u-boot/test/dm/core.c

1278 lines
35 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Tests for the core driver model code
*
* Copyright (c) 2013 Google, Inc
*/
#include <common.h>
#include <errno.h>
#include <dm.h>
#include <fdtdec.h>
#include <log.h>
#include <malloc.h>
#include <asm/global_data.h>
#include <dm/device-internal.h>
#include <dm/root.h>
#include <dm/util.h>
#include <dm/test.h>
#include <dm/uclass-internal.h>
#include <test/test.h>
#include <test/ut.h>
DECLARE_GLOBAL_DATA_PTR;
enum {
TEST_INTVAL1 = 0,
TEST_INTVAL2 = 3,
TEST_INTVAL3 = 6,
TEST_INTVAL_MANUAL = 101112,
TEST_INTVAL_PRE_RELOC = 7,
};
static const struct dm_test_pdata test_pdata[] = {
{ .ping_add = TEST_INTVAL1, },
{ .ping_add = TEST_INTVAL2, },
{ .ping_add = TEST_INTVAL3, },
};
static const struct dm_test_pdata test_pdata_manual = {
.ping_add = TEST_INTVAL_MANUAL,
};
static const struct dm_test_pdata test_pdata_pre_reloc = {
.ping_add = TEST_INTVAL_PRE_RELOC,
};
U_BOOT_DRVINFO(dm_test_info1) = {
.name = "test_drv",
.plat = &test_pdata[0],
};
U_BOOT_DRVINFO(dm_test_info2) = {
.name = "test_drv",
.plat = &test_pdata[1],
};
U_BOOT_DRVINFO(dm_test_info3) = {
.name = "test_drv",
.plat = &test_pdata[2],
};
static struct driver_info driver_info_manual = {
.name = "test_manual_drv",
.plat = &test_pdata_manual,
};
static struct driver_info driver_info_pre_reloc = {
.name = "test_pre_reloc_drv",
.plat = &test_pdata_pre_reloc,
};
static struct driver_info driver_info_act_dma = {
.name = "test_act_dma_drv",
};
static struct driver_info driver_info_vital_clk = {
.name = "test_vital_clk_drv",
};
static struct driver_info driver_info_act_dma_vital_clk = {
.name = "test_act_dma_vital_clk_drv",
};
void dm_leak_check_start(struct unit_test_state *uts)
{
uts->start = mallinfo();
if (!uts->start.uordblks)
puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
}
int dm_leak_check_end(struct unit_test_state *uts)
{
struct mallinfo end;
int id, diff;
/* Don't delete the root class, since we started with that */
for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
struct uclass *uc;
uc = uclass_find(id);
if (!uc)
continue;
ut_assertok(uclass_destroy(uc));
}
end = mallinfo();
diff = end.uordblks - uts->start.uordblks;
if (diff > 0)
printf("Leak: lost %#xd bytes\n", diff);
else if (diff < 0)
printf("Leak: gained %#xd bytes\n", -diff);
ut_asserteq(uts->start.uordblks, end.uordblks);
return 0;
}
/* Test that binding with plat occurs correctly */
static int dm_test_autobind(struct unit_test_state *uts)
{
struct udevice *dev;
/*
* We should have a single class (UCLASS_ROOT) and a single root
* device with no children.
*/
ut_assert(uts->root);
ut_asserteq(1, list_count_items(gd->uclass_root));
ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
ut_assertok(dm_scan_plat(false));
/* We should have our test class now at least, plus more children */
ut_assert(1 < list_count_items(gd->uclass_root));
ut_assert(0 < list_count_items(&gd->dm_root->child_head));
/* Our 3 dm_test_infox children should be bound to the test uclass */
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
/* No devices should be probed */
list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
/* Our test driver should have been bound 3 times */
ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
return 0;
}
DM_TEST(dm_test_autobind, 0);
/* Test that binding with uclass plat allocation occurs correctly */
static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
{
struct dm_test_perdev_uc_pdata *uc_pdata;
struct udevice *dev;
struct uclass *uc;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
ut_assert(uc);
/**
* Test if test uclass driver requires allocation for the uclass
* platform data and then check the dev->uclass_plat pointer.
*/
ut_assert(uc->uc_drv->per_device_plat_auto);
for (uclass_find_first_device(UCLASS_TEST, &dev);
dev;
uclass_find_next_device(&dev)) {
ut_assertnonnull(dev);
uc_pdata = dev_get_uclass_plat(dev);
ut_assert(uc_pdata);
}
return 0;
}
DM_TEST(dm_test_autobind_uclass_pdata_alloc, UT_TESTF_SCAN_PDATA);
/* compare node names ignoring the unit address */
static int dm_test_compare_node_name(struct unit_test_state *uts)
{
ofnode node;
node = ofnode_path("/mmio-bus@0");
ut_assert(ofnode_valid(node));
ut_assert(ofnode_name_eq(node, "mmio-bus"));
return 0;
}
DM_TEST(dm_test_compare_node_name, UT_TESTF_SCAN_PDATA);
/* Test that binding with uclass plat setting occurs correctly */
static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
{
struct dm_test_perdev_uc_pdata *uc_pdata;
struct udevice *dev;
/**
* In the test_postbind() method of test uclass driver, the uclass
* platform data should be set to three test int values - test it.
*/
for (uclass_find_first_device(UCLASS_TEST, &dev);
dev;
uclass_find_next_device(&dev)) {
ut_assertnonnull(dev);
uc_pdata = dev_get_uclass_plat(dev);
ut_assert(uc_pdata);
ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
}
return 0;
}
DM_TEST(dm_test_autobind_uclass_pdata_valid, UT_TESTF_SCAN_PDATA);
/* Test that autoprobe finds all the expected devices */
static int dm_test_autoprobe(struct unit_test_state *uts)
{
int expected_base_add;
struct udevice *dev;
struct uclass *uc;
int i;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
ut_assert(uc);
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
/* The root device should not be activated until needed */
ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
/*
* We should be able to find the three test devices, and they should
* all be activated as they are used (lazy activation, required by
* U-Boot)
*/
for (i = 0; i < 3; i++) {
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
"Driver %d/%s already activated", i, dev->name);
/* This should activate it */
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
/* Activating a device should activate the root device */
if (!i)
ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
}
/*
* Our 3 dm_test_info children should be passed to pre_probe and
* post_probe
*/
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
/* Also we can check the per-device data */
expected_base_add = 0;
for (i = 0; i < 3; i++) {
struct dm_test_uclass_perdev_priv *priv;
struct dm_test_pdata *pdata;
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
priv = dev_get_uclass_priv(dev);
ut_assert(priv);
ut_asserteq(expected_base_add, priv->base_add);
pdata = dev_get_plat(dev);
expected_base_add += pdata->ping_add;
}
return 0;
}
DM_TEST(dm_test_autoprobe, UT_TESTF_SCAN_PDATA);
/* Check that we see the correct plat in each device */
static int dm_test_plat(struct unit_test_state *uts)
{
const struct dm_test_pdata *pdata;
struct udevice *dev;
int i;
for (i = 0; i < 3; i++) {
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
pdata = dev_get_plat(dev);
ut_assert(pdata->ping_add == test_pdata[i].ping_add);
}
return 0;
}
DM_TEST(dm_test_plat, UT_TESTF_SCAN_PDATA);
/* Test that we can bind, probe, remove, unbind a driver */
static int dm_test_lifecycle(struct unit_test_state *uts)
{
int op_count[DM_TEST_OP_COUNT];
struct udevice *dev, *test_dev;
int start_dev_count, start_uc_count;
int dev_count, uc_count;
int pingret;
int ret;
memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
dm_get_stats(&start_dev_count, &start_uc_count);
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
== op_count[DM_TEST_OP_BIND] + 1);
ut_assert(!dev_get_priv(dev));
/* We should have one more device */
dm_get_stats(&dev_count, &uc_count);
ut_asserteq(start_dev_count + 1, dev_count);
ut_asserteq(start_uc_count, uc_count);
/* Probe the device - it should fail allocating private data */
uts->force_fail_alloc = 1;
ret = device_probe(dev);
ut_assert(ret == -ENOMEM);
ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
== op_count[DM_TEST_OP_PROBE] + 1);
ut_assert(!dev_get_priv(dev));
/* Try again without the alloc failure */
uts->force_fail_alloc = 0;
ut_assertok(device_probe(dev));
ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
== op_count[DM_TEST_OP_PROBE] + 2);
ut_assert(dev_get_priv(dev));
/* This should be device 3 in the uclass */
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
ut_assert(dev == test_dev);
/* Try ping */
ut_assertok(test_ping(dev, 100, &pingret));
ut_assert(pingret == 102);
/* Now remove device 3 */
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
ut_assertok(device_unbind(dev));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
/* We should have one less device */
dm_get_stats(&dev_count, &uc_count);
ut_asserteq(start_dev_count, dev_count);
ut_asserteq(start_uc_count, uc_count);
return 0;
}
DM_TEST(dm_test_lifecycle, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
/* Test that we can bind/unbind and the lists update correctly */
static int dm_test_ordering(struct unit_test_state *uts)
{
struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
int pingret;
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
/* Bind two new devices (numbers 4 and 5) */
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&dev_penultimate));
ut_assert(dev_penultimate);
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&dev_last));
ut_assert(dev_last);
/* Now remove device 3 */
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_assertok(device_unbind(dev));
/* The device numbering should have shifted down one */
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
ut_assert(dev_penultimate == test_dev);
ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
ut_assert(dev_last == test_dev);
/* Add back the original device 3, now in position 5 */
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
/* Try ping */
ut_assertok(test_ping(dev, 100, &pingret));
ut_assert(pingret == 102);
/* Remove 3 and 4 */
ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
ut_assertok(device_unbind(dev_penultimate));
ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
ut_assertok(device_unbind(dev_last));
/* Our device should now be in position 3 */
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
ut_assert(dev == test_dev);
/* Now remove device 3 */
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_assertok(device_unbind(dev));
return 0;
}
DM_TEST(dm_test_ordering, UT_TESTF_SCAN_PDATA);
/* Check that we can perform operations on a device (do a ping) */
int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
uint32_t base, struct dm_test_priv *priv)
{
int expected;
int pingret;
/* Getting the child device should allocate plat / priv */
ut_assertok(testfdt_ping(dev, 10, &pingret));
ut_assert(dev_get_priv(dev));
ut_assert(dev_get_plat(dev));
expected = 10 + base;
ut_asserteq(expected, pingret);
/* Do another ping */
ut_assertok(testfdt_ping(dev, 20, &pingret));
expected = 20 + base;
ut_asserteq(expected, pingret);
/* Now check the ping_total */
priv = dev_get_priv(dev);
ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
priv->ping_total);
return 0;
}
/* Check that we can perform operations on devices */
static int dm_test_operations(struct unit_test_state *uts)
{
struct udevice *dev;
int i;
/*
* Now check that the ping adds are what we expect. This is using the
* ping-add property in each node.
*/
for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
uint32_t base;
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
/*
* Get the 'reg' property, which tells us what the ping add
* should be. We don't use the plat because we want
* to test the code that sets that up (testfdt_drv_probe()).
*/
base = test_pdata[i].ping_add;
debug("dev=%d, base=%d\n", i, base);
ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev)));
}
return 0;
}
DM_TEST(dm_test_operations, UT_TESTF_SCAN_PDATA);
/* Remove all drivers and check that things work */
static int dm_test_remove(struct unit_test_state *uts)
{
struct udevice *dev;
int i;
for (i = 0; i < 3; i++) {
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
ut_assertf(dev_get_flags(dev) & DM_FLAG_ACTIVATED,
"Driver %d/%s not activated", i, dev->name);
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
"Driver %d/%s should have deactivated", i,
dev->name);
ut_assert(!dev_get_priv(dev));
}
return 0;
}
DM_TEST(dm_test_remove, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
/* Remove and recreate everything, check for memory leaks */
static int dm_test_leak(struct unit_test_state *uts)
{
int i;
for (i = 0; i < 2; i++) {
struct udevice *dev;
int ret;
int id;
dm_leak_check_start(uts);
ut_assertok(dm_scan_plat(false));
ut_assertok(dm_scan_fdt(false));
/* Scanning the uclass is enough to probe all the devices */
for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
for (ret = uclass_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_next_device(&dev))
;
ut_assertok(ret);
}
ut_assertok(dm_leak_check_end(uts));
}
return 0;
}
DM_TEST(dm_test_leak, 0);
/* Test uclass init/destroy methods */
static int dm_test_uclass(struct unit_test_state *uts)
{
int dev_count, uc_count;
struct uclass *uc;
/* We should have just the root device and uclass */
dm_get_stats(&dev_count, &uc_count);
ut_asserteq(1, dev_count);
ut_asserteq(1, uc_count);
ut_assertok(uclass_get(UCLASS_TEST, &uc));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
ut_assert(uclass_get_priv(uc));
dm_get_stats(&dev_count, &uc_count);
ut_asserteq(1, dev_count);
ut_asserteq(2, uc_count);
ut_assertok(uclass_destroy(uc));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
dm_get_stats(&dev_count, &uc_count);
ut_asserteq(1, dev_count);
ut_asserteq(1, uc_count);
return 0;
}
DM_TEST(dm_test_uclass, 0);
/**
* create_children() - Create children of a parent node
*
* @dms: Test system state
* @parent: Parent device
* @count: Number of children to create
* @key: Key value to put in first child. Subsequence children
* receive an incrementing value
* @child: If not NULL, then the child device pointers are written into
* this array.
* Return: 0 if OK, -ve on error
*/
static int create_children(struct unit_test_state *uts, struct udevice *parent,
int count, int key, struct udevice *child[])
{
struct udevice *dev;
int i;
for (i = 0; i < count; i++) {
struct dm_test_pdata *pdata;
ut_assertok(device_bind_by_name(parent, false,
&driver_info_manual, &dev));
pdata = calloc(1, sizeof(*pdata));
pdata->ping_add = key + i;
dev_set_plat(dev, pdata);
if (child)
child[i] = dev;
}
return 0;
}
#define NODE_COUNT 10
static int dm_test_children(struct unit_test_state *uts)
{
struct udevice *top[NODE_COUNT];
struct udevice *child[NODE_COUNT];
struct udevice *grandchild[NODE_COUNT];
struct udevice *dev;
int total;
int ret;
int i;
/* We don't care about the numbering for this test */
uts->skip_post_probe = 1;
ut_assert(NODE_COUNT > 5);
/* First create 10 top-level children */
ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
/* Now a few have their own children */
ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
/* And grandchildren */
for (i = 0; i < NODE_COUNT; i++)
ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
i == 2 ? grandchild : NULL));
/* Check total number of devices */
total = NODE_COUNT * (3 + NODE_COUNT);
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
/* Try probing one of the grandchildren */
ut_assertok(uclass_get_device(UCLASS_TEST,
NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
ut_asserteq_ptr(grandchild[0], dev);
/*
* This should have probed the child and top node also, for a total
* of 3 nodes.
*/
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
/* Probe the other grandchildren */
for (i = 1; i < NODE_COUNT; i++)
ut_assertok(device_probe(grandchild[i]));
ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
/* Probe everything */
for (ret = uclass_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_next_device(&dev))
;
ut_assertok(ret);
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
/* Remove a top-level child and check that the children are removed */
ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
/* Try one with grandchildren */
ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
ut_asserteq_ptr(dev, top[5]);
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
/* Try the same with unbind */
ut_assertok(device_unbind(top[2]));
ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
/* Try one with grandchildren */
ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
ut_asserteq_ptr(dev, top[6]);
ut_assertok(device_unbind(top[5]));
ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
return 0;
}
DM_TEST(dm_test_children, 0);
static int dm_test_device_reparent(struct unit_test_state *uts)
{
struct udevice *top[NODE_COUNT];
struct udevice *child[NODE_COUNT];
struct udevice *grandchild[NODE_COUNT];
struct udevice *dev;
int total;
int ret;
int i;
/* We don't care about the numbering for this test */
uts->skip_post_probe = 1;
ut_assert(NODE_COUNT > 5);
/* First create 10 top-level children */
ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
/* Now a few have their own children */
ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
/* And grandchildren */
for (i = 0; i < NODE_COUNT; i++)
ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
i == 2 ? grandchild : NULL));
/* Check total number of devices */
total = NODE_COUNT * (3 + NODE_COUNT);
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
/* Probe everything */
for (i = 0; i < total; i++)
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
/* Re-parent top-level children with no grandchildren. */
ut_assertok(device_reparent(top[3], top[0]));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_reparent(top[4], top[0]));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
/* Re-parent top-level children with grandchildren. */
ut_assertok(device_reparent(top[2], top[0]));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_reparent(top[5], top[2]));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
/* Re-parent grandchildren. */
ut_assertok(device_reparent(grandchild[0], top[1]));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_reparent(grandchild[1], top[1]));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
/* Remove re-pareneted devices. */
ut_assertok(device_remove(top[3], DM_REMOVE_NORMAL));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_remove(top[4], DM_REMOVE_NORMAL));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_remove(top[5], DM_REMOVE_NORMAL));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_remove(grandchild[0], DM_REMOVE_NORMAL));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_remove(grandchild[1], DM_REMOVE_NORMAL));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
/* Try the same with unbind */
ut_assertok(device_unbind(top[3]));
ut_assertok(device_unbind(top[4]));
ut_assertok(device_unbind(top[5]));
ut_assertok(device_unbind(top[2]));
ut_assertok(device_unbind(grandchild[0]));
ut_assertok(device_unbind(grandchild[1]));
return 0;
}
DM_TEST(dm_test_device_reparent, 0);
/* Test that pre-relocation devices work as expected */
static int dm_test_pre_reloc(struct unit_test_state *uts)
{
struct udevice *dev;
/* The normal driver should refuse to bind before relocation */
ut_asserteq(-EPERM, device_bind_by_name(uts->root, true,
&driver_info_manual, &dev));
/* But this one is marked pre-reloc */
ut_assertok(device_bind_by_name(uts->root, true,
&driver_info_pre_reloc, &dev));
return 0;
}
DM_TEST(dm_test_pre_reloc, 0);
/*
* Test that removal of devices, either via the "normal" device_remove()
* API or via the device driver selective flag works as expected
*/
static int dm_test_remove_active_dma(struct unit_test_state *uts)
{
struct udevice *dev;
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
&dev));
ut_assert(dev);
/* Probe the device */
ut_assertok(device_probe(dev));
/* Test if device is active right now */
ut_asserteq(true, device_active(dev));
/* Remove the device via selective remove flag */
dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
/* Test if device is inactive right now */
ut_asserteq(false, device_active(dev));
/* Probe the device again */
ut_assertok(device_probe(dev));
/* Test if device is active right now */
ut_asserteq(true, device_active(dev));
/* Remove the device via "normal" remove API */
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
/* Test if device is inactive right now */
ut_asserteq(false, device_active(dev));
/*
* Test if a device without the active DMA flags is not removed upon
* the active DMA remove call
*/
ut_assertok(device_unbind(dev));
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
/* Probe the device */
ut_assertok(device_probe(dev));
/* Test if device is active right now */
ut_asserteq(true, device_active(dev));
/* Remove the device via selective remove flag */
dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
/* Test if device is still active right now */
ut_asserteq(true, device_active(dev));
return 0;
}
DM_TEST(dm_test_remove_active_dma, 0);
/* Test removal of 'vital' devices */
static int dm_test_remove_vital(struct unit_test_state *uts)
{
struct udevice *normal, *dma, *vital, *dma_vital;
/* Skip the behaviour in test_post_probe() */
uts->skip_post_probe = 1;
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&normal));
ut_assertnonnull(normal);
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
&dma));
ut_assertnonnull(dma);
ut_assertok(device_bind_by_name(uts->root, false,
&driver_info_vital_clk, &vital));
ut_assertnonnull(vital);
ut_assertok(device_bind_by_name(uts->root, false,
&driver_info_act_dma_vital_clk,
&dma_vital));
ut_assertnonnull(dma_vital);
/* Probe the devices */
ut_assertok(device_probe(normal));
ut_assertok(device_probe(dma));
ut_assertok(device_probe(vital));
ut_assertok(device_probe(dma_vital));
/* Check that devices are active right now */
ut_asserteq(true, device_active(normal));
ut_asserteq(true, device_active(dma));
ut_asserteq(true, device_active(vital));
ut_asserteq(true, device_active(dma_vital));
/* Remove active devices via selective remove flag */
dm_remove_devices_flags(DM_REMOVE_NON_VITAL | DM_REMOVE_ACTIVE_ALL);
/*
* Check that this only has an effect on the dma device, since two
* devices are vital and the third does not have active DMA
*/
ut_asserteq(true, device_active(normal));
ut_asserteq(false, device_active(dma));
ut_asserteq(true, device_active(vital));
ut_asserteq(true, device_active(dma_vital));
/* Remove active devices via selective remove flag */
ut_assertok(device_probe(dma));
dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
/* This should have affected both active-dma devices */
ut_asserteq(true, device_active(normal));
ut_asserteq(false, device_active(dma));
ut_asserteq(true, device_active(vital));
ut_asserteq(false, device_active(dma_vital));
/* Remove non-vital devices */
ut_assertok(device_probe(dma));
ut_assertok(device_probe(dma_vital));
dm_remove_devices_flags(DM_REMOVE_NON_VITAL);
/* This should have affected only non-vital devices */
ut_asserteq(false, device_active(normal));
ut_asserteq(false, device_active(dma));
ut_asserteq(true, device_active(vital));
ut_asserteq(true, device_active(dma_vital));
/* Remove vital devices via normal remove flag */
ut_assertok(device_probe(normal));
ut_assertok(device_probe(dma));
dm_remove_devices_flags(DM_REMOVE_NORMAL);
/* Check that all devices are inactive right now */
ut_asserteq(false, device_active(normal));
ut_asserteq(false, device_active(dma));
ut_asserteq(false, device_active(vital));
ut_asserteq(false, device_active(dma_vital));
return 0;
}
DM_TEST(dm_test_remove_vital, 0);
static int dm_test_uclass_before_ready(struct unit_test_state *uts)
{
struct uclass *uc;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
gd->dm_root = NULL;
gd->dm_root_f = NULL;
memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
ut_asserteq(-EDEADLK, uclass_get(UCLASS_TEST, &uc));
return 0;
}
DM_TEST(dm_test_uclass_before_ready, 0);
static int dm_test_uclass_devices_find(struct unit_test_state *uts)
{
struct udevice *dev;
int ret;
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(uclass_find_first_device(UCLASS_TEST_DUMMY, &dev));
ut_assertnull(dev);
return 0;
}
DM_TEST(dm_test_uclass_devices_find, UT_TESTF_SCAN_PDATA);
static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
{
struct udevice *finddev;
struct udevice *testdev;
int findret, ret;
/*
* For each test device found in fdt like: "a-test", "b-test", etc.,
* use its name and try to find it by uclass_find_device_by_name().
* Then, on success check if:
* - current 'testdev' name is equal to the returned 'finddev' name
* - current 'testdev' pointer is equal to the returned 'finddev'
*
* We assume that, each uclass's device name is unique, so if not, then
* this will fail on checking condition: testdev == finddev, since the
* uclass_find_device_by_name(), returns the first device by given name.
*/
for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
testdev;
ret = uclass_find_next_device(&testdev)) {
ut_assertok(ret);
ut_assertnonnull(testdev);
findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
testdev->name,
&finddev);
ut_assertok(findret);
ut_assert(testdev);
ut_asserteq_str(testdev->name, finddev->name);
ut_asserteq_ptr(testdev, finddev);
}
return 0;
}
DM_TEST(dm_test_uclass_devices_find_by_name, UT_TESTF_SCAN_FDT);
static int dm_test_uclass_devices_get(struct unit_test_state *uts)
{
struct udevice *dev;
int ret;
for (ret = uclass_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_next_device(&dev)) {
ut_assert(!ret);
ut_assert(dev);
ut_assert(device_active(dev));
}
return 0;
}
DM_TEST(dm_test_uclass_devices_get, UT_TESTF_SCAN_PDATA);
static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
{
struct udevice *finddev;
struct udevice *testdev;
int ret, findret;
/*
* For each test device found in fdt like: "a-test", "b-test", etc.,
* use its name and try to get it by uclass_get_device_by_name().
* On success check if:
* - returned finddev' is active
* - current 'testdev' name is equal to the returned 'finddev' name
* - current 'testdev' pointer is equal to the returned 'finddev'
*
* We asserts that the 'testdev' is active on each loop entry, so we
* could be sure that the 'finddev' is activated too, but for sure
* we check it again.
*
* We assume that, each uclass's device name is unique, so if not, then
* this will fail on checking condition: testdev == finddev, since the
* uclass_get_device_by_name(), returns the first device by given name.
*/
for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
testdev;
ret = uclass_next_device(&testdev)) {
ut_assertok(ret);
ut_assert(testdev);
ut_assert(device_active(testdev));
findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
testdev->name,
&finddev);
ut_assertok(findret);
ut_assert(finddev);
ut_assert(device_active(finddev));
ut_asserteq_str(testdev->name, finddev->name);
ut_asserteq_ptr(testdev, finddev);
}
return 0;
}
DM_TEST(dm_test_uclass_devices_get_by_name, UT_TESTF_SCAN_FDT);
static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
{
struct udevice *dev;
ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
return 0;
}
DM_TEST(dm_test_device_get_uclass_id, UT_TESTF_SCAN_PDATA);
static int dm_test_uclass_names(struct unit_test_state *uts)
{
ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
ut_asserteq(UCLASS_SPI, uclass_get_by_name("spi"));
return 0;
}
DM_TEST(dm_test_uclass_names, UT_TESTF_SCAN_PDATA);
static int dm_test_inactive_child(struct unit_test_state *uts)
{
struct udevice *parent, *dev1, *dev2;
/* Skip the behaviour in test_post_probe() */
uts->skip_post_probe = 1;
ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent));
/*
* Create a child but do not activate it. Calling the function again
* should return the same child.
*/
ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
UCLASS_TEST, &dev1));
ut_assertok(device_bind(parent, DM_DRIVER_GET(test_drv),
"test_child", 0, ofnode_null(), &dev1));
ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST,
&dev2));
ut_asserteq_ptr(dev1, dev2);
ut_assertok(device_probe(dev1));
ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
UCLASS_TEST, &dev2));
return 0;
}
DM_TEST(dm_test_inactive_child, UT_TESTF_SCAN_PDATA);
/* Make sure all bound devices have a sequence number */
static int dm_test_all_have_seq(struct unit_test_state *uts)
{
struct udevice *dev;
struct uclass *uc;
list_for_each_entry(uc, gd->uclass_root, sibling_node) {
list_for_each_entry(dev, &uc->dev_head, uclass_node) {
if (dev->seq_ == -1)
printf("Device '%s' has no seq (%d)\n",
dev->name, dev->seq_);
ut_assert(dev->seq_ != -1);
}
}
return 0;
}
DM_TEST(dm_test_all_have_seq, UT_TESTF_SCAN_PDATA);
#if CONFIG_IS_ENABLED(DM_DMA)
static int dm_test_dma_offset(struct unit_test_state *uts)
{
struct udevice *dev;
ofnode node;
/* Make sure the bus's dma-ranges aren't taken into account here */
node = ofnode_path("/mmio-bus@0");
ut_assert(ofnode_valid(node));
ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
ut_asserteq_64(0, dev->dma_offset);
/* Device behind a bus with dma-ranges */
node = ofnode_path("/mmio-bus@0/subnode@0");
ut_assert(ofnode_valid(node));
ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
ut_asserteq_64(-0x10000000ULL, dev->dma_offset);
/* This one has no dma-ranges */
node = ofnode_path("/mmio-bus@1");
ut_assert(ofnode_valid(node));
ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
node = ofnode_path("/mmio-bus@1/subnode@0");
ut_assert(ofnode_valid(node));
ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
ut_asserteq_64(0, dev->dma_offset);
return 0;
}
DM_TEST(dm_test_dma_offset, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
#endif
/* Test dm_get_stats() */
static int dm_test_get_stats(struct unit_test_state *uts)
{
int dev_count, uc_count;
dm_get_stats(&dev_count, &uc_count);
ut_assert(dev_count > 50);
ut_assert(uc_count > 30);
return 0;
}
DM_TEST(dm_test_get_stats, UT_TESTF_SCAN_FDT);
/* Test uclass_find_device_by_name() */
static int dm_test_uclass_find_device(struct unit_test_state *uts)
{
struct udevice *dev;
ut_assertok(uclass_find_device_by_name(UCLASS_I2C, "i2c@0", &dev));
ut_asserteq(-ENODEV,
uclass_find_device_by_name(UCLASS_I2C, "i2c@0x", &dev));
ut_assertok(uclass_find_device_by_namelen(UCLASS_I2C, "i2c@0x", 5,
&dev));
return 0;
}
DM_TEST(dm_test_uclass_find_device, UT_TESTF_SCAN_FDT);