u-boot/drivers/qe/uec.c

1407 lines
34 KiB
C
Raw Normal View History

/*
* Copyright (C) 2006 Freescale Semiconductor, Inc.
*
* Dave Liu <daveliu@freescale.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include "common.h"
#include "net.h"
#include "malloc.h"
#include "asm/errno.h"
#include "asm/io.h"
#include "asm/immap_qe.h"
#include "qe.h"
#include "uccf.h"
#include "uec.h"
#include "uec_phy.h"
#include "miiphy.h"
#ifdef CONFIG_UEC_ETH1
static uec_info_t eth1_uec_info = {
.uf_info = {
.ucc_num = CFG_UEC1_UCC_NUM,
.rx_clock = CFG_UEC1_RX_CLK,
.tx_clock = CFG_UEC1_TX_CLK,
.eth_type = CFG_UEC1_ETH_TYPE,
},
#if (CFG_UEC1_ETH_TYPE == FAST_ETH)
.num_threads_tx = UEC_NUM_OF_THREADS_1,
.num_threads_rx = UEC_NUM_OF_THREADS_1,
#else
.num_threads_tx = UEC_NUM_OF_THREADS_4,
.num_threads_rx = UEC_NUM_OF_THREADS_4,
#endif
.riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
.riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
.tx_bd_ring_len = 16,
.rx_bd_ring_len = 16,
.phy_address = CFG_UEC1_PHY_ADDR,
.enet_interface = CFG_UEC1_INTERFACE_MODE,
};
#endif
#ifdef CONFIG_UEC_ETH2
static uec_info_t eth2_uec_info = {
.uf_info = {
.ucc_num = CFG_UEC2_UCC_NUM,
.rx_clock = CFG_UEC2_RX_CLK,
.tx_clock = CFG_UEC2_TX_CLK,
.eth_type = CFG_UEC2_ETH_TYPE,
},
#if (CFG_UEC2_ETH_TYPE == FAST_ETH)
.num_threads_tx = UEC_NUM_OF_THREADS_1,
.num_threads_rx = UEC_NUM_OF_THREADS_1,
#else
.num_threads_tx = UEC_NUM_OF_THREADS_4,
.num_threads_rx = UEC_NUM_OF_THREADS_4,
#endif
.riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
.riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
.tx_bd_ring_len = 16,
.rx_bd_ring_len = 16,
.phy_address = CFG_UEC2_PHY_ADDR,
.enet_interface = CFG_UEC2_INTERFACE_MODE,
};
#endif
#ifdef CONFIG_UEC_ETH3
static uec_info_t eth3_uec_info = {
.uf_info = {
.ucc_num = CFG_UEC3_UCC_NUM,
.rx_clock = CFG_UEC3_RX_CLK,
.tx_clock = CFG_UEC3_TX_CLK,
.eth_type = CFG_UEC3_ETH_TYPE,
},
#if (CFG_UEC3_ETH_TYPE == FAST_ETH)
.num_threads_tx = UEC_NUM_OF_THREADS_1,
.num_threads_rx = UEC_NUM_OF_THREADS_1,
#else
.num_threads_tx = UEC_NUM_OF_THREADS_4,
.num_threads_rx = UEC_NUM_OF_THREADS_4,
#endif
.riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
.riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
.tx_bd_ring_len = 16,
.rx_bd_ring_len = 16,
.phy_address = CFG_UEC3_PHY_ADDR,
.enet_interface = CFG_UEC3_INTERFACE_MODE,
};
#endif
#ifdef CONFIG_UEC_ETH4
static uec_info_t eth4_uec_info = {
.uf_info = {
.ucc_num = CFG_UEC4_UCC_NUM,
.rx_clock = CFG_UEC4_RX_CLK,
.tx_clock = CFG_UEC4_TX_CLK,
.eth_type = CFG_UEC4_ETH_TYPE,
},
#if (CFG_UEC4_ETH_TYPE == FAST_ETH)
.num_threads_tx = UEC_NUM_OF_THREADS_1,
.num_threads_rx = UEC_NUM_OF_THREADS_1,
#else
.num_threads_tx = UEC_NUM_OF_THREADS_4,
.num_threads_rx = UEC_NUM_OF_THREADS_4,
#endif
.riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
.riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
.tx_bd_ring_len = 16,
.rx_bd_ring_len = 16,
.phy_address = CFG_UEC4_PHY_ADDR,
.enet_interface = CFG_UEC4_INTERFACE_MODE,
};
#endif
#define MAXCONTROLLERS (4)
static struct eth_device *devlist[MAXCONTROLLERS];
u16 phy_read (struct uec_mii_info *mii_info, u16 regnum);
void phy_write (struct uec_mii_info *mii_info, u16 regnum, u16 val);
static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode)
{
uec_t *uec_regs;
u32 maccfg1;
if (!uec) {
printf("%s: uec not initial\n", __FUNCTION__);
return -EINVAL;
}
uec_regs = uec->uec_regs;
maccfg1 = in_be32(&uec_regs->maccfg1);
if (mode & COMM_DIR_TX) {
maccfg1 |= MACCFG1_ENABLE_TX;
out_be32(&uec_regs->maccfg1, maccfg1);
uec->mac_tx_enabled = 1;
}
if (mode & COMM_DIR_RX) {
maccfg1 |= MACCFG1_ENABLE_RX;
out_be32(&uec_regs->maccfg1, maccfg1);
uec->mac_rx_enabled = 1;
}
return 0;
}
static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode)
{
uec_t *uec_regs;
u32 maccfg1;
if (!uec) {
printf("%s: uec not initial\n", __FUNCTION__);
return -EINVAL;
}
uec_regs = uec->uec_regs;
maccfg1 = in_be32(&uec_regs->maccfg1);
if (mode & COMM_DIR_TX) {
maccfg1 &= ~MACCFG1_ENABLE_TX;
out_be32(&uec_regs->maccfg1, maccfg1);
uec->mac_tx_enabled = 0;
}
if (mode & COMM_DIR_RX) {
maccfg1 &= ~MACCFG1_ENABLE_RX;
out_be32(&uec_regs->maccfg1, maccfg1);
uec->mac_rx_enabled = 0;
}
return 0;
}
static int uec_graceful_stop_tx(uec_private_t *uec)
{
ucc_fast_t *uf_regs;
u32 cecr_subblock;
u32 ucce;
if (!uec || !uec->uccf) {
printf("%s: No handle passed.\n", __FUNCTION__);
return -EINVAL;
}
uf_regs = uec->uccf->uf_regs;
/* Clear the grace stop event */
out_be32(&uf_regs->ucce, UCCE_GRA);
/* Issue host command */
cecr_subblock =
ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
(u8)QE_CR_PROTOCOL_ETHERNET, 0);
/* Wait for command to complete */
do {
ucce = in_be32(&uf_regs->ucce);
} while (! (ucce & UCCE_GRA));
uec->grace_stopped_tx = 1;
return 0;
}
static int uec_graceful_stop_rx(uec_private_t *uec)
{
u32 cecr_subblock;
u8 ack;
if (!uec) {
printf("%s: No handle passed.\n", __FUNCTION__);
return -EINVAL;
}
if (!uec->p_rx_glbl_pram) {
printf("%s: No init rx global parameter\n", __FUNCTION__);
return -EINVAL;
}
/* Clear acknowledge bit */
ack = uec->p_rx_glbl_pram->rxgstpack;
ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
uec->p_rx_glbl_pram->rxgstpack = ack;
/* Keep issuing cmd and checking ack bit until it is asserted */
do {
/* Issue host command */
cecr_subblock =
ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
(u8)QE_CR_PROTOCOL_ETHERNET, 0);
ack = uec->p_rx_glbl_pram->rxgstpack;
} while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX ));
uec->grace_stopped_rx = 1;
return 0;
}
static int uec_restart_tx(uec_private_t *uec)
{
u32 cecr_subblock;
if (!uec || !uec->uec_info) {
printf("%s: No handle passed.\n", __FUNCTION__);
return -EINVAL;
}
cecr_subblock =
ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
(u8)QE_CR_PROTOCOL_ETHERNET, 0);
uec->grace_stopped_tx = 0;
return 0;
}
static int uec_restart_rx(uec_private_t *uec)
{
u32 cecr_subblock;
if (!uec || !uec->uec_info) {
printf("%s: No handle passed.\n", __FUNCTION__);
return -EINVAL;
}
cecr_subblock =
ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
(u8)QE_CR_PROTOCOL_ETHERNET, 0);
uec->grace_stopped_rx = 0;
return 0;
}
static int uec_open(uec_private_t *uec, comm_dir_e mode)
{
ucc_fast_private_t *uccf;
if (!uec || !uec->uccf) {
printf("%s: No handle passed.\n", __FUNCTION__);
return -EINVAL;
}
uccf = uec->uccf;
/* check if the UCC number is in range. */
if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
printf("%s: ucc_num out of range.\n", __FUNCTION__);
return -EINVAL;
}
/* Enable MAC */
uec_mac_enable(uec, mode);
/* Enable UCC fast */
ucc_fast_enable(uccf, mode);
/* RISC microcode start */
if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) {
uec_restart_tx(uec);
}
if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) {
uec_restart_rx(uec);
}
return 0;
}
static int uec_stop(uec_private_t *uec, comm_dir_e mode)
{
ucc_fast_private_t *uccf;
if (!uec || !uec->uccf) {
printf("%s: No handle passed.\n", __FUNCTION__);
return -EINVAL;
}
uccf = uec->uccf;
/* check if the UCC number is in range. */
if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
printf("%s: ucc_num out of range.\n", __FUNCTION__);
return -EINVAL;
}
/* Stop any transmissions */
if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) {
uec_graceful_stop_tx(uec);
}
/* Stop any receptions */
if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) {
uec_graceful_stop_rx(uec);
}
/* Disable the UCC fast */
ucc_fast_disable(uec->uccf, mode);
/* Disable the MAC */
uec_mac_disable(uec, mode);
return 0;
}
static int uec_set_mac_duplex(uec_private_t *uec, int duplex)
{
uec_t *uec_regs;
u32 maccfg2;
if (!uec) {
printf("%s: uec not initial\n", __FUNCTION__);
return -EINVAL;
}
uec_regs = uec->uec_regs;
if (duplex == DUPLEX_HALF) {
maccfg2 = in_be32(&uec_regs->maccfg2);
maccfg2 &= ~MACCFG2_FDX;
out_be32(&uec_regs->maccfg2, maccfg2);
}
if (duplex == DUPLEX_FULL) {
maccfg2 = in_be32(&uec_regs->maccfg2);
maccfg2 |= MACCFG2_FDX;
out_be32(&uec_regs->maccfg2, maccfg2);
}
return 0;
}
static int uec_set_mac_if_mode(uec_private_t *uec, enet_interface_e if_mode)
{
enet_interface_e enet_if_mode;
uec_info_t *uec_info;
uec_t *uec_regs;
u32 upsmr;
u32 maccfg2;
if (!uec) {
printf("%s: uec not initial\n", __FUNCTION__);
return -EINVAL;
}
uec_info = uec->uec_info;
uec_regs = uec->uec_regs;
enet_if_mode = if_mode;
maccfg2 = in_be32(&uec_regs->maccfg2);
maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
switch (enet_if_mode) {
case ENET_100_MII:
case ENET_10_MII:
maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
break;
case ENET_1000_GMII:
maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
break;
case ENET_1000_TBI:
maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
upsmr |= UPSMR_TBIM;
break;
case ENET_1000_RTBI:
maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
upsmr |= (UPSMR_RPM | UPSMR_TBIM);
break;
case ENET_1000_RGMII_RXID:
case ENET_1000_RGMII:
maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
upsmr |= UPSMR_RPM;
break;
case ENET_100_RGMII:
maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
upsmr |= UPSMR_RPM;
break;
case ENET_10_RGMII:
maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
upsmr |= (UPSMR_RPM | UPSMR_R10M);
break;
case ENET_100_RMII:
maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
upsmr |= UPSMR_RMM;
break;
case ENET_10_RMII:
maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
upsmr |= (UPSMR_R10M | UPSMR_RMM);
break;
default:
return -EINVAL;
break;
}
out_be32(&uec_regs->maccfg2, maccfg2);
out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
return 0;
}
static int init_mii_management_configuration(uec_mii_t *uec_mii_regs)
{
uint timeout = 0x1000;
u32 miimcfg = 0;
miimcfg = in_be32(&uec_mii_regs->miimcfg);
miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE;
out_be32(&uec_mii_regs->miimcfg, miimcfg);
/* Wait until the bus is free */
while ((in_be32(&uec_mii_regs->miimcfg) & MIIMIND_BUSY) && timeout--);
if (timeout <= 0) {
printf("%s: The MII Bus is stuck!", __FUNCTION__);
return -ETIMEDOUT;
}
return 0;
}
static int init_phy(struct eth_device *dev)
{
uec_private_t *uec;
uec_mii_t *umii_regs;
struct uec_mii_info *mii_info;
struct phy_info *curphy;
int err;
uec = (uec_private_t *)dev->priv;
umii_regs = uec->uec_mii_regs;
uec->oldlink = 0;
uec->oldspeed = 0;
uec->oldduplex = -1;
mii_info = malloc(sizeof(*mii_info));
if (!mii_info) {
printf("%s: Could not allocate mii_info", dev->name);
return -ENOMEM;
}
memset(mii_info, 0, sizeof(*mii_info));
if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
mii_info->speed = SPEED_1000;
} else {
mii_info->speed = SPEED_100;
}
mii_info->duplex = DUPLEX_FULL;
mii_info->pause = 0;
mii_info->link = 1;
mii_info->advertising = (ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_1000baseT_Full);
mii_info->autoneg = 1;
mii_info->mii_id = uec->uec_info->phy_address;
mii_info->dev = dev;
mii_info->mdio_read = &uec_read_phy_reg;
mii_info->mdio_write = &uec_write_phy_reg;
uec->mii_info = mii_info;
qe_set_mii_clk_src(uec->uec_info->uf_info.ucc_num);
if (init_mii_management_configuration(umii_regs)) {
printf("%s: The MII Bus is stuck!", dev->name);
err = -1;
goto bus_fail;
}
/* get info for this PHY */
curphy = uec_get_phy_info(uec->mii_info);
if (!curphy) {
printf("%s: No PHY found", dev->name);
err = -1;
goto no_phy;
}
mii_info->phyinfo = curphy;
/* Run the commands which initialize the PHY */
if (curphy->init) {
err = curphy->init(uec->mii_info);
if (err)
goto phy_init_fail;
}
return 0;
phy_init_fail:
no_phy:
bus_fail:
free(mii_info);
return err;
}
static void adjust_link(struct eth_device *dev)
{
uec_private_t *uec = (uec_private_t *)dev->priv;
uec_t *uec_regs;
struct uec_mii_info *mii_info = uec->mii_info;
extern void change_phy_interface_mode(struct eth_device *dev,
enet_interface_e mode);
uec_regs = uec->uec_regs;
if (mii_info->link) {
/* Now we make sure that we can be in full duplex mode.
* If not, we operate in half-duplex mode. */
if (mii_info->duplex != uec->oldduplex) {
if (!(mii_info->duplex)) {
uec_set_mac_duplex(uec, DUPLEX_HALF);
printf("%s: Half Duplex\n", dev->name);
} else {
uec_set_mac_duplex(uec, DUPLEX_FULL);
printf("%s: Full Duplex\n", dev->name);
}
uec->oldduplex = mii_info->duplex;
}
if (mii_info->speed != uec->oldspeed) {
if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
switch (mii_info->speed) {
case 1000:
break;
case 100:
printf ("switching to rgmii 100\n");
/* change phy to rgmii 100 */
change_phy_interface_mode(dev,
ENET_100_RGMII);
/* change the MAC interface mode */
uec_set_mac_if_mode(uec,ENET_100_RGMII);
break;
case 10:
printf ("switching to rgmii 10\n");
/* change phy to rgmii 10 */
change_phy_interface_mode(dev,
ENET_10_RGMII);
/* change the MAC interface mode */
uec_set_mac_if_mode(uec,ENET_10_RGMII);
break;
default:
printf("%s: Ack,Speed(%d)is illegal\n",
dev->name, mii_info->speed);
break;
}
}
printf("%s: Speed %dBT\n", dev->name, mii_info->speed);
uec->oldspeed = mii_info->speed;
}
if (!uec->oldlink) {
printf("%s: Link is up\n", dev->name);
uec->oldlink = 1;
}
} else { /* if (mii_info->link) */
if (uec->oldlink) {
printf("%s: Link is down\n", dev->name);
uec->oldlink = 0;
uec->oldspeed = 0;
uec->oldduplex = -1;
}
}
}
static void phy_change(struct eth_device *dev)
{
uec_private_t *uec = (uec_private_t *)dev->priv;
/* Update the link, speed, duplex */
uec->mii_info->phyinfo->read_status(uec->mii_info);
/* Adjust the interface according to speed */
adjust_link(dev);
}
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
&& !defined(BITBANGMII)
/*
* Read a MII PHY register.
*
* Returns:
* 0 on success
*/
static int uec_miiphy_read(char *devname, unsigned char addr,
unsigned char reg, unsigned short *value)
{
*value = uec_read_phy_reg(devlist[0], addr, reg);
return 0;
}
/*
* Write a MII PHY register.
*
* Returns:
* 0 on success
*/
static int uec_miiphy_write(char *devname, unsigned char addr,
unsigned char reg, unsigned short value)
{
uec_write_phy_reg(devlist[0], addr, reg, value);
return 0;
}
#endif
static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr)
{
uec_t *uec_regs;
u32 mac_addr1;
u32 mac_addr2;
if (!uec) {
printf("%s: uec not initial\n", __FUNCTION__);
return -EINVAL;
}
uec_regs = uec->uec_regs;
/* if a station address of 0x12345678ABCD, perform a write to
MACSTNADDR1 of 0xCDAB7856,
MACSTNADDR2 of 0x34120000 */
mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \
(mac_addr[3] << 8) | (mac_addr[2]);
out_be32(&uec_regs->macstnaddr1, mac_addr1);
mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000;
out_be32(&uec_regs->macstnaddr2, mac_addr2);
return 0;
}
static int uec_convert_threads_num(uec_num_of_threads_e threads_num,
int *threads_num_ret)
{
int num_threads_numerica;
switch (threads_num) {
case UEC_NUM_OF_THREADS_1:
num_threads_numerica = 1;
break;
case UEC_NUM_OF_THREADS_2:
num_threads_numerica = 2;
break;
case UEC_NUM_OF_THREADS_4:
num_threads_numerica = 4;
break;
case UEC_NUM_OF_THREADS_6:
num_threads_numerica = 6;
break;
case UEC_NUM_OF_THREADS_8:
num_threads_numerica = 8;
break;
default:
printf("%s: Bad number of threads value.",
__FUNCTION__);
return -EINVAL;
}
*threads_num_ret = num_threads_numerica;
return 0;
}
static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx)
{
uec_info_t *uec_info;
u32 end_bd;
u8 bmrx = 0;
int i;
uec_info = uec->uec_info;
/* Alloc global Tx parameter RAM page */
uec->tx_glbl_pram_offset = qe_muram_alloc(
sizeof(uec_tx_global_pram_t),
UEC_TX_GLOBAL_PRAM_ALIGNMENT);
uec->p_tx_glbl_pram = (uec_tx_global_pram_t *)
qe_muram_addr(uec->tx_glbl_pram_offset);
/* Zero the global Tx prameter RAM */
memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t));
/* Init global Tx parameter RAM */
/* TEMODER, RMON statistics disable, one Tx queue */
out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
/* SQPTR */
uec->send_q_mem_reg_offset = qe_muram_alloc(
sizeof(uec_send_queue_qd_t),
UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *)
qe_muram_addr(uec->send_q_mem_reg_offset);
out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
/* Setup the table with TxBDs ring */
end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
* SIZEOFBD;
out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
(u32)(uec->p_tx_bd_ring));
out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
end_bd);
/* Scheduler Base Pointer, we have only one Tx queue, no need it */
out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
/* TxRMON Base Pointer, TxRMON disable, we don't need it */
out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
/* TSTATE, global snooping, big endian, the CSB bus selected */
bmrx = BMR_INIT_VALUE;
out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
/* IPH_Offset */
for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) {
out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
}
/* VTAG table */
for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) {
out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
}
/* TQPTR */
uec->thread_dat_tx_offset = qe_muram_alloc(
num_threads_tx * sizeof(uec_thread_data_tx_t) +
32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT);
uec->p_thread_data_tx = (uec_thread_data_tx_t *)
qe_muram_addr(uec->thread_dat_tx_offset);
out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
}
static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx)
{
u8 bmrx = 0;
int i;
uec_82xx_address_filtering_pram_t *p_af_pram;
/* Allocate global Rx parameter RAM page */
uec->rx_glbl_pram_offset = qe_muram_alloc(
sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT);
uec->p_rx_glbl_pram = (uec_rx_global_pram_t *)
qe_muram_addr(uec->rx_glbl_pram_offset);
/* Zero Global Rx parameter RAM */
memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t));
/* Init global Rx parameter RAM */
/* REMODER, Extended feature mode disable, VLAN disable,
LossLess flow control disable, Receive firmware statisic disable,
Extended address parsing mode disable, One Rx queues,
Dynamic maximum/minimum frame length disable, IP checksum check
disable, IP address alignment disable
*/
out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
/* RQPTR */
uec->thread_dat_rx_offset = qe_muram_alloc(
num_threads_rx * sizeof(uec_thread_data_rx_t),
UEC_THREAD_DATA_ALIGNMENT);
uec->p_thread_data_rx = (uec_thread_data_rx_t *)
qe_muram_addr(uec->thread_dat_rx_offset);
out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
/* Type_or_Len */
out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
/* RxRMON base pointer, we don't need it */
out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
/* IntCoalescingPTR, we don't need it, no interrupt */
out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
/* RSTATE, global snooping, big endian, the CSB bus selected */
bmrx = BMR_INIT_VALUE;
out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
/* MRBLR */
out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
/* RBDQPTR */
uec->rx_bd_qs_tbl_offset = qe_muram_alloc(
sizeof(uec_rx_bd_queues_entry_t) + \
sizeof(uec_rx_prefetched_bds_t),
UEC_RX_BD_QUEUES_ALIGNMENT);
uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *)
qe_muram_addr(uec->rx_bd_qs_tbl_offset);
/* Zero it */
memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \
sizeof(uec_rx_prefetched_bds_t));
out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
(u32)uec->p_rx_bd_ring);
/* MFLR */
out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
/* MINFLR */
out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
/* MAXD1 */
out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
/* MAXD2 */
out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
/* ECAM_PTR */
out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
/* L2QT */
out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
/* L3QT */
for (i = 0; i < 8; i++) {
out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
}
/* VLAN_TYPE */
out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
/* TCI */
out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
/* Clear PQ2 style address filtering hash table */
p_af_pram = (uec_82xx_address_filtering_pram_t *) \
uec->p_rx_glbl_pram->addressfiltering;
p_af_pram->iaddr_h = 0;
p_af_pram->iaddr_l = 0;
p_af_pram->gaddr_h = 0;
p_af_pram->gaddr_l = 0;
}
static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec,
int thread_tx, int thread_rx)
{
uec_init_cmd_pram_t *p_init_enet_param;
u32 init_enet_param_offset;
uec_info_t *uec_info;
int i;
int snum;
u32 init_enet_offset;
u32 entry_val;
u32 command;
u32 cecr_subblock;
uec_info = uec->uec_info;
/* Allocate init enet command parameter */
uec->init_enet_param_offset = qe_muram_alloc(
sizeof(uec_init_cmd_pram_t), 4);
init_enet_param_offset = uec->init_enet_param_offset;
uec->p_init_enet_param = (uec_init_cmd_pram_t *)
qe_muram_addr(uec->init_enet_param_offset);
/* Zero init enet command struct */
memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t));
/* Init the command struct */
p_init_enet_param = uec->p_init_enet_param;
p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
p_init_enet_param->largestexternallookupkeysize = 0;
p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
<< ENET_INIT_PARAM_RGF_SHIFT;
p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
<< ENET_INIT_PARAM_TGF_SHIFT;
/* Init Rx global parameter pointer */
p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
(u32)uec_info->riscRx;
/* Init Rx threads */
for (i = 0; i < (thread_rx + 1); i++) {
if ((snum = qe_get_snum()) < 0) {
printf("%s can not get snum\n", __FUNCTION__);
return -ENOMEM;
}
if (i==0) {
init_enet_offset = 0;
} else {
init_enet_offset = qe_muram_alloc(
sizeof(uec_thread_rx_pram_t),
UEC_THREAD_RX_PRAM_ALIGNMENT);
}
entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
init_enet_offset | (u32)uec_info->riscRx;
p_init_enet_param->rxthread[i] = entry_val;
}
/* Init Tx global parameter pointer */
p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
(u32)uec_info->riscTx;
/* Init Tx threads */
for (i = 0; i < thread_tx; i++) {
if ((snum = qe_get_snum()) < 0) {
printf("%s can not get snum\n", __FUNCTION__);
return -ENOMEM;
}
init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t),
UEC_THREAD_TX_PRAM_ALIGNMENT);
entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
init_enet_offset | (u32)uec_info->riscTx;
p_init_enet_param->txthread[i] = entry_val;
}
__asm__ __volatile__("sync");
/* Issue QE command */
command = QE_INIT_TX_RX;
cecr_subblock = ucc_fast_get_qe_cr_subblock(
uec->uec_info->uf_info.ucc_num);
qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET,
init_enet_param_offset);
return 0;
}
static int uec_startup(uec_private_t *uec)
{
uec_info_t *uec_info;
ucc_fast_info_t *uf_info;
ucc_fast_private_t *uccf;
ucc_fast_t *uf_regs;
uec_t *uec_regs;
int num_threads_tx;
int num_threads_rx;
u32 utbipar;
enet_interface_e enet_interface;
u32 length;
u32 align;
qe_bd_t *bd;
u8 *buf;
int i;
if (!uec || !uec->uec_info) {
printf("%s: uec or uec_info not initial\n", __FUNCTION__);
return -EINVAL;
}
uec_info = uec->uec_info;
uf_info = &(uec_info->uf_info);
/* Check if Rx BD ring len is illegal */
if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \
(uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) {
printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
__FUNCTION__);
return -EINVAL;
}
/* Check if Tx BD ring len is illegal */
if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
printf("%s: Tx BD ring length must not be smaller than 2.\n",
__FUNCTION__);
return -EINVAL;
}
/* Check if MRBLR is illegal */
if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN % UEC_MRBLR_ALIGNMENT)) {
printf("%s: max rx buffer length must be mutliple of 128.\n",
__FUNCTION__);
return -EINVAL;
}
/* Both Rx and Tx are stopped */
uec->grace_stopped_rx = 1;
uec->grace_stopped_tx = 1;
/* Init UCC fast */
if (ucc_fast_init(uf_info, &uccf)) {
printf("%s: failed to init ucc fast\n", __FUNCTION__);
return -ENOMEM;
}
/* Save uccf */
uec->uccf = uccf;
/* Convert the Tx threads number */
if (uec_convert_threads_num(uec_info->num_threads_tx,
&num_threads_tx)) {
return -EINVAL;
}
/* Convert the Rx threads number */
if (uec_convert_threads_num(uec_info->num_threads_rx,
&num_threads_rx)) {
return -EINVAL;
}
uf_regs = uccf->uf_regs;
/* UEC register is following UCC fast registers */
uec_regs = (uec_t *)(&uf_regs->ucc_eth);
/* Save the UEC register pointer to UEC private struct */
uec->uec_regs = uec_regs;
/* Init UPSMR, enable hardware statistics (UCC) */
out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
/* Init MACCFG1, flow control disable, disable Tx and Rx */
out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
/* Init MACCFG2, length check, MAC PAD and CRC enable */
out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
/* Setup MAC interface mode */
uec_set_mac_if_mode(uec, uec_info->enet_interface);
/* Setup MII management base */
#ifndef CONFIG_eTSEC_MDIO_BUS
uec->uec_mii_regs = (uec_mii_t *)(&uec_regs->miimcfg);
#else
uec->uec_mii_regs = (uec_mii_t *) CONFIG_MIIM_ADDRESS;
#endif
/* Setup MII master clock source */
qe_set_mii_clk_src(uec_info->uf_info.ucc_num);
/* Setup UTBIPAR */
utbipar = in_be32(&uec_regs->utbipar);
utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
enet_interface = uec->uec_info->enet_interface;
if (enet_interface == ENET_1000_TBI ||
enet_interface == ENET_1000_RTBI) {
utbipar |= (uec_info->phy_address + uec_info->uf_info.ucc_num)
<< UTBIPAR_PHY_ADDRESS_SHIFT;
} else {
utbipar |= (0x10 + uec_info->uf_info.ucc_num)
<< UTBIPAR_PHY_ADDRESS_SHIFT;
}
out_be32(&uec_regs->utbipar, utbipar);
/* Allocate Tx BDs */
length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) {
length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
}
align = UEC_TX_BD_RING_ALIGNMENT;
uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
if (uec->tx_bd_ring_offset != 0) {
uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
& ~(align - 1));
}
/* Zero all of Tx BDs */
memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
/* Allocate Rx BDs */
length = uec_info->rx_bd_ring_len * SIZEOFBD;
align = UEC_RX_BD_RING_ALIGNMENT;
uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
if (uec->rx_bd_ring_offset != 0) {
uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
& ~(align - 1));
}
/* Zero all of Rx BDs */
memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
/* Allocate Rx buffer */
length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
align = UEC_RX_DATA_BUF_ALIGNMENT;
uec->rx_buf_offset = (u32)malloc(length + align);
if (uec->rx_buf_offset != 0) {
uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
& ~(align - 1));
}
/* Zero all of the Rx buffer */
memset((void *)(uec->rx_buf_offset), 0, length + align);
/* Init TxBD ring */
bd = (qe_bd_t *)uec->p_tx_bd_ring;
uec->txBd = bd;
for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
BD_DATA_CLEAR(bd);
BD_STATUS_SET(bd, 0);
BD_LENGTH_SET(bd, 0);
bd ++;
}
BD_STATUS_SET((--bd), TxBD_WRAP);
/* Init RxBD ring */
bd = (qe_bd_t *)uec->p_rx_bd_ring;
uec->rxBd = bd;
buf = uec->p_rx_buf;
for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
BD_DATA_SET(bd, buf);
BD_LENGTH_SET(bd, 0);
BD_STATUS_SET(bd, RxBD_EMPTY);
buf += MAX_RXBUF_LEN;
bd ++;
}
BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY);
/* Init global Tx parameter RAM */
uec_init_tx_parameter(uec, num_threads_tx);
/* Init global Rx parameter RAM */
uec_init_rx_parameter(uec, num_threads_rx);
/* Init ethernet Tx and Rx parameter command */
if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
num_threads_rx)) {
printf("%s issue init enet cmd failed\n", __FUNCTION__);
return -ENOMEM;
}
return 0;
}
static int uec_init(struct eth_device* dev, bd_t *bd)
{
uec_private_t *uec;
int err, i;
struct phy_info *curphy;
uec = (uec_private_t *)dev->priv;
if (uec->the_first_run == 0) {
err = init_phy(dev);
if (err) {
printf("%s: Cannot initialize PHY, aborting.\n",
dev->name);
return err;
}
curphy = uec->mii_info->phyinfo;
if (curphy->config_aneg) {
err = curphy->config_aneg(uec->mii_info);
if (err) {
printf("%s: Can't negotiate PHY\n", dev->name);
return err;
}
}
/* Give PHYs up to 5 sec to report a link */
i = 50;
do {
err = curphy->read_status(uec->mii_info);
udelay(100000);
} while (((i-- > 0) && !uec->mii_info->link) || err);
if (err || i <= 0)
printf("warning: %s: timeout on PHY link\n", dev->name);
uec->the_first_run = 1;
}
/* Set up the MAC address */
if (dev->enetaddr[0] & 0x01) {
printf("%s: MacAddress is multcast address\n",
__FUNCTION__);
return -1;
}
uec_set_mac_address(uec, dev->enetaddr);
err = uec_open(uec, COMM_DIR_RX_AND_TX);
if (err) {
printf("%s: cannot enable UEC device\n", dev->name);
return -1;
}
phy_change(dev);
return (uec->mii_info->link ? 0 : -1);
}
static void uec_halt(struct eth_device* dev)
{
uec_private_t *uec = (uec_private_t *)dev->priv;
uec_stop(uec, COMM_DIR_RX_AND_TX);
}
static int uec_send(struct eth_device* dev, volatile void *buf, int len)
{
uec_private_t *uec;
ucc_fast_private_t *uccf;
volatile qe_bd_t *bd;
u16 status;
int i;
int result = 0;
uec = (uec_private_t *)dev->priv;
uccf = uec->uccf;
bd = uec->txBd;
/* Find an empty TxBD */
for (i = 0; bd->status & TxBD_READY; i++) {
if (i > 0x100000) {
printf("%s: tx buffer not ready\n", dev->name);
return result;
}
}
/* Init TxBD */
BD_DATA_SET(bd, buf);
BD_LENGTH_SET(bd, len);
status = bd->status;
status &= BD_WRAP;
status |= (TxBD_READY | TxBD_LAST);
BD_STATUS_SET(bd, status);
/* Tell UCC to transmit the buffer */
ucc_fast_transmit_on_demand(uccf);
/* Wait for buffer to be transmitted */
for (i = 0; bd->status & TxBD_READY; i++) {
if (i > 0x100000) {
printf("%s: tx error\n", dev->name);
return result;
}
}
/* Ok, the buffer be transimitted */
BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
uec->txBd = bd;
result = 1;
return result;
}
static int uec_recv(struct eth_device* dev)
{
uec_private_t *uec = dev->priv;
volatile qe_bd_t *bd;
u16 status;
u16 len;
u8 *data;
bd = uec->rxBd;
status = bd->status;
while (!(status & RxBD_EMPTY)) {
if (!(status & RxBD_ERROR)) {
data = BD_DATA(bd);
len = BD_LENGTH(bd);
NetReceive(data, len);
} else {
printf("%s: Rx error\n", dev->name);
}
status &= BD_CLEAN;
BD_LENGTH_SET(bd, 0);
BD_STATUS_SET(bd, status | RxBD_EMPTY);
BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
status = bd->status;
}
uec->rxBd = bd;
return 1;
}
int uec_initialize(int index)
{
struct eth_device *dev;
int i;
uec_private_t *uec;
uec_info_t *uec_info;
int err;
dev = (struct eth_device *)malloc(sizeof(struct eth_device));
if (!dev)
return 0;
memset(dev, 0, sizeof(struct eth_device));
/* Allocate the UEC private struct */
uec = (uec_private_t *)malloc(sizeof(uec_private_t));
if (!uec) {
return -ENOMEM;
}
memset(uec, 0, sizeof(uec_private_t));
/* Init UEC private struct, they come from board.h */
uec_info = NULL;
if (index == 0) {
#ifdef CONFIG_UEC_ETH1
uec_info = &eth1_uec_info;
#endif
} else if (index == 1) {
#ifdef CONFIG_UEC_ETH2
uec_info = &eth2_uec_info;
#endif
} else if (index == 2) {
#ifdef CONFIG_UEC_ETH3
uec_info = &eth3_uec_info;
#endif
} else if (index == 3) {
#ifdef CONFIG_UEC_ETH4
uec_info = &eth4_uec_info;
#endif
} else {
printf("%s: index is illegal.\n", __FUNCTION__);
return -EINVAL;
}
devlist[index] = dev;
uec->uec_info = uec_info;
sprintf(dev->name, "FSL UEC%d", index);
dev->iobase = 0;
dev->priv = (void *)uec;
dev->init = uec_init;
dev->halt = uec_halt;
dev->send = uec_send;
dev->recv = uec_recv;
/* Clear the ethnet address */
for (i = 0; i < 6; i++)
dev->enetaddr[i] = 0;
eth_register(dev);
err = uec_startup(uec);
if (err) {
printf("%s: Cannot configure net device, aborting.",dev->name);
return err;
}
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
&& !defined(BITBANGMII)
miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write);
#endif
return 1;
}