_FDT);
static int sb_check_arp_reply(struct udevice *dev, void *packet,
unsigned int len)
{
struct eth_sandbox_priv *priv = dev_get_priv(dev);
struct ethernet_hdr *eth = packet;
struct arp_hdr *arp;
/* Used by all of the ut_assert macros */
struct unit_test_state *uts = priv->priv;
if (ntohs(eth->et_protlen) != PROT_ARP)
return 0;
arp = packet + ETHER_HDR_SIZE;
if (ntohs(arp->ar_op) != ARPOP_REPLY)
return 0;
/* This test would be worthless if we are not waiting */
ut_assert(arp_is_waiting());
/* Validate response */
ut_asserteq_mem(eth->et_src, net_ethaddr, ARP_HLEN);
ut_asserteq_mem(eth->et_dest, priv->fake_host_hwaddr, ARP_HLEN);
ut_assert(eth->et_protlen == htons(PROT_ARP));
ut_assert(arp->ar_hrd == htons(ARP_ETHER));
ut_assert(arp->ar_pro == htons(PROT_IP));
ut_assert(arp->ar_hln == ARP_HLEN);
ut_assert(arp->ar_pln == ARP_PLEN);
ut_asserteq_mem(&arp->ar_sha, net_ethaddr, ARP_HLEN);
ut_assert(net_read_ip(&arp->ar_spa).s_addr == net_ip.s_addr);
ut_asserteq_mem(&arp->ar_tha, priv->fake_host_hwaddr, ARP_HLEN);
ut_assert(net_read_ip(&arp->ar_tpa).s_addr ==
string_to_ip("1.1.2.4").s_addr);
return 0;
}
static int sb_with_async_arp_handler(struct udevice *dev, void *packet,
unsigned int len)
{
struct eth_sandbox_priv *priv = dev_get_priv(dev);
struct ethernet_hdr *eth = packet;
struct arp_hdr *arp = packet + ETHER_HDR_SIZE;
int ret;
/*
* If we are about to generate a reply to ARP, first inject a request
* from another host
*/
if (ntohs(eth->et_protlen) == PROT_ARP &&
ntohs(arp->ar_op) == ARPOP_REQUEST) {
/* Make sure sandbox_eth_recv_arp_req() knows who is asking */
priv->fake_host_ipaddr = string_to_ip("1.1.2.4");
ret = sandbox_eth_recv_arp_req(dev);
if (ret)
return ret;
}
sandbox_eth_arp_req_to_reply(dev, packet, len);
sandbox_eth_ping_req_to_reply(dev, packet, len);
return sb_check_arp_reply(dev, packet, len);
}
static int dm_test_eth_async_arp_reply(struct unit_test_state *uts)
{
net_ping_ip = string_to_ip("1.1.2.2");
sandbox_eth_set_tx_handler(0, sb_with_async_arp_handler);
/* Used by all of the ut_assert macros in the tx_handler */
sandbox_eth_set_priv(0, uts);
env_set("ethact", "eth@10002000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
sandbox_eth_set_tx_handler(0, NULL);
return 0;
}
DM_TEST(dm_test_eth_async_arp_reply, UT_TESTF_SCAN_FDT);
static int sb_check_ping_reply(struct udevice *dev, void *packet,
unsigned int len)
{
struct eth_sandbox_priv *priv = dev_get_priv(dev);
struct ethernet_hdr *eth = packet;
struct ip_udp_hdr *ip;
struct icmp_hdr *icmp;
/* Used by all of the ut_assert macros */
struct unit_test_state *uts = priv->priv;
if (ntohs(eth->et_protlen) != PROT_IP)
return 0;
ip = packet + ETHER_HDR_SIZE;
if (ip->ip_p != IPPROTO_ICMP)
return 0;
icmp = (struct icmp_hdr *)&ip->udp_src;
if (icmp->type != ICMP_ECHO_REPLY)
return 0;
/* This test would be worthless if we are not waiting */
ut_assert(arp_is_waiting());
/* Validate response */
ut_asserteq_mem(eth->et_src, net_ethaddr, ARP_HLEN);
ut_asserteq_mem(eth->et_dest, priv->fake_host_hwaddr, ARP_HLEN);
ut_assert(eth->et_protlen == htons(PROT_IP));
ut_assert(net_read_ip(&ip->ip_src).s_addr == net_ip.s_addr);
ut_assert(net_read_ip(&ip->ip_dst).s_addr ==
string_to_ip("1.1.2.4").s_addr);
return 0;
}
static int sb_with_async_ping_handler(struct udevice *dev, void *packet,
unsigned int len)
{
struct eth_sandbox_priv *priv = dev_get_priv(dev);
struct ethernet_hdr *eth = packet;
struct arp_hdr *arp = packet + ETHER_HDR_SIZE;
int ret;
/*
* If we are about to generate a reply to ARP, first inject a request
* from another host
*/
if (ntohs(eth->et_protlen) == PROT_ARP &&
ntohs(arp->ar_op) == ARPOP_REQUEST) {
/* Make sure sandbox_eth_recv_arp_req() knows who is asking */
priv->fake_host_ipaddr = string_to_ip("1.1.2.4");
ret = sandbox_eth_recv_ping_req(dev);
if (ret)
return ret;
}
sandbox_eth_arp_req_to_reply(dev, packet, len);
sandbox_eth_ping_req_to_reply(dev, packet, len);
return sb_check_ping_reply(dev, packet, len);
}
static int dm_test_eth_async_ping_reply(struct unit_test_state *uts)
{
net_ping_ip = string_to_ip("1.1.2.2");
sandbox_eth_set_tx_handler(0, sb_with_async_ping_handler);
/* Used by all of the ut_assert macros in the tx_handler */
sandbox_eth_set_priv(0, uts);
env_set("ethact", "eth@10002000");
ut_assertok(net_loop(PING));
ut_asserteq_str("eth@10002000", env_get("ethact"));
sandbox_eth_set_tx_handler(0, NULL);
return 0;
}
DM_TEST(dm_test_eth_async_ping_reply, UT_TESTF_SCAN_FDT);
#if IS_ENABLED(CONFIG_IPV6_ROUTER_DISCOVERY)
static u8 ip6_ra_buf[] = {0x60, 0xf, 0xc5, 0x4a, 0x0, 0x38, 0x3a, 0xff, 0xfe,
0x80, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x6, 0x85, 0xe6,
0x29, 0x77, 0xcb, 0xc8, 0x53, 0xff, 0x2, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x1, 0x86, 0x0, 0xdc, 0x90, 0x40, 0x80, 0x15, 0x18,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x4,
0x40, 0xc0, 0x0, 0x0, 0x37, 0xdc, 0x0, 0x0, 0x37,
0x78, 0x0, 0x0, 0x0, 0x0, 0x20, 0x1, 0xca, 0xfe, 0xca,
0xfe, 0xca, 0xfe, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x1, 0x1, 0x0, 0x15, 0x5d, 0xe2, 0x8a, 0x2};
static int dm_test_validate_ra(struct unit_test_state *uts)
{
struct ip6_hdr *ip6 = (struct ip6_hdr *)ip6_ra_buf;
struct icmp6hdr *icmp = (struct icmp6hdr *)(ip6 + 1);
__be16 temp = 0;
ut_assert(validate_ra(ip6) == true);
temp = ip6->payload_len;
ip6->payload_len = 15;
ut_assert(validate_ra(ip6) == false);
ip6->payload_len = temp;
temp = ip6->saddr.s6_addr16[0];
ip6->saddr.s6_addr16[0] = 0x2001;
ut_assert(validate_ra(ip6) == false);
ip6->saddr.s6_addr16[0] = temp;
temp = ip6->hop_limit;
ip6->hop_limit = 15;
ut_assert(validate_ra(ip6) == false);
ip6->hop_limit = temp;
temp = icmp->icmp6_code;
icmp->icmp6_code = 15;
ut_assert(validate_ra(ip6) == false);
icmp->icmp6_code = temp;
return 0;
}
DM_TEST(dm_test_validate_ra, 0);
static int dm_test_process_ra(struct unit_test_state *uts)
{
int len = sizeof(ip6_ra_buf);
struct ip6_hdr *ip6 = (struct ip6_hdr *)ip6_ra_buf;
struct icmp6hdr *icmp = (struct icmp6hdr *)(ip6 + 1);
struct ra_msg *msg = (struct ra_msg *)icmp;
unsigned char *option = msg->opt;
struct icmp6_ra_prefix_info *prefix =
(struct icmp6_ra_prefix_info *)option;
__be16 temp = 0;
unsigned char option_len = option[1];
ut_assert(process_ra(ip6, len) == 0);
temp = icmp->icmp6_rt_lifetime;
icmp->icmp6_rt_lifetime = 0;
ut_assert(process_ra(ip6, len) != 0);
icmp->icmp6_rt_lifetime = temp;
ut_assert(process_ra(ip6, 0) != 0);
option[1] = 0;
ut_assert(process_ra(ip6, len) != 0);
option[1] = option_len;
prefix->on_link = false;
ut_assert(process_ra(ip6, len) != 0);
prefix->on_link = true;
temp = prefix->prefix.s6_addr16[0];
prefix->prefix.s6_addr16[0] = 0x80fe;
ut_assert(process_ra(ip6, len) != 0);
prefix->prefix.s6_addr16[0] = temp;
return 0;
}
DM_TEST(dm_test_process_ra, 0);
#endif