u-boot/arch/x86/cpu/quark/smc.c

2622 lines
71 KiB
C
Raw Normal View History

/*
* Copyright (C) 2013, Intel Corporation
* Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com>
*
* Ported from Intel released Quark UEFI BIOS
* QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei
*
* SPDX-License-Identifier: Intel
*/
#include <common.h>
#include <pci.h>
#include <asm/arch/device.h>
#include <asm/arch/mrc.h>
#include <asm/arch/msg_port.h>
#include "mrc_util.h"
#include "hte.h"
#include "smc.h"
/* t_rfc values (in picoseconds) per density */
static const uint32_t t_rfc[5] = {
90000, /* 512Mb */
110000, /* 1Gb */
160000, /* 2Gb */
300000, /* 4Gb */
350000, /* 8Gb */
};
/* t_ck clock period in picoseconds per speed index 800, 1066, 1333 */
static const uint32_t t_ck[3] = {
2500,
1875,
1500
};
/* Global variables */
static const uint16_t ddr_wclk[] = {193, 158};
static const uint16_t ddr_wctl[] = {1, 217};
static const uint16_t ddr_wcmd[] = {1, 220};
#ifdef BACKUP_RCVN
static const uint16_t ddr_rcvn[] = {129, 498};
#endif
#ifdef BACKUP_WDQS
static const uint16_t ddr_wdqs[] = {65, 289};
#endif
#ifdef BACKUP_RDQS
static const uint8_t ddr_rdqs[] = {32, 24};
#endif
#ifdef BACKUP_WDQ
static const uint16_t ddr_wdq[] = {32, 257};
#endif
/* Stop self refresh driven by MCU */
void clear_self_refresh(struct mrc_params *mrc_params)
{
ENTERFN();
/* clear the PMSTS Channel Self Refresh bits */
mrc_write_mask(MEM_CTLR, PMSTS, PMSTS_DISR, PMSTS_DISR);
LEAVEFN();
}
/* It will initialize timing registers in the MCU (DTR0..DTR4) */
void prog_ddr_timing_control(struct mrc_params *mrc_params)
{
uint8_t tcl, wl;
uint8_t trp, trcd, tras, twr, twtr, trrd, trtp, tfaw;
uint32_t tck;
u32 dtr0, dtr1, dtr2, dtr3, dtr4;
u32 tmp1, tmp2;
ENTERFN();
/* mcu_init starts */
mrc_post_code(0x02, 0x00);
dtr0 = msg_port_read(MEM_CTLR, DTR0);
dtr1 = msg_port_read(MEM_CTLR, DTR1);
dtr2 = msg_port_read(MEM_CTLR, DTR2);
dtr3 = msg_port_read(MEM_CTLR, DTR3);
dtr4 = msg_port_read(MEM_CTLR, DTR4);
tck = t_ck[mrc_params->ddr_speed]; /* Clock in picoseconds */
tcl = mrc_params->params.cl; /* CAS latency in clocks */
trp = tcl; /* Per CAT MRC */
trcd = tcl; /* Per CAT MRC */
tras = MCEIL(mrc_params->params.ras, tck);
/* Per JEDEC: tWR=15000ps DDR2/3 from 800-1600 */
twr = MCEIL(15000, tck);
twtr = MCEIL(mrc_params->params.wtr, tck);
trrd = MCEIL(mrc_params->params.rrd, tck);
trtp = 4; /* Valid for 800 and 1066, use 5 for 1333 */
tfaw = MCEIL(mrc_params->params.faw, tck);
wl = 5 + mrc_params->ddr_speed;
dtr0 &= ~DTR0_DFREQ_MASK;
dtr0 |= mrc_params->ddr_speed;
dtr0 &= ~DTR0_TCL_MASK;
tmp1 = tcl - 5;
dtr0 |= ((tcl - 5) << 12);
dtr0 &= ~DTR0_TRP_MASK;
dtr0 |= ((trp - 5) << 4); /* 5 bit DRAM Clock */
dtr0 &= ~DTR0_TRCD_MASK;
dtr0 |= ((trcd - 5) << 8); /* 5 bit DRAM Clock */
dtr1 &= ~DTR1_TWCL_MASK;
tmp2 = wl - 3;
dtr1 |= (wl - 3);
dtr1 &= ~DTR1_TWTP_MASK;
dtr1 |= ((wl + 4 + twr - 14) << 8); /* Change to tWTP */
dtr1 &= ~DTR1_TRTP_MASK;
dtr1 |= ((MMAX(trtp, 4) - 3) << 28); /* 4 bit DRAM Clock */
dtr1 &= ~DTR1_TRRD_MASK;
dtr1 |= ((trrd - 4) << 24); /* 4 bit DRAM Clock */
dtr1 &= ~DTR1_TCMD_MASK;
dtr1 |= (1 << 4);
dtr1 &= ~DTR1_TRAS_MASK;
dtr1 |= ((tras - 14) << 20); /* 6 bit DRAM Clock */
dtr1 &= ~DTR1_TFAW_MASK;
dtr1 |= ((((tfaw + 1) >> 1) - 5) << 16);/* 4 bit DRAM Clock */
/* Set 4 Clock CAS to CAS delay (multi-burst) */
dtr1 &= ~DTR1_TCCD_MASK;
dtr2 &= ~DTR2_TRRDR_MASK;
dtr2 |= 1;
dtr2 &= ~DTR2_TWWDR_MASK;
dtr2 |= (2 << 8);
dtr2 &= ~DTR2_TRWDR_MASK;
dtr2 |= (2 << 16);
dtr3 &= ~DTR3_TWRDR_MASK;
dtr3 |= 2;
dtr3 &= ~DTR3_TXXXX_MASK;
dtr3 |= (2 << 4);
dtr3 &= ~DTR3_TRWSR_MASK;
if (mrc_params->ddr_speed == DDRFREQ_800) {
/* Extended RW delay (+1) */
dtr3 |= ((tcl - 5 + 1) << 8);
} else if (mrc_params->ddr_speed == DDRFREQ_1066) {
/* Extended RW delay (+1) */
dtr3 |= ((tcl - 5 + 1) << 8);
}
dtr3 &= ~DTR3_TWRSR_MASK;
dtr3 |= ((4 + wl + twtr - 11) << 13);
dtr3 &= ~DTR3_TXP_MASK;
if (mrc_params->ddr_speed == DDRFREQ_800)
dtr3 |= ((MMAX(0, 1 - 1)) << 22);
else
dtr3 |= ((MMAX(0, 2 - 1)) << 22);
dtr4 &= ~DTR4_WRODTSTRT_MASK;
dtr4 |= 1;
dtr4 &= ~DTR4_WRODTSTOP_MASK;
dtr4 |= (1 << 4);
dtr4 &= ~DTR4_XXXX1_MASK;
dtr4 |= ((1 + tmp1 - tmp2 + 2) << 8);
dtr4 &= ~DTR4_XXXX2_MASK;
dtr4 |= ((1 + tmp1 - tmp2 + 2) << 12);
dtr4 &= ~(DTR4_ODTDIS | DTR4_TRGSTRDIS);
msg_port_write(MEM_CTLR, DTR0, dtr0);
msg_port_write(MEM_CTLR, DTR1, dtr1);
msg_port_write(MEM_CTLR, DTR2, dtr2);
msg_port_write(MEM_CTLR, DTR3, dtr3);
msg_port_write(MEM_CTLR, DTR4, dtr4);
LEAVEFN();
}
/* Configure MCU before jedec init sequence */
void prog_decode_before_jedec(struct mrc_params *mrc_params)
{
u32 drp;
u32 drfc;
u32 dcal;
u32 dsch;
u32 dpmc0;
ENTERFN();
/* Disable power saving features */
dpmc0 = msg_port_read(MEM_CTLR, DPMC0);
dpmc0 |= (DPMC0_CLKGTDIS | DPMC0_DISPWRDN);
dpmc0 &= ~DPMC0_PCLSTO_MASK;
dpmc0 &= ~DPMC0_DYNSREN;
msg_port_write(MEM_CTLR, DPMC0, dpmc0);
/* Disable out of order transactions */
dsch = msg_port_read(MEM_CTLR, DSCH);
dsch |= (DSCH_OOODIS | DSCH_NEWBYPDIS);
msg_port_write(MEM_CTLR, DSCH, dsch);
/* Disable issuing the REF command */
drfc = msg_port_read(MEM_CTLR, DRFC);
drfc &= ~DRFC_TREFI_MASK;
msg_port_write(MEM_CTLR, DRFC, drfc);
/* Disable ZQ calibration short */
dcal = msg_port_read(MEM_CTLR, DCAL);
dcal &= ~DCAL_ZQCINT_MASK;
dcal &= ~DCAL_SRXZQCL_MASK;
msg_port_write(MEM_CTLR, DCAL, dcal);
/*
* Training performed in address mode 0, rank population has limited
* impact, however simulator complains if enabled non-existing rank.
*/
drp = 0;
if (mrc_params->rank_enables & 1)
drp |= DRP_RKEN0;
if (mrc_params->rank_enables & 2)
drp |= DRP_RKEN1;
msg_port_write(MEM_CTLR, DRP, drp);
LEAVEFN();
}
/*
* After Cold Reset, BIOS should set COLDWAKE bit to 1 before
* sending the WAKE message to the Dunit.
*
* For Standby Exit, or any other mode in which the DRAM is in
* SR, this bit must be set to 0.
*/
void perform_ddr_reset(struct mrc_params *mrc_params)
{
ENTERFN();
/* Set COLDWAKE bit before sending the WAKE message */
mrc_write_mask(MEM_CTLR, DRMC, DRMC_COLDWAKE, DRMC_COLDWAKE);
/* Send wake command to DUNIT (MUST be done before JEDEC) */
dram_wake_command();
/* Set default value */
msg_port_write(MEM_CTLR, DRMC,
mrc_params->rd_odt_value == 0 ? DRMC_ODTMODE : 0);
LEAVEFN();
}
/*
* This function performs some initialization on the DDRIO unit.
* This function is dependent on BOARD_ID, DDR_SPEED, and CHANNEL_ENABLES.
*/
void ddrphy_init(struct mrc_params *mrc_params)
{
uint32_t temp;
uint8_t ch; /* channel counter */
uint8_t rk; /* rank counter */
uint8_t bl_grp; /* byte lane group counter (2 BLs per module) */
uint8_t bl_divisor = 1; /* byte lane divisor */
/* For DDR3 --> 0 == 800, 1 == 1066, 2 == 1333 */
uint8_t speed = mrc_params->ddr_speed & 3;
uint8_t cas;
uint8_t cwl;
ENTERFN();
cas = mrc_params->params.cl;
cwl = 5 + mrc_params->ddr_speed;
/* ddrphy_init starts */
mrc_post_code(0x03, 0x00);
/*
* HSD#231531
* Make sure IOBUFACT is deasserted before initializing the DDR PHY
*
* HSD#234845
* Make sure WRPTRENABLE is deasserted before initializing the DDR PHY
*/
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
/* Deassert DDRPHY Initialization Complete */
mrc_alt_write_mask(DDRPHY,
CMDPMCONFIG0 + ch * DDRIOCCC_CH_OFFSET,
~(1 << 20), 1 << 20); /* SPID_INIT_COMPLETE=0 */
/* Deassert IOBUFACT */
mrc_alt_write_mask(DDRPHY,
CMDCFGREG0 + ch * DDRIOCCC_CH_OFFSET,
~(1 << 2), 1 << 2); /* IOBUFACTRST_N=0 */
/* Disable WRPTR */
mrc_alt_write_mask(DDRPHY,
CMDPTRREG + ch * DDRIOCCC_CH_OFFSET,
~(1 << 0), 1 << 0); /* WRPTRENABLE=0 */
}
}
/* Put PHY in reset */
mrc_alt_write_mask(DDRPHY, MASTERRSTN, 0, 1);
/* Initialize DQ01, DQ23, CMD, CLK-CTL, COMP modules */
/* STEP0 */
mrc_post_code(0x03, 0x10);
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
/* DQ01-DQ23 */
for (bl_grp = 0;
bl_grp < (NUM_BYTE_LANES / bl_divisor) / 2;
bl_grp++) {
/* Analog MUX select - IO2xCLKSEL */
mrc_alt_write_mask(DDRPHY,
DQOBSCKEBBCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
bl_grp ? 0 : (1 << 22), 1 << 22);
/* ODT Strength */
switch (mrc_params->rd_odt_value) {
case 1:
temp = 0x3;
break; /* 60 ohm */
case 2:
temp = 0x3;
break; /* 120 ohm */
case 3:
temp = 0x3;
break; /* 180 ohm */
default:
temp = 0x3;
break; /* 120 ohm */
}
/* ODT strength */
mrc_alt_write_mask(DDRPHY,
B0RXIOBUFCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
temp << 5, 0x60);
/* ODT strength */
mrc_alt_write_mask(DDRPHY,
B1RXIOBUFCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
temp << 5, 0x60);
/* Dynamic ODT/DIFFAMP */
temp = (cas << 24) | (cas << 16) |
(cas << 8) | (cas << 0);
switch (speed) {
case 0:
temp -= 0x01010101;
break; /* 800 */
case 1:
temp -= 0x02020202;
break; /* 1066 */
case 2:
temp -= 0x03030303;
break; /* 1333 */
case 3:
temp -= 0x04040404;
break; /* 1600 */
}
/* Launch Time: ODT, DIFFAMP, ODT, DIFFAMP */
mrc_alt_write_mask(DDRPHY,
B01LATCTL1 +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
temp, 0x1f1f1f1f);
switch (speed) {
/* HSD#234715 */
case 0:
temp = (0x06 << 16) | (0x07 << 8);
break; /* 800 */
case 1:
temp = (0x07 << 16) | (0x08 << 8);
break; /* 1066 */
case 2:
temp = (0x09 << 16) | (0x0a << 8);
break; /* 1333 */
case 3:
temp = (0x0a << 16) | (0x0b << 8);
break; /* 1600 */
}
/* On Duration: ODT, DIFFAMP */
mrc_alt_write_mask(DDRPHY,
B0ONDURCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
temp, 0x003f3f00);
/* On Duration: ODT, DIFFAMP */
mrc_alt_write_mask(DDRPHY,
B1ONDURCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
temp, 0x003f3f00);
switch (mrc_params->rd_odt_value) {
case 0:
/* override DIFFAMP=on, ODT=off */
temp = (0x3f << 16) | (0x3f << 10);
break;
default:
/* override DIFFAMP=on, ODT=on */
temp = (0x3f << 16) | (0x2a << 10);
break;
}
/* Override: DIFFAMP, ODT */
mrc_alt_write_mask(DDRPHY,
B0OVRCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
temp, 0x003ffc00);
/* Override: DIFFAMP, ODT */
mrc_alt_write_mask(DDRPHY,
B1OVRCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
temp, 0x003ffc00);
/* DLL Setup */
/* 1xCLK Domain Timings: tEDP,RCVEN,WDQS (PO) */
mrc_alt_write_mask(DDRPHY,
B0LATCTL0 +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
((cas + 7) << 16) | ((cas - 4) << 8) |
((cwl - 2) << 0), 0x003f1f1f);
mrc_alt_write_mask(DDRPHY,
B1LATCTL0 +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
((cas + 7) << 16) | ((cas - 4) << 8) |
((cwl - 2) << 0), 0x003f1f1f);
/* RCVEN Bypass (PO) */
mrc_alt_write_mask(DDRPHY,
B0RXIOBUFCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
0, 0x81);
mrc_alt_write_mask(DDRPHY,
B1RXIOBUFCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
0, 0x81);
/* TX */
mrc_alt_write_mask(DDRPHY,
DQCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
1 << 16, 1 << 16);
mrc_alt_write_mask(DDRPHY,
B01PTRCTL1 +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
1 << 8, 1 << 8);
/* RX (PO) */
/* Internal Vref Code, Enable#, Ext_or_Int (1=Ext) */
mrc_alt_write_mask(DDRPHY,
B0VREFCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
(0x03 << 2) | (0x0 << 1) | (0x0 << 0),
0xff);
/* Internal Vref Code, Enable#, Ext_or_Int (1=Ext) */
mrc_alt_write_mask(DDRPHY,
B1VREFCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
(0x03 << 2) | (0x0 << 1) | (0x0 << 0),
0xff);
/* Per-Bit De-Skew Enable */
mrc_alt_write_mask(DDRPHY,
B0RXIOBUFCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
0, 0x10);
/* Per-Bit De-Skew Enable */
mrc_alt_write_mask(DDRPHY,
B1RXIOBUFCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
0, 0x10);
}
/* CLKEBB */
mrc_alt_write_mask(DDRPHY,
CMDOBSCKEBBCTL + ch * DDRIOCCC_CH_OFFSET,
0, 1 << 23);
/* Enable tristate control of cmd/address bus */
mrc_alt_write_mask(DDRPHY,
CMDCFGREG0 + ch * DDRIOCCC_CH_OFFSET,
0, 0x03);
/* ODT RCOMP */
mrc_alt_write_mask(DDRPHY,
CMDRCOMPODT + ch * DDRIOCCC_CH_OFFSET,
(0x03 << 5) | (0x03 << 0), 0x3ff);
/* CMDPM* registers must be programmed in this order */
/* Turn On Delays: SFR (regulator), MPLL */
mrc_alt_write_mask(DDRPHY,
CMDPMDLYREG4 + ch * DDRIOCCC_CH_OFFSET,
0xffffffff, 0xffffffff);
/*
* Delays: ASSERT_IOBUFACT_to_ALLON0_for_PM_MSG_3,
* VREG (MDLL) Turn On, ALLON0_to_DEASSERT_IOBUFACT
* for_PM_MSG_gt0, MDLL Turn On
*/
mrc_alt_write_mask(DDRPHY,
CMDPMDLYREG3 + ch * DDRIOCCC_CH_OFFSET,
0xfffff616, 0xffffffff);
/* MPLL Divider Reset Delays */
mrc_alt_write_mask(DDRPHY,
CMDPMDLYREG2 + ch * DDRIOCCC_CH_OFFSET,
0xffffffff, 0xffffffff);
/* Turn Off Delays: VREG, Staggered MDLL, MDLL, PI */
mrc_alt_write_mask(DDRPHY,
CMDPMDLYREG1 + ch * DDRIOCCC_CH_OFFSET,
0xffffffff, 0xffffffff);
/* Turn On Delays: MPLL, Staggered MDLL, PI, IOBUFACT */
mrc_alt_write_mask(DDRPHY,
CMDPMDLYREG0 + ch * DDRIOCCC_CH_OFFSET,
0xffffffff, 0xffffffff);
/* Allow PUnit signals */
mrc_alt_write_mask(DDRPHY,
CMDPMCONFIG0 + ch * DDRIOCCC_CH_OFFSET,
(0x6 << 8) | (0x1 << 6) | (0x4 << 0),
0xffe00f4f);
/* DLL_VREG Bias Trim, VREF Tuning for DLL_VREG */
mrc_alt_write_mask(DDRPHY,
CMDMDLLCTL + ch * DDRIOCCC_CH_OFFSET,
(0x3 << 4) | (0x7 << 0), 0x7f);
/* CLK-CTL */
mrc_alt_write_mask(DDRPHY,
CCOBSCKEBBCTL + ch * DDRIOCCC_CH_OFFSET,
0, 1 << 24); /* CLKEBB */
/* Buffer Enable: CS,CKE,ODT,CLK */
mrc_alt_write_mask(DDRPHY,
CCCFGREG0 + ch * DDRIOCCC_CH_OFFSET,
0x1f, 0x000ffff1);
/* ODT RCOMP */
mrc_alt_write_mask(DDRPHY,
CCRCOMPODT + ch * DDRIOCCC_CH_OFFSET,
(0x03 << 8) | (0x03 << 0), 0x00001f1f);
/* DLL_VREG Bias Trim, VREF Tuning for DLL_VREG */
mrc_alt_write_mask(DDRPHY,
CCMDLLCTL + ch * DDRIOCCC_CH_OFFSET,
(0x3 << 4) | (0x7 << 0), 0x7f);
/*
* COMP (RON channel specific)
* - DQ/DQS/DM RON: 32 Ohm
* - CTRL/CMD RON: 27 Ohm
* - CLK RON: 26 Ohm
*/
/* RCOMP Vref PU/PD */
mrc_alt_write_mask(DDRPHY,
DQVREFCH0 + ch * DDRCOMP_CH_OFFSET,
(0x08 << 24) | (0x03 << 16), 0x3f3f0000);
/* RCOMP Vref PU/PD */
mrc_alt_write_mask(DDRPHY,
CMDVREFCH0 + ch * DDRCOMP_CH_OFFSET,
(0x0C << 24) | (0x03 << 16), 0x3f3f0000);
/* RCOMP Vref PU/PD */
mrc_alt_write_mask(DDRPHY,
CLKVREFCH0 + ch * DDRCOMP_CH_OFFSET,
(0x0F << 24) | (0x03 << 16), 0x3f3f0000);
/* RCOMP Vref PU/PD */
mrc_alt_write_mask(DDRPHY,
DQSVREFCH0 + ch * DDRCOMP_CH_OFFSET,
(0x08 << 24) | (0x03 << 16), 0x3f3f0000);
/* RCOMP Vref PU/PD */
mrc_alt_write_mask(DDRPHY,
CTLVREFCH0 + ch * DDRCOMP_CH_OFFSET,
(0x0C << 24) | (0x03 << 16), 0x3f3f0000);
/* DQS Swapped Input Enable */
mrc_alt_write_mask(DDRPHY,
COMPEN1CH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 19) | (1 << 17), 0xc00ac000);
/* ODT VREF = 1.5 x 274/360+274 = 0.65V (code of ~50) */
/* ODT Vref PU/PD */
mrc_alt_write_mask(DDRPHY,
DQVREFCH0 + ch * DDRCOMP_CH_OFFSET,
(0x32 << 8) | (0x03 << 0), 0x00003f3f);
/* ODT Vref PU/PD */
mrc_alt_write_mask(DDRPHY,
DQSVREFCH0 + ch * DDRCOMP_CH_OFFSET,
(0x32 << 8) | (0x03 << 0), 0x00003f3f);
/* ODT Vref PU/PD */
mrc_alt_write_mask(DDRPHY,
CLKVREFCH0 + ch * DDRCOMP_CH_OFFSET,
(0x0E << 8) | (0x05 << 0), 0x00003f3f);
/*
* Slew rate settings are frequency specific,
* numbers below are for 800Mhz (speed == 0)
* - DQ/DQS/DM/CLK SR: 4V/ns,
* - CTRL/CMD SR: 1.5V/ns
*/
temp = (0x0e << 16) | (0x0e << 12) | (0x08 << 8) |
(0x0b << 4) | (0x0b << 0);
/* DCOMP Delay Select: CTL,CMD,CLK,DQS,DQ */
mrc_alt_write_mask(DDRPHY,
DLYSELCH0 + ch * DDRCOMP_CH_OFFSET,
temp, 0x000fffff);
/* TCO Vref CLK,DQS,DQ */
mrc_alt_write_mask(DDRPHY,
TCOVREFCH0 + ch * DDRCOMP_CH_OFFSET,
(0x05 << 16) | (0x05 << 8) | (0x05 << 0),
0x003f3f3f);
/* ODTCOMP CMD/CTL PU/PD */
mrc_alt_write_mask(DDRPHY,
CCBUFODTCH0 + ch * DDRCOMP_CH_OFFSET,
(0x03 << 8) | (0x03 << 0),
0x00001f1f);
/* COMP */
mrc_alt_write_mask(DDRPHY,
COMPEN0CH0 + ch * DDRCOMP_CH_OFFSET,
0, 0xc0000100);
#ifdef BACKUP_COMPS
/* DQ COMP Overrides */
/* RCOMP PU */
mrc_alt_write_mask(DDRPHY,
DQDRVPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0a << 16),
0x801f0000);
/* RCOMP PD */
mrc_alt_write_mask(DDRPHY,
DQDRVPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0a << 16),
0x801f0000);
/* DCOMP PU */
mrc_alt_write_mask(DDRPHY,
DQDLYPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x10 << 16),
0x801f0000);
/* DCOMP PD */
mrc_alt_write_mask(DDRPHY,
DQDLYPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x10 << 16),
0x801f0000);
/* ODTCOMP PU */
mrc_alt_write_mask(DDRPHY,
DQODTPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0b << 16),
0x801f0000);
/* ODTCOMP PD */
mrc_alt_write_mask(DDRPHY,
DQODTPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0b << 16),
0x801f0000);
/* TCOCOMP PU */
mrc_alt_write_mask(DDRPHY,
DQTCOPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
1 << 31, 1 << 31);
/* TCOCOMP PD */
mrc_alt_write_mask(DDRPHY,
DQTCOPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
1 << 31, 1 << 31);
/* DQS COMP Overrides */
/* RCOMP PU */
mrc_alt_write_mask(DDRPHY,
DQSDRVPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0a << 16),
0x801f0000);
/* RCOMP PD */
mrc_alt_write_mask(DDRPHY,
DQSDRVPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0a << 16),
0x801f0000);
/* DCOMP PU */
mrc_alt_write_mask(DDRPHY,
DQSDLYPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x10 << 16),
0x801f0000);
/* DCOMP PD */
mrc_alt_write_mask(DDRPHY,
DQSDLYPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x10 << 16),
0x801f0000);
/* ODTCOMP PU */
mrc_alt_write_mask(DDRPHY,
DQSODTPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0b << 16),
0x801f0000);
/* ODTCOMP PD */
mrc_alt_write_mask(DDRPHY,
DQSODTPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0b << 16),
0x801f0000);
/* TCOCOMP PU */
mrc_alt_write_mask(DDRPHY,
DQSTCOPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
1 << 31, 1 << 31);
/* TCOCOMP PD */
mrc_alt_write_mask(DDRPHY,
DQSTCOPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
1 << 31, 1 << 31);
/* CLK COMP Overrides */
/* RCOMP PU */
mrc_alt_write_mask(DDRPHY,
CLKDRVPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0c << 16),
0x801f0000);
/* RCOMP PD */
mrc_alt_write_mask(DDRPHY,
CLKDRVPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0c << 16),
0x801f0000);
/* DCOMP PU */
mrc_alt_write_mask(DDRPHY,
CLKDLYPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x07 << 16),
0x801f0000);
/* DCOMP PD */
mrc_alt_write_mask(DDRPHY,
CLKDLYPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x07 << 16),
0x801f0000);
/* ODTCOMP PU */
mrc_alt_write_mask(DDRPHY,
CLKODTPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0b << 16),
0x801f0000);
/* ODTCOMP PD */
mrc_alt_write_mask(DDRPHY,
CLKODTPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0b << 16),
0x801f0000);
/* TCOCOMP PU */
mrc_alt_write_mask(DDRPHY,
CLKTCOPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
1 << 31, 1 << 31);
/* TCOCOMP PD */
mrc_alt_write_mask(DDRPHY,
CLKTCOPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
1 << 31, 1 << 31);
/* CMD COMP Overrides */
/* RCOMP PU */
mrc_alt_write_mask(DDRPHY,
CMDDRVPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0d << 16),
0x803f0000);
/* RCOMP PD */
mrc_alt_write_mask(DDRPHY,
CMDDRVPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0d << 16),
0x803f0000);
/* DCOMP PU */
mrc_alt_write_mask(DDRPHY,
CMDDLYPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0a << 16),
0x801f0000);
/* DCOMP PD */
mrc_alt_write_mask(DDRPHY,
CMDDLYPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0a << 16),
0x801f0000);
/* CTL COMP Overrides */
/* RCOMP PU */
mrc_alt_write_mask(DDRPHY,
CTLDRVPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0d << 16),
0x803f0000);
/* RCOMP PD */
mrc_alt_write_mask(DDRPHY,
CTLDRVPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0d << 16),
0x803f0000);
/* DCOMP PU */
mrc_alt_write_mask(DDRPHY,
CTLDLYPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0a << 16),
0x801f0000);
/* DCOMP PD */
mrc_alt_write_mask(DDRPHY,
CTLDLYPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x0a << 16),
0x801f0000);
#else
/* DQ TCOCOMP Overrides */
/* TCOCOMP PU */
mrc_alt_write_mask(DDRPHY,
DQTCOPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x1f << 16),
0x801f0000);
/* TCOCOMP PD */
mrc_alt_write_mask(DDRPHY,
DQTCOPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x1f << 16),
0x801f0000);
/* DQS TCOCOMP Overrides */
/* TCOCOMP PU */
mrc_alt_write_mask(DDRPHY,
DQSTCOPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x1f << 16),
0x801f0000);
/* TCOCOMP PD */
mrc_alt_write_mask(DDRPHY,
DQSTCOPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x1f << 16),
0x801f0000);
/* CLK TCOCOMP Overrides */
/* TCOCOMP PU */
mrc_alt_write_mask(DDRPHY,
CLKTCOPUCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x1f << 16),
0x801f0000);
/* TCOCOMP PD */
mrc_alt_write_mask(DDRPHY,
CLKTCOPDCTLCH0 + ch * DDRCOMP_CH_OFFSET,
(1 << 31) | (0x1f << 16),
0x801f0000);
#endif
/* program STATIC delays */
#ifdef BACKUP_WCMD
set_wcmd(ch, ddr_wcmd[PLATFORM_ID]);
#else
set_wcmd(ch, ddr_wclk[PLATFORM_ID] + HALF_CLK);
#endif
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables & (1 << rk)) {
set_wclk(ch, rk, ddr_wclk[PLATFORM_ID]);
#ifdef BACKUP_WCTL
set_wctl(ch, rk, ddr_wctl[PLATFORM_ID]);
#else
set_wctl(ch, rk, ddr_wclk[PLATFORM_ID] + HALF_CLK);
#endif
}
}
}
}
/* COMP (non channel specific) */
/* RCOMP: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, DQANADRVPUCTL, 1 << 30, 1 << 30);
/* RCOMP: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, DQANADRVPDCTL, 1 << 30, 1 << 30);
/* RCOMP: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, CMDANADRVPUCTL, 1 << 30, 1 << 30);
/* RCOMP: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, CMDANADRVPDCTL, 1 << 30, 1 << 30);
/* RCOMP: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, CLKANADRVPUCTL, 1 << 30, 1 << 30);
/* RCOMP: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, CLKANADRVPDCTL, 1 << 30, 1 << 30);
/* RCOMP: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, DQSANADRVPUCTL, 1 << 30, 1 << 30);
/* RCOMP: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, DQSANADRVPDCTL, 1 << 30, 1 << 30);
/* RCOMP: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, CTLANADRVPUCTL, 1 << 30, 1 << 30);
/* RCOMP: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, CTLANADRVPDCTL, 1 << 30, 1 << 30);
/* ODT: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, DQANAODTPUCTL, 1 << 30, 1 << 30);
/* ODT: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, DQANAODTPDCTL, 1 << 30, 1 << 30);
/* ODT: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, CLKANAODTPUCTL, 1 << 30, 1 << 30);
/* ODT: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, CLKANAODTPDCTL, 1 << 30, 1 << 30);
/* ODT: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, DQSANAODTPUCTL, 1 << 30, 1 << 30);
/* ODT: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, DQSANAODTPDCTL, 1 << 30, 1 << 30);
/* DCOMP: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, DQANADLYPUCTL, 1 << 30, 1 << 30);
/* DCOMP: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, DQANADLYPDCTL, 1 << 30, 1 << 30);
/* DCOMP: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, CMDANADLYPUCTL, 1 << 30, 1 << 30);
/* DCOMP: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, CMDANADLYPDCTL, 1 << 30, 1 << 30);
/* DCOMP: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, CLKANADLYPUCTL, 1 << 30, 1 << 30);
/* DCOMP: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, CLKANADLYPDCTL, 1 << 30, 1 << 30);
/* DCOMP: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, DQSANADLYPUCTL, 1 << 30, 1 << 30);
/* DCOMP: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, DQSANADLYPDCTL, 1 << 30, 1 << 30);
/* DCOMP: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, CTLANADLYPUCTL, 1 << 30, 1 << 30);
/* DCOMP: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, CTLANADLYPDCTL, 1 << 30, 1 << 30);
/* TCO: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, DQANATCOPUCTL, 1 << 30, 1 << 30);
/* TCO: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, DQANATCOPDCTL, 1 << 30, 1 << 30);
/* TCO: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, CLKANATCOPUCTL, 1 << 30, 1 << 30);
/* TCO: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, CLKANATCOPDCTL, 1 << 30, 1 << 30);
/* TCO: Dither PU Enable */
mrc_alt_write_mask(DDRPHY, DQSANATCOPUCTL, 1 << 30, 1 << 30);
/* TCO: Dither PD Enable */
mrc_alt_write_mask(DDRPHY, DQSANATCOPDCTL, 1 << 30, 1 << 30);
/* TCOCOMP: Pulse Count */
mrc_alt_write_mask(DDRPHY, TCOCNTCTRL, 1, 3);
/* ODT: CMD/CTL PD/PU */
mrc_alt_write_mask(DDRPHY, CHNLBUFSTATIC,
(0x03 << 24) | (0x03 << 16), 0x1f1f0000);
/* Set 1us counter */
mrc_alt_write_mask(DDRPHY, MSCNTR, 0x64, 0xff);
mrc_alt_write_mask(DDRPHY, LATCH1CTL, 0x1 << 28, 0x70000000);
/* Release PHY from reset */
mrc_alt_write_mask(DDRPHY, MASTERRSTN, 1, 1);
/* STEP1 */
mrc_post_code(0x03, 0x11);
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
/* DQ01-DQ23 */
for (bl_grp = 0;
bl_grp < (NUM_BYTE_LANES / bl_divisor) / 2;
bl_grp++) {
mrc_alt_write_mask(DDRPHY,
DQMDLLCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
1 << 13,
1 << 13); /* Enable VREG */
delay_n(3);
}
/* ECC */
mrc_alt_write_mask(DDRPHY, ECCMDLLCTL,
1 << 13, 1 << 13); /* Enable VREG */
delay_n(3);
/* CMD */
mrc_alt_write_mask(DDRPHY,
CMDMDLLCTL + ch * DDRIOCCC_CH_OFFSET,
1 << 13, 1 << 13); /* Enable VREG */
delay_n(3);
/* CLK-CTL */
mrc_alt_write_mask(DDRPHY,
CCMDLLCTL + ch * DDRIOCCC_CH_OFFSET,
1 << 13, 1 << 13); /* Enable VREG */
delay_n(3);
}
}
/* STEP2 */
mrc_post_code(0x03, 0x12);
delay_n(200);
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
/* DQ01-DQ23 */
for (bl_grp = 0;
bl_grp < (NUM_BYTE_LANES / bl_divisor) / 2;
bl_grp++) {
mrc_alt_write_mask(DDRPHY,
DQMDLLCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
1 << 17,
1 << 17); /* Enable MCDLL */
delay_n(50);
}
/* ECC */
mrc_alt_write_mask(DDRPHY, ECCMDLLCTL,
1 << 17, 1 << 17); /* Enable MCDLL */
delay_n(50);
/* CMD */
mrc_alt_write_mask(DDRPHY,
CMDMDLLCTL + ch * DDRIOCCC_CH_OFFSET,
1 << 18, 1 << 18); /* Enable MCDLL */
delay_n(50);
/* CLK-CTL */
mrc_alt_write_mask(DDRPHY,
CCMDLLCTL + ch * DDRIOCCC_CH_OFFSET,
1 << 18, 1 << 18); /* Enable MCDLL */
delay_n(50);
}
}
/* STEP3: */
mrc_post_code(0x03, 0x13);
delay_n(100);
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
/* DQ01-DQ23 */
for (bl_grp = 0;
bl_grp < (NUM_BYTE_LANES / bl_divisor) / 2;
bl_grp++) {
#ifdef FORCE_16BIT_DDRIO
temp = (bl_grp &&
(mrc_params->channel_width == X16)) ?
0x11ff : 0xffff;
#else
temp = 0xffff;
#endif
/* Enable TXDLL */
mrc_alt_write_mask(DDRPHY,
DQDLLTXCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
temp, 0xffff);
delay_n(3);
/* Enable RXDLL */
mrc_alt_write_mask(DDRPHY,
DQDLLRXCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
0xf, 0xf);
delay_n(3);
/* Enable RXDLL Overrides BL0 */
mrc_alt_write_mask(DDRPHY,
B0OVRCTL +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
0xf, 0xf);
}
/* ECC */
temp = 0xffff;
mrc_alt_write_mask(DDRPHY, ECCDLLTXCTL,
temp, 0xffff);
delay_n(3);
/* CMD (PO) */
mrc_alt_write_mask(DDRPHY,
CMDDLLTXCTL + ch * DDRIOCCC_CH_OFFSET,
temp, 0xffff);
delay_n(3);
}
}
/* STEP4 */
mrc_post_code(0x03, 0x14);
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
/* Host To Memory Clock Alignment (HMC) for 800/1066 */
for (bl_grp = 0;
bl_grp < (NUM_BYTE_LANES / bl_divisor) / 2;
bl_grp++) {
/* CLK_ALIGN_MOD_ID */
mrc_alt_write_mask(DDRPHY,
DQCLKALIGNREG2 +
bl_grp * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
bl_grp ? 3 : 1,
0xf);
}
mrc_alt_write_mask(DDRPHY,
ECCCLKALIGNREG2 + ch * DDRIODQ_CH_OFFSET,
0x2, 0xf);
mrc_alt_write_mask(DDRPHY,
CMDCLKALIGNREG2 + ch * DDRIODQ_CH_OFFSET,
0x0, 0xf);
mrc_alt_write_mask(DDRPHY,
CCCLKALIGNREG2 + ch * DDRIODQ_CH_OFFSET,
0x2, 0xf);
mrc_alt_write_mask(DDRPHY,
CMDCLKALIGNREG0 + ch * DDRIOCCC_CH_OFFSET,
0x20, 0x30);
/*
* NUM_SAMPLES, MAX_SAMPLES,
* MACRO_PI_STEP, MICRO_PI_STEP
*/
mrc_alt_write_mask(DDRPHY,
CMDCLKALIGNREG1 + ch * DDRIOCCC_CH_OFFSET,
(0x18 << 16) | (0x10 << 8) |
(0x8 << 2) | (0x1 << 0),
0x007f7fff);
/* TOTAL_NUM_MODULES, FIRST_U_PARTITION */
mrc_alt_write_mask(DDRPHY,
CMDCLKALIGNREG2 + ch * DDRIOCCC_CH_OFFSET,
(0x10 << 16) | (0x4 << 8) | (0x2 << 4),
0x001f0ff0);
#ifdef HMC_TEST
/* START_CLK_ALIGN=1 */
mrc_alt_write_mask(DDRPHY,
CMDCLKALIGNREG0 + ch * DDRIOCCC_CH_OFFSET,
1 << 24, 1 << 24);
while (msg_port_alt_read(DDRPHY,
CMDCLKALIGNREG0 + ch * DDRIOCCC_CH_OFFSET) &
(1 << 24))
; /* wait for START_CLK_ALIGN=0 */
#endif
/* Set RD/WR Pointer Seperation & COUNTEN & FIFOPTREN */
mrc_alt_write_mask(DDRPHY,
CMDPTRREG + ch * DDRIOCCC_CH_OFFSET,
1, 1); /* WRPTRENABLE=1 */
/* COMP initial */
/* enable bypass for CLK buffer (PO) */
mrc_alt_write_mask(DDRPHY,
COMPEN0CH0 + ch * DDRCOMP_CH_OFFSET,
1 << 5, 1 << 5);
/* Initial COMP Enable */
mrc_alt_write_mask(DDRPHY, CMPCTRL, 1, 1);
/* wait for Initial COMP Enable = 0 */
while (msg_port_alt_read(DDRPHY, CMPCTRL) & 1)
;
/* disable bypass for CLK buffer (PO) */
mrc_alt_write_mask(DDRPHY,
COMPEN0CH0 + ch * DDRCOMP_CH_OFFSET,
~(1 << 5), 1 << 5);
/* IOBUFACT */
/* STEP4a */
mrc_alt_write_mask(DDRPHY,
CMDCFGREG0 + ch * DDRIOCCC_CH_OFFSET,
1 << 2, 1 << 2); /* IOBUFACTRST_N=1 */
/* DDRPHY initialization complete */
mrc_alt_write_mask(DDRPHY,
CMDPMCONFIG0 + ch * DDRIOCCC_CH_OFFSET,
1 << 20, 1 << 20); /* SPID_INIT_COMPLETE=1 */
}
}
LEAVEFN();
}
/* This function performs JEDEC initialization on all enabled channels */
void perform_jedec_init(struct mrc_params *mrc_params)
{
uint8_t twr, wl, rank;
uint32_t tck;
u32 dtr0;
u32 drp;
u32 drmc;
u32 mrs0_cmd = 0;
u32 emrs1_cmd = 0;
u32 emrs2_cmd = 0;
u32 emrs3_cmd = 0;
ENTERFN();
/* jedec_init starts */
mrc_post_code(0x04, 0x00);
/* DDR3_RESET_SET=0, DDR3_RESET_RESET=1 */
mrc_alt_write_mask(DDRPHY, CCDDR3RESETCTL, 2, 0x102);
/* Assert RESET# for 200us */
delay_u(200);
/* DDR3_RESET_SET=1, DDR3_RESET_RESET=0 */
mrc_alt_write_mask(DDRPHY, CCDDR3RESETCTL, 0x100, 0x102);
dtr0 = msg_port_read(MEM_CTLR, DTR0);
/*
* Set CKEVAL for populated ranks
* then send NOP to each rank (#4550197)
*/
drp = msg_port_read(MEM_CTLR, DRP);
drp &= 0x3;
drmc = msg_port_read(MEM_CTLR, DRMC);
drmc &= 0xfffffffc;
drmc |= (DRMC_CKEMODE | drp);
msg_port_write(MEM_CTLR, DRMC, drmc);
for (rank = 0; rank < NUM_RANKS; rank++) {
/* Skip to next populated rank */
if ((mrc_params->rank_enables & (1 << rank)) == 0)
continue;
dram_init_command(DCMD_NOP(rank));
}
msg_port_write(MEM_CTLR, DRMC,
(mrc_params->rd_odt_value == 0 ? DRMC_ODTMODE : 0));
/*
* setup for emrs 2
* BIT[15:11] --> Always "0"
* BIT[10:09] --> Rtt_WR: want "Dynamic ODT Off" (0)
* BIT[08] --> Always "0"
* BIT[07] --> SRT: use sr_temp_range
* BIT[06] --> ASR: want "Manual SR Reference" (0)
* BIT[05:03] --> CWL: use oem_tCWL
* BIT[02:00] --> PASR: want "Full Array" (0)
*/
emrs2_cmd |= (2 << 3);
wl = 5 + mrc_params->ddr_speed;
emrs2_cmd |= ((wl - 5) << 9);
emrs2_cmd |= (mrc_params->sr_temp_range << 13);
/*
* setup for emrs 3
* BIT[15:03] --> Always "0"
* BIT[02] --> MPR: want "Normal Operation" (0)
* BIT[01:00] --> MPR_Loc: want "Predefined Pattern" (0)
*/
emrs3_cmd |= (3 << 3);
/*
* setup for emrs 1
* BIT[15:13] --> Always "0"
* BIT[12:12] --> Qoff: want "Output Buffer Enabled" (0)
* BIT[11:11] --> TDQS: want "Disabled" (0)
* BIT[10:10] --> Always "0"
* BIT[09,06,02] --> Rtt_nom: use rtt_nom_value
* BIT[08] --> Always "0"
* BIT[07] --> WR_LVL: want "Disabled" (0)
* BIT[05,01] --> DIC: use ron_value
* BIT[04:03] --> AL: additive latency want "0" (0)
* BIT[00] --> DLL: want "Enable" (0)
*
* (BIT5|BIT1) set Ron value
* 00 --> RZQ/6 (40ohm)
* 01 --> RZQ/7 (34ohm)
* 1* --> RESERVED
*
* (BIT9|BIT6|BIT2) set Rtt_nom value
* 000 --> Disabled
* 001 --> RZQ/4 ( 60ohm)
* 010 --> RZQ/2 (120ohm)
* 011 --> RZQ/6 ( 40ohm)
* 1** --> RESERVED
*/
emrs1_cmd |= (1 << 3);
emrs1_cmd &= ~(1 << 6);
if (mrc_params->ron_value == 0)
emrs1_cmd |= (1 << 7);
else
emrs1_cmd &= ~(1 << 7);
if (mrc_params->rtt_nom_value == 0)
emrs1_cmd |= (DDR3_EMRS1_RTTNOM_40 << 6);
else if (mrc_params->rtt_nom_value == 1)
emrs1_cmd |= (DDR3_EMRS1_RTTNOM_60 << 6);
else if (mrc_params->rtt_nom_value == 2)
emrs1_cmd |= (DDR3_EMRS1_RTTNOM_120 << 6);
/* save MRS1 value (excluding control fields) */
mrc_params->mrs1 = emrs1_cmd >> 6;
/*
* setup for mrs 0
* BIT[15:13] --> Always "0"
* BIT[12] --> PPD: for Quark (1)
* BIT[11:09] --> WR: use oem_tWR
* BIT[08] --> DLL: want "Reset" (1, self clearing)
* BIT[07] --> MODE: want "Normal" (0)
* BIT[06:04,02] --> CL: use oem_tCAS
* BIT[03] --> RD_BURST_TYPE: want "Interleave" (1)
* BIT[01:00] --> BL: want "8 Fixed" (0)
* WR:
* 0 --> 16
* 1 --> 5
* 2 --> 6
* 3 --> 7
* 4 --> 8
* 5 --> 10
* 6 --> 12
* 7 --> 14
* CL:
* BIT[02:02] "0" if oem_tCAS <= 11 (1866?)
* BIT[06:04] use oem_tCAS-4
*/
mrs0_cmd |= (1 << 14);
mrs0_cmd |= (1 << 18);
mrs0_cmd |= ((((dtr0 >> 12) & 7) + 1) << 10);
tck = t_ck[mrc_params->ddr_speed];
/* Per JEDEC: tWR=15000ps DDR2/3 from 800-1600 */
twr = MCEIL(15000, tck);
mrs0_cmd |= ((twr - 4) << 15);
for (rank = 0; rank < NUM_RANKS; rank++) {
/* Skip to next populated rank */
if ((mrc_params->rank_enables & (1 << rank)) == 0)
continue;
emrs2_cmd |= (rank << 22);
dram_init_command(emrs2_cmd);
emrs3_cmd |= (rank << 22);
dram_init_command(emrs3_cmd);
emrs1_cmd |= (rank << 22);
dram_init_command(emrs1_cmd);
mrs0_cmd |= (rank << 22);
dram_init_command(mrs0_cmd);
dram_init_command(DCMD_ZQCL(rank));
}
LEAVEFN();
}
/*
* Dunit Initialization Complete
*
* Indicates that initialization of the Dunit has completed.
*
* Memory accesses are permitted and maintenance operation begins.
* Until this bit is set to a 1, the memory controller will not accept
* DRAM requests from the MEMORY_MANAGER or HTE.
*/
void set_ddr_init_complete(struct mrc_params *mrc_params)
{
u32 dco;
ENTERFN();
dco = msg_port_read(MEM_CTLR, DCO);
dco &= ~DCO_PMICTL;
dco |= DCO_IC;
msg_port_write(MEM_CTLR, DCO, dco);
LEAVEFN();
}
/*
* This function will retrieve relevant timing data
*
* This data will be used on subsequent boots to speed up boot times
* and is required for Suspend To RAM capabilities.
*/
void restore_timings(struct mrc_params *mrc_params)
{
uint8_t ch, rk, bl;
const struct mrc_timings *mt = &mrc_params->timings;
for (ch = 0; ch < NUM_CHANNELS; ch++) {
for (rk = 0; rk < NUM_RANKS; rk++) {
for (bl = 0; bl < NUM_BYTE_LANES; bl++) {
set_rcvn(ch, rk, bl, mt->rcvn[ch][rk][bl]);
set_rdqs(ch, rk, bl, mt->rdqs[ch][rk][bl]);
set_wdqs(ch, rk, bl, mt->wdqs[ch][rk][bl]);
set_wdq(ch, rk, bl, mt->wdq[ch][rk][bl]);
if (rk == 0) {
/* VREF (RANK0 only) */
set_vref(ch, bl, mt->vref[ch][bl]);
}
}
set_wctl(ch, rk, mt->wctl[ch][rk]);
}
set_wcmd(ch, mt->wcmd[ch]);
}
}
/*
* Configure default settings normally set as part of read training
*
* Some defaults have to be set earlier as they may affect earlier
* training steps.
*/
void default_timings(struct mrc_params *mrc_params)
{
uint8_t ch, rk, bl;
for (ch = 0; ch < NUM_CHANNELS; ch++) {
for (rk = 0; rk < NUM_RANKS; rk++) {
for (bl = 0; bl < NUM_BYTE_LANES; bl++) {
set_rdqs(ch, rk, bl, 24);
if (rk == 0) {
/* VREF (RANK0 only) */
set_vref(ch, bl, 32);
}
}
}
}
}
/*
* This function will perform our RCVEN Calibration Algorithm.
* We will only use the 2xCLK domain timings to perform RCVEN Calibration.
* All byte lanes will be calibrated "simultaneously" per channel per rank.
*/
void rcvn_cal(struct mrc_params *mrc_params)
{
uint8_t ch; /* channel counter */
uint8_t rk; /* rank counter */
uint8_t bl; /* byte lane counter */
uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1;
#ifdef R2R_SHARING
/* used to find placement for rank2rank sharing configs */
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES];
#ifndef BACKUP_RCVN
/* used to find placement for rank2rank sharing configs */
uint32_t num_ranks_enabled = 0;
#endif
#endif
#ifdef BACKUP_RCVN
#else
uint32_t temp;
/* absolute PI value to be programmed on the byte lane */
uint32_t delay[NUM_BYTE_LANES];
u32 dtr1, dtr1_save;
#endif
ENTERFN();
/* rcvn_cal starts */
mrc_post_code(0x05, 0x00);
#ifndef BACKUP_RCVN
/* need separate burst to sample DQS preamble */
dtr1 = msg_port_read(MEM_CTLR, DTR1);
dtr1_save = dtr1;
dtr1 |= DTR1_TCCD_12CLK;
msg_port_write(MEM_CTLR, DTR1, dtr1);
#endif
#ifdef R2R_SHARING
/* need to set "final_delay[][]" elements to "0" */
memset((void *)(final_delay), 0x00, (size_t)sizeof(final_delay));
#endif
/* loop through each enabled channel */
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
/* perform RCVEN Calibration on a per rank basis */
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables & (1 << rk)) {
/*
* POST_CODE here indicates the current
* channel and rank being calibrated
*/
mrc_post_code(0x05, 0x10 + ((ch << 4) | rk));
#ifdef BACKUP_RCVN
/* et hard-coded timing values */
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++)
set_rcvn(ch, rk, bl, ddr_rcvn[PLATFORM_ID]);
#else
/* enable FIFORST */
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl += 2) {
mrc_alt_write_mask(DDRPHY,
B01PTRCTL1 +
(bl >> 1) * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
0, 1 << 8);
}
/* initialize the starting delay to 128 PI (cas +1 CLK) */
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
/* 1x CLK domain timing is cas-4 */
delay[bl] = (4 + 1) * FULL_CLK;
set_rcvn(ch, rk, bl, delay[bl]);
}
/* now find the rising edge */
find_rising_edge(mrc_params, delay, ch, rk, true);
/* Now increase delay by 32 PI (1/4 CLK) to place in center of high pulse */
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
delay[bl] += QRTR_CLK;
set_rcvn(ch, rk, bl, delay[bl]);
}
/* Now decrement delay by 128 PI (1 CLK) until we sample a "0" */
do {
temp = sample_dqs(mrc_params, ch, rk, true);
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
if (temp & (1 << bl)) {
if (delay[bl] >= FULL_CLK) {
delay[bl] -= FULL_CLK;
set_rcvn(ch, rk, bl, delay[bl]);
} else {
/* not enough delay */
training_message(ch, rk, bl);
mrc_post_code(0xee, 0x50);
}
}
}
} while (temp & 0xff);
#ifdef R2R_SHARING
/* increment "num_ranks_enabled" */
num_ranks_enabled++;
/* Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble */
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
delay[bl] += QRTR_CLK;
/* add "delay[]" values to "final_delay[][]" for rolling average */
final_delay[ch][bl] += delay[bl];
/* set timing based on rolling average values */
set_rcvn(ch, rk, bl, final_delay[ch][bl] / num_ranks_enabled);
}
#else
/* Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble */
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
delay[bl] += QRTR_CLK;
set_rcvn(ch, rk, bl, delay[bl]);
}
#endif
/* disable FIFORST */
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl += 2) {
mrc_alt_write_mask(DDRPHY,
B01PTRCTL1 +
(bl >> 1) * DDRIODQ_BL_OFFSET +
ch * DDRIODQ_CH_OFFSET,
1 << 8, 1 << 8);
}
#endif
}
}
}
}
#ifndef BACKUP_RCVN
/* restore original */
msg_port_write(MEM_CTLR, DTR1, dtr1_save);
#endif
LEAVEFN();
}
/*
* This function will perform the Write Levelling algorithm
* (align WCLK and WDQS).
*
* This algorithm will act on each rank in each channel separately.
*/
void wr_level(struct mrc_params *mrc_params)
{
uint8_t ch; /* channel counter */
uint8_t rk; /* rank counter */
uint8_t bl; /* byte lane counter */
uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1;
#ifdef R2R_SHARING
/* used to find placement for rank2rank sharing configs */
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES];
#ifndef BACKUP_WDQS
/* used to find placement for rank2rank sharing configs */
uint32_t num_ranks_enabled = 0;
#endif
#endif
#ifdef BACKUP_WDQS
#else
/* determines stop condition for CRS_WR_LVL */
bool all_edges_found;
/* absolute PI value to be programmed on the byte lane */
uint32_t delay[NUM_BYTE_LANES];
/*
* static makes it so the data is loaded in the heap once by shadow(),
* where non-static copies the data onto the stack every time this
* function is called
*/
uint32_t address; /* address to be checked during COARSE_WR_LVL */
u32 dtr4, dtr4_save;
#endif
ENTERFN();
/* wr_level starts */
mrc_post_code(0x06, 0x00);
#ifdef R2R_SHARING
/* need to set "final_delay[][]" elements to "0" */
memset((void *)(final_delay), 0x00, (size_t)sizeof(final_delay));
#endif
/* loop through each enabled channel */
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
/* perform WRITE LEVELING algorithm on a per rank basis */
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables & (1 << rk)) {
/*
* POST_CODE here indicates the current
* rank and channel being calibrated
*/
mrc_post_code(0x06, 0x10 + ((ch << 4) | rk));
#ifdef BACKUP_WDQS
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
set_wdqs(ch, rk, bl, ddr_wdqs[PLATFORM_ID]);
set_wdq(ch, rk, bl, ddr_wdqs[PLATFORM_ID] - QRTR_CLK);
}
#else
/*
* perform a single PRECHARGE_ALL command to
* make DRAM state machine go to IDLE state
*/
dram_init_command(DCMD_PREA(rk));
/*
* enable Write Levelling Mode
* (EMRS1 w/ Write Levelling Mode Enable)
*/
dram_init_command(DCMD_MRS1(rk, 0x82));
/*
* set ODT DRAM Full Time Termination
* disable in MCU
*/
dtr4 = msg_port_read(MEM_CTLR, DTR4);
dtr4_save = dtr4;
dtr4 |= DTR4_ODTDIS;
msg_port_write(MEM_CTLR, DTR4, dtr4);
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor) / 2; bl++) {
/*
* Enable Sandy Bridge Mode (WDQ Tri-State) &
* Ensure 5 WDQS pulses during Write Leveling
*/
mrc_alt_write_mask(DDRPHY,
DQCTL + DDRIODQ_BL_OFFSET * bl + DDRIODQ_CH_OFFSET * ch,
0x10000154,
0x100003fc);
}
/* Write Leveling Mode enabled in IO */
mrc_alt_write_mask(DDRPHY,
CCDDR3RESETCTL + DDRIOCCC_CH_OFFSET * ch,
1 << 16, 1 << 16);
/* Initialize the starting delay to WCLK */
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
/*
* CLK0 --> RK0
* CLK1 --> RK1
*/
delay[bl] = get_wclk(ch, rk);
set_wdqs(ch, rk, bl, delay[bl]);
}
/* now find the rising edge */
find_rising_edge(mrc_params, delay, ch, rk, false);
/* disable Write Levelling Mode */
mrc_alt_write_mask(DDRPHY,
CCDDR3RESETCTL + DDRIOCCC_CH_OFFSET * ch,
0, 1 << 16);
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor) / 2; bl++) {
/* Disable Sandy Bridge Mode & Ensure 4 WDQS pulses during normal operation */
mrc_alt_write_mask(DDRPHY,
DQCTL + DDRIODQ_BL_OFFSET * bl + DDRIODQ_CH_OFFSET * ch,
0x00000154,
0x100003fc);
}
/* restore original DTR4 */
msg_port_write(MEM_CTLR, DTR4, dtr4_save);
/*
* restore original value
* (Write Levelling Mode Disable)
*/
dram_init_command(DCMD_MRS1(rk, mrc_params->mrs1));
/*
* perform a single PRECHARGE_ALL command to
* make DRAM state machine go to IDLE state
*/
dram_init_command(DCMD_PREA(rk));
mrc_post_code(0x06, 0x30 + ((ch << 4) | rk));
/*
* COARSE WRITE LEVEL:
* check that we're on the correct clock edge
*/
/* hte reconfiguration request */
mrc_params->hte_setup = 1;
/* start CRS_WR_LVL with WDQS = WDQS + 128 PI */
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
delay[bl] = get_wdqs(ch, rk, bl) + FULL_CLK;
set_wdqs(ch, rk, bl, delay[bl]);
/*
* program WDQ timings based on WDQS
* (WDQ = WDQS - 32 PI)
*/
set_wdq(ch, rk, bl, (delay[bl] - QRTR_CLK));
}
/* get an address in the targeted channel/rank */
address = get_addr(ch, rk);
do {
uint32_t coarse_result = 0x00;
uint32_t coarse_result_mask = byte_lane_mask(mrc_params);
/* assume pass */
all_edges_found = true;
mrc_params->hte_setup = 1;
coarse_result = check_rw_coarse(mrc_params, address);
/* check for failures and margin the byte lane back 128 PI (1 CLK) */
for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) {
if (coarse_result & (coarse_result_mask << bl)) {
all_edges_found = false;
delay[bl] -= FULL_CLK;
set_wdqs(ch, rk, bl, delay[bl]);
/* program WDQ timings based on WDQS (WDQ = WDQS - 32 PI) */
set_wdq(ch, rk, bl, delay[bl] - QRTR_CLK);
}
}
} while (!all_edges_found);
#ifdef R2R_SHARING
/* increment "num_ranks_enabled" */
num_ranks_enabled++;
/* accumulate "final_delay[][]" values from "delay[]" values for rolling average */
for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) {
final_delay[ch][bl] += delay[bl];
set_wdqs(ch, rk, bl, final_delay[ch][bl] / num_ranks_enabled);
/* program WDQ timings based on WDQS (WDQ = WDQS - 32 PI) */
set_wdq(ch, rk, bl, final_delay[ch][bl] / num_ranks_enabled - QRTR_CLK);
}
#endif
#endif
}
}
}
}
LEAVEFN();
}
void prog_page_ctrl(struct mrc_params *mrc_params)
{
u32 dpmc0;
ENTERFN();
dpmc0 = msg_port_read(MEM_CTLR, DPMC0);
dpmc0 &= ~DPMC0_PCLSTO_MASK;
dpmc0 |= (4 << 16);
dpmc0 |= DPMC0_PREAPWDEN;
msg_port_write(MEM_CTLR, DPMC0, dpmc0);
}
/*
* This function will perform the READ TRAINING Algorithm on all
* channels/ranks/byte_lanes simultaneously to minimize execution time.
*
* The idea here is to train the VREF and RDQS (and eventually RDQ) values
* to achieve maximum READ margins. The algorithm will first determine the
* X coordinate (RDQS setting). This is done by collapsing the VREF eye
* until we find a minimum required RDQS eye for VREF_MIN and VREF_MAX.
* Then we take the averages of the RDQS eye at VREF_MIN and VREF_MAX,
* then average those; this will be the final X coordinate. The algorithm
* will then determine the Y coordinate (VREF setting). This is done by
* collapsing the RDQS eye until we find a minimum required VREF eye for
* RDQS_MIN and RDQS_MAX. Then we take the averages of the VREF eye at
* RDQS_MIN and RDQS_MAX, then average those; this will be the final Y
* coordinate.
*
* NOTE: this algorithm assumes the eye curves have a one-to-one relationship,
* meaning for each X the curve has only one Y and vice-a-versa.
*/
void rd_train(struct mrc_params *mrc_params)
{
uint8_t ch; /* channel counter */
uint8_t rk; /* rank counter */
uint8_t bl; /* byte lane counter */
uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1;
#ifdef BACKUP_RDQS
#else
uint8_t side_x; /* tracks LEFT/RIGHT approach vectors */
uint8_t side_y; /* tracks BOTTOM/TOP approach vectors */
/* X coordinate data (passing RDQS values) for approach vectors */
uint8_t x_coordinate[2][2][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES];
/* Y coordinate data (passing VREF values) for approach vectors */
uint8_t y_coordinate[2][2][NUM_CHANNELS][NUM_BYTE_LANES];
/* centered X (RDQS) */
uint8_t x_center[NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES];
/* centered Y (VREF) */
uint8_t y_center[NUM_CHANNELS][NUM_BYTE_LANES];
uint32_t address; /* target address for check_bls_ex() */
uint32_t result; /* result of check_bls_ex() */
uint32_t bl_mask; /* byte lane mask for result checking */
#ifdef R2R_SHARING
/* used to find placement for rank2rank sharing configs */
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES];
/* used to find placement for rank2rank sharing configs */
uint32_t num_ranks_enabled = 0;
#endif
#endif
/* rd_train starts */
mrc_post_code(0x07, 0x00);
ENTERFN();
#ifdef BACKUP_RDQS
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables & (1 << rk)) {
for (bl = 0;
bl < NUM_BYTE_LANES / bl_divisor;
bl++) {
set_rdqs(ch, rk, bl, ddr_rdqs[PLATFORM_ID]);
}
}
}
}
}
#else
/* initialize x/y_coordinate arrays */
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables & (1 << rk)) {
for (bl = 0;
bl < NUM_BYTE_LANES / bl_divisor;
bl++) {
/* x_coordinate */
x_coordinate[L][B][ch][rk][bl] = RDQS_MIN;
x_coordinate[R][B][ch][rk][bl] = RDQS_MAX;
x_coordinate[L][T][ch][rk][bl] = RDQS_MIN;
x_coordinate[R][T][ch][rk][bl] = RDQS_MAX;
/* y_coordinate */
y_coordinate[L][B][ch][bl] = VREF_MIN;
y_coordinate[R][B][ch][bl] = VREF_MIN;
y_coordinate[L][T][ch][bl] = VREF_MAX;
y_coordinate[R][T][ch][bl] = VREF_MAX;
}
}
}
}
}
/* initialize other variables */
bl_mask = byte_lane_mask(mrc_params);
address = get_addr(0, 0);
#ifdef R2R_SHARING
/* need to set "final_delay[][]" elements to "0" */
memset((void *)(final_delay), 0x00, (size_t)sizeof(final_delay));
#endif
/* look for passing coordinates */
for (side_y = B; side_y <= T; side_y++) {
for (side_x = L; side_x <= R; side_x++) {
mrc_post_code(0x07, 0x10 + side_y * 2 + side_x);
/* find passing values */
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (0x1 << ch)) {
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables &
(0x1 << rk)) {
/* set x/y_coordinate search starting settings */
for (bl = 0;
bl < NUM_BYTE_LANES / bl_divisor;
bl++) {
set_rdqs(ch, rk, bl,
x_coordinate[side_x][side_y][ch][rk][bl]);
set_vref(ch, bl,
y_coordinate[side_x][side_y][ch][bl]);
}
/* get an address in the target channel/rank */
address = get_addr(ch, rk);
/* request HTE reconfiguration */
mrc_params->hte_setup = 1;
/* test the settings */
do {
/* result[07:00] == failing byte lane (MAX 8) */
result = check_bls_ex(mrc_params, address);
/* check for failures */
if (result & 0xff) {
/* at least 1 byte lane failed */
for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) {
if (result &
(bl_mask << bl)) {
/* adjust the RDQS values accordingly */
if (side_x == L)
x_coordinate[L][side_y][ch][rk][bl] += RDQS_STEP;
else
x_coordinate[R][side_y][ch][rk][bl] -= RDQS_STEP;
/* check that we haven't closed the RDQS_EYE too much */
if ((x_coordinate[L][side_y][ch][rk][bl] > (RDQS_MAX - MIN_RDQS_EYE)) ||
(x_coordinate[R][side_y][ch][rk][bl] < (RDQS_MIN + MIN_RDQS_EYE)) ||
(x_coordinate[L][side_y][ch][rk][bl] ==
x_coordinate[R][side_y][ch][rk][bl])) {
/*
* not enough RDQS margin available at this VREF
* update VREF values accordingly
*/
if (side_y == B)
y_coordinate[side_x][B][ch][bl] += VREF_STEP;
else
y_coordinate[side_x][T][ch][bl] -= VREF_STEP;
/* check that we haven't closed the VREF_EYE too much */
if ((y_coordinate[side_x][B][ch][bl] > (VREF_MAX - MIN_VREF_EYE)) ||
(y_coordinate[side_x][T][ch][bl] < (VREF_MIN + MIN_VREF_EYE)) ||
(y_coordinate[side_x][B][ch][bl] == y_coordinate[side_x][T][ch][bl])) {
/* VREF_EYE collapsed below MIN_VREF_EYE */
training_message(ch, rk, bl);
mrc_post_code(0xEE, 0x70 + side_y * 2 + side_x);
} else {
/* update the VREF setting */
set_vref(ch, bl, y_coordinate[side_x][side_y][ch][bl]);
/* reset the X coordinate to begin the search at the new VREF */
x_coordinate[side_x][side_y][ch][rk][bl] =
(side_x == L) ? RDQS_MIN : RDQS_MAX;
}
}
/* update the RDQS setting */
set_rdqs(ch, rk, bl, x_coordinate[side_x][side_y][ch][rk][bl]);
}
}
}
} while (result & 0xff);
}
}
}
}
}
}
mrc_post_code(0x07, 0x20);
/* find final RDQS (X coordinate) & final VREF (Y coordinate) */
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables & (1 << rk)) {
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
uint32_t temp1;
uint32_t temp2;
/* x_coordinate */
DPF(D_INFO,
"RDQS T/B eye rank%d lane%d : %d-%d %d-%d\n",
rk, bl,
x_coordinate[L][T][ch][rk][bl],
x_coordinate[R][T][ch][rk][bl],
x_coordinate[L][B][ch][rk][bl],
x_coordinate[R][B][ch][rk][bl]);
/* average the TOP side LEFT & RIGHT values */
temp1 = (x_coordinate[R][T][ch][rk][bl] + x_coordinate[L][T][ch][rk][bl]) / 2;
/* average the BOTTOM side LEFT & RIGHT values */
temp2 = (x_coordinate[R][B][ch][rk][bl] + x_coordinate[L][B][ch][rk][bl]) / 2;
/* average the above averages */
x_center[ch][rk][bl] = (uint8_t) ((temp1 + temp2) / 2);
/* y_coordinate */
DPF(D_INFO,
"VREF R/L eye lane%d : %d-%d %d-%d\n",
bl,
y_coordinate[R][B][ch][bl],
y_coordinate[R][T][ch][bl],
y_coordinate[L][B][ch][bl],
y_coordinate[L][T][ch][bl]);
/* average the RIGHT side TOP & BOTTOM values */
temp1 = (y_coordinate[R][T][ch][bl] + y_coordinate[R][B][ch][bl]) / 2;
/* average the LEFT side TOP & BOTTOM values */
temp2 = (y_coordinate[L][T][ch][bl] + y_coordinate[L][B][ch][bl]) / 2;
/* average the above averages */
y_center[ch][bl] = (uint8_t) ((temp1 + temp2) / 2);
}
}
}
}
}
#ifdef RX_EYE_CHECK
/* perform an eye check */
for (side_y = B; side_y <= T; side_y++) {
for (side_x = L; side_x <= R; side_x++) {
mrc_post_code(0x07, 0x30 + side_y * 2 + side_x);
/* update the settings for the eye check */
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables & (1 << rk)) {
for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) {
if (side_x == L)
set_rdqs(ch, rk, bl, x_center[ch][rk][bl] - (MIN_RDQS_EYE / 2));
else
set_rdqs(ch, rk, bl, x_center[ch][rk][bl] + (MIN_RDQS_EYE / 2));
if (side_y == B)
set_vref(ch, bl, y_center[ch][bl] - (MIN_VREF_EYE / 2));
else
set_vref(ch, bl, y_center[ch][bl] + (MIN_VREF_EYE / 2));
}
}
}
}
}
/* request HTE reconfiguration */
mrc_params->hte_setup = 1;
/* check the eye */
if (check_bls_ex(mrc_params, address) & 0xff) {
/* one or more byte lanes failed */
mrc_post_code(0xee, 0x74 + side_x * 2 + side_y);
}
}
}
#endif
mrc_post_code(0x07, 0x40);
/* set final placements */
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables & (1 << rk)) {
#ifdef R2R_SHARING
/* increment "num_ranks_enabled" */
num_ranks_enabled++;
#endif
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
/* x_coordinate */
#ifdef R2R_SHARING
final_delay[ch][bl] += x_center[ch][rk][bl];
set_rdqs(ch, rk, bl, final_delay[ch][bl] / num_ranks_enabled);
#else
set_rdqs(ch, rk, bl, x_center[ch][rk][bl]);
#endif
/* y_coordinate */
set_vref(ch, bl, y_center[ch][bl]);
}
}
}
}
}
#endif
LEAVEFN();
}
/*
* This function will perform the WRITE TRAINING Algorithm on all
* channels/ranks/byte_lanes simultaneously to minimize execution time.
*
* The idea here is to train the WDQ timings to achieve maximum WRITE margins.
* The algorithm will start with WDQ at the current WDQ setting (tracks WDQS
* in WR_LVL) +/- 32 PIs (+/- 1/4 CLK) and collapse the eye until all data
* patterns pass. This is because WDQS will be aligned to WCLK by the
* Write Leveling algorithm and WDQ will only ever have a 1/2 CLK window
* of validity.
*/
void wr_train(struct mrc_params *mrc_params)
{
uint8_t ch; /* channel counter */
uint8_t rk; /* rank counter */
uint8_t bl; /* byte lane counter */
uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1;
#ifdef BACKUP_WDQ
#else
uint8_t side; /* LEFT/RIGHT side indicator (0=L, 1=R) */
uint32_t temp; /* temporary DWORD */
/* 2 arrays, for L & R side passing delays */
uint32_t delay[2][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES];
uint32_t address; /* target address for check_bls_ex() */
uint32_t result; /* result of check_bls_ex() */
uint32_t bl_mask; /* byte lane mask for result checking */
#ifdef R2R_SHARING
/* used to find placement for rank2rank sharing configs */
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES];
/* used to find placement for rank2rank sharing configs */
uint32_t num_ranks_enabled = 0;
#endif
#endif
/* wr_train starts */
mrc_post_code(0x08, 0x00);
ENTERFN();
#ifdef BACKUP_WDQ
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables & (1 << rk)) {
for (bl = 0;
bl < NUM_BYTE_LANES / bl_divisor;
bl++) {
set_wdq(ch, rk, bl, ddr_wdq[PLATFORM_ID]);
}
}
}
}
}
#else
/* initialize "delay" */
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables & (1 << rk)) {
for (bl = 0;
bl < NUM_BYTE_LANES / bl_divisor;
bl++) {
/*
* want to start with
* WDQ = (WDQS - QRTR_CLK)
* +/- QRTR_CLK
*/
temp = get_wdqs(ch, rk, bl) - QRTR_CLK;
delay[L][ch][rk][bl] = temp - QRTR_CLK;
delay[R][ch][rk][bl] = temp + QRTR_CLK;
}
}
}
}
}
/* initialize other variables */
bl_mask = byte_lane_mask(mrc_params);
address = get_addr(0, 0);
#ifdef R2R_SHARING
/* need to set "final_delay[][]" elements to "0" */
memset((void *)(final_delay), 0x00, (size_t)sizeof(final_delay));
#endif
/*
* start algorithm on the LEFT side and train each channel/bl
* until no failures are observed, then repeat for the RIGHT side.
*/
for (side = L; side <= R; side++) {
mrc_post_code(0x08, 0x10 + side);
/* set starting values */
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables &
(1 << rk)) {
for (bl = 0;
bl < NUM_BYTE_LANES / bl_divisor;
bl++) {
set_wdq(ch, rk, bl, delay[side][ch][rk][bl]);
}
}
}
}
}
/* find passing values */
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables &
(1 << rk)) {
/* get an address in the target channel/rank */
address = get_addr(ch, rk);
/* request HTE reconfiguration */
mrc_params->hte_setup = 1;
/* check the settings */
do {
/* result[07:00] == failing byte lane (MAX 8) */
result = check_bls_ex(mrc_params, address);
/* check for failures */
if (result & 0xff) {
/* at least 1 byte lane failed */
for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) {
if (result &
(bl_mask << bl)) {
if (side == L)
delay[L][ch][rk][bl] += WDQ_STEP;
else
delay[R][ch][rk][bl] -= WDQ_STEP;
/* check for algorithm failure */
if (delay[L][ch][rk][bl] != delay[R][ch][rk][bl]) {
/*
* margin available
* update delay setting
*/
set_wdq(ch, rk, bl,
delay[side][ch][rk][bl]);
} else {
/*
* no margin available
* notify the user and halt
*/
training_message(ch, rk, bl);
mrc_post_code(0xee, 0x80 + side);
}
}
}
}
/* stop when all byte lanes pass */
} while (result & 0xff);
}
}
}
}
}
/* program WDQ to the middle of passing window */
for (ch = 0; ch < NUM_CHANNELS; ch++) {
if (mrc_params->channel_enables & (1 << ch)) {
for (rk = 0; rk < NUM_RANKS; rk++) {
if (mrc_params->rank_enables & (1 << rk)) {
#ifdef R2R_SHARING
/* increment "num_ranks_enabled" */
num_ranks_enabled++;
#endif
for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) {
DPF(D_INFO,
"WDQ eye rank%d lane%d : %d-%d\n",
rk, bl,
delay[L][ch][rk][bl],
delay[R][ch][rk][bl]);
temp = (delay[R][ch][rk][bl] + delay[L][ch][rk][bl]) / 2;
#ifdef R2R_SHARING
final_delay[ch][bl] += temp;
set_wdq(ch, rk, bl,
final_delay[ch][bl] / num_ranks_enabled);
#else
set_wdq(ch, rk, bl, temp);
#endif
}
}
}
}
}
#endif
LEAVEFN();
}
/*
* This function will store relevant timing data
*
* This data will be used on subsequent boots to speed up boot times
* and is required for Suspend To RAM capabilities.
*/
void store_timings(struct mrc_params *mrc_params)
{
uint8_t ch, rk, bl;
struct mrc_timings *mt = &mrc_params->timings;
for (ch = 0; ch < NUM_CHANNELS; ch++) {
for (rk = 0; rk < NUM_RANKS; rk++) {
for (bl = 0; bl < NUM_BYTE_LANES; bl++) {
mt->rcvn[ch][rk][bl] = get_rcvn(ch, rk, bl);
mt->rdqs[ch][rk][bl] = get_rdqs(ch, rk, bl);
mt->wdqs[ch][rk][bl] = get_wdqs(ch, rk, bl);
mt->wdq[ch][rk][bl] = get_wdq(ch, rk, bl);
if (rk == 0)
mt->vref[ch][bl] = get_vref(ch, bl);
}
mt->wctl[ch][rk] = get_wctl(ch, rk);
}
mt->wcmd[ch] = get_wcmd(ch);
}
/* need to save for a case of changing frequency after warm reset */
mt->ddr_speed = mrc_params->ddr_speed;
}
/*
* The purpose of this function is to ensure the SEC comes out of reset
* and IA initiates the SEC enabling Memory Scrambling.
*/
void enable_scrambling(struct mrc_params *mrc_params)
{
uint32_t lfsr = 0;
uint8_t i;
if (mrc_params->scrambling_enables == 0)
return;
ENTERFN();
/* 32 bit seed is always stored in BIOS NVM */
lfsr = mrc_params->timings.scrambler_seed;
if (mrc_params->boot_mode == BM_COLD) {
/*
* factory value is 0 and in first boot,
* a clock based seed is loaded.
*/
if (lfsr == 0) {
/*
* get seed from system clock
* and make sure it is not all 1's
*/
lfsr = rdtsc() & 0x0fffffff;
} else {
/*
* Need to replace scrambler
*
* get next 32bit LFSR 16 times which is the last
* part of the previous scrambler vector
*/
for (i = 0; i < 16; i++)
lfsr32(&lfsr);
}
/* save new seed */
mrc_params->timings.scrambler_seed = lfsr;
}
/*
* In warm boot or S3 exit, we have the previous seed.
* In cold boot, we have the last 32bit LFSR which is the new seed.
*/
lfsr32(&lfsr); /* shift to next value */
msg_port_write(MEM_CTLR, SCRMSEED, (lfsr & 0x0003ffff));
for (i = 0; i < 2; i++)
msg_port_write(MEM_CTLR, SCRMLO + i, (lfsr & 0xaaaaaaaa));
LEAVEFN();
}
/*
* Configure MCU Power Management Control Register
* and Scheduler Control Register
*/
void prog_ddr_control(struct mrc_params *mrc_params)
{
u32 dsch;
u32 dpmc0;
ENTERFN();
dsch = msg_port_read(MEM_CTLR, DSCH);
dsch &= ~(DSCH_OOODIS | DSCH_OOOST3DIS | DSCH_NEWBYPDIS);
msg_port_write(MEM_CTLR, DSCH, dsch);
dpmc0 = msg_port_read(MEM_CTLR, DPMC0);
dpmc0 &= ~DPMC0_DISPWRDN;
dpmc0 |= (mrc_params->power_down_disable << 25);
dpmc0 &= ~DPMC0_CLKGTDIS;
dpmc0 &= ~DPMC0_PCLSTO_MASK;
dpmc0 |= (4 << 16);
dpmc0 |= DPMC0_PREAPWDEN;
msg_port_write(MEM_CTLR, DPMC0, dpmc0);
/* CMDTRIST = 2h - CMD/ADDR are tristated when no valid command */
mrc_write_mask(MEM_CTLR, DPMC1, 0x20, 0x30);
LEAVEFN();
}
/*
* After training complete configure MCU Rank Population Register
* specifying: ranks enabled, device width, density, address mode
*/
void prog_dra_drb(struct mrc_params *mrc_params)
{
u32 drp;
u32 dco;
u8 density = mrc_params->params.density;
ENTERFN();
dco = msg_port_read(MEM_CTLR, DCO);
dco &= ~DCO_IC;
msg_port_write(MEM_CTLR, DCO, dco);
drp = 0;
if (mrc_params->rank_enables & 1)
drp |= DRP_RKEN0;
if (mrc_params->rank_enables & 2)
drp |= DRP_RKEN1;
if (mrc_params->dram_width == X16) {
drp |= (1 << 4);
drp |= (1 << 9);
}
/*
* Density encoding in struct dram_params: 0=512Mb, 1=Gb, 2=2Gb, 3=4Gb
* has to be mapped RANKDENSx encoding (0=1Gb)
*/
if (density == 0)
density = 4;
drp |= ((density - 1) << 6);
drp |= ((density - 1) << 11);
/* Address mode can be overwritten if ECC enabled */
drp |= (mrc_params->address_mode << 14);
msg_port_write(MEM_CTLR, DRP, drp);
dco &= ~DCO_PMICTL;
dco |= DCO_IC;
msg_port_write(MEM_CTLR, DCO, dco);
LEAVEFN();
}
/* Send DRAM wake command */
void perform_wake(struct mrc_params *mrc_params)
{
ENTERFN();
dram_wake_command();
LEAVEFN();
}
/*
* Configure refresh rate and short ZQ calibration interval
* Activate dynamic self refresh
*/
void change_refresh_period(struct mrc_params *mrc_params)
{
u32 drfc;
u32 dcal;
u32 dpmc0;
ENTERFN();
drfc = msg_port_read(MEM_CTLR, DRFC);
drfc &= ~DRFC_TREFI_MASK;
drfc |= (mrc_params->refresh_rate << 12);
drfc |= DRFC_REFDBTCLR;
msg_port_write(MEM_CTLR, DRFC, drfc);
dcal = msg_port_read(MEM_CTLR, DCAL);
dcal &= ~DCAL_ZQCINT_MASK;
dcal |= (3 << 8); /* 63ms */
msg_port_write(MEM_CTLR, DCAL, dcal);
dpmc0 = msg_port_read(MEM_CTLR, DPMC0);
dpmc0 |= (DPMC0_DYNSREN | DPMC0_ENPHYCLKGATE);
msg_port_write(MEM_CTLR, DPMC0, dpmc0);
LEAVEFN();
}
/*
* Configure DDRPHY for Auto-Refresh, Periodic Compensations,
* Dynamic Diff-Amp, ZQSPERIOD, Auto-Precharge, CKE Power-Down
*/
void set_auto_refresh(struct mrc_params *mrc_params)
{
uint32_t channel;
uint32_t rank;
uint32_t bl;
uint32_t bl_divisor = 1;
uint32_t temp;
ENTERFN();
/*
* Enable Auto-Refresh, Periodic Compensations, Dynamic Diff-Amp,
* ZQSPERIOD, Auto-Precharge, CKE Power-Down
*/
for (channel = 0; channel < NUM_CHANNELS; channel++) {
if (mrc_params->channel_enables & (1 << channel)) {
/* Enable Periodic RCOMPS */
mrc_alt_write_mask(DDRPHY, CMPCTRL, 2, 2);
/* Enable Dynamic DiffAmp & Set Read ODT Value */
switch (mrc_params->rd_odt_value) {
case 0:
temp = 0x3f; /* OFF */
break;
default:
temp = 0x00; /* Auto */
break;
}
for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor) / 2; bl++) {
/* Override: DIFFAMP, ODT */
mrc_alt_write_mask(DDRPHY,
B0OVRCTL + bl * DDRIODQ_BL_OFFSET +
channel * DDRIODQ_CH_OFFSET,
temp << 10,
0x003ffc00);
/* Override: DIFFAMP, ODT */
mrc_alt_write_mask(DDRPHY,
B1OVRCTL + bl * DDRIODQ_BL_OFFSET +
channel * DDRIODQ_CH_OFFSET,
temp << 10,
0x003ffc00);
}
/* Issue ZQCS command */
for (rank = 0; rank < NUM_RANKS; rank++) {
if (mrc_params->rank_enables & (1 << rank))
dram_init_command(DCMD_ZQCS(rank));
}
}
}
clear_pointers();
LEAVEFN();
}
/*
* Depending on configuration enables ECC support
*
* Available memory size is decreased, and updated with 0s
* in order to clear error status. Address mode 2 forced.
*/
void ecc_enable(struct mrc_params *mrc_params)
{
u32 drp;
u32 dsch;
u32 ecc_ctrl;
if (mrc_params->ecc_enables == 0)
return;
ENTERFN();
/* Configuration required in ECC mode */
drp = msg_port_read(MEM_CTLR, DRP);
drp &= ~DRP_ADDRMAP_MASK;
drp |= DRP_ADDRMAP_MAP1;
drp |= DRP_PRI64BSPLITEN;
msg_port_write(MEM_CTLR, DRP, drp);
/* Disable new request bypass */
dsch = msg_port_read(MEM_CTLR, DSCH);
dsch |= DSCH_NEWBYPDIS;
msg_port_write(MEM_CTLR, DSCH, dsch);
/* Enable ECC */
ecc_ctrl = (DECCCTRL_SBEEN | DECCCTRL_DBEEN | DECCCTRL_ENCBGEN);
msg_port_write(MEM_CTLR, DECCCTRL, ecc_ctrl);
/* Assume 8 bank memory, one bank is gone for ECC */
mrc_params->mem_size -= mrc_params->mem_size / 8;
/* For S3 resume memory content has to be preserved */
if (mrc_params->boot_mode != BM_S3) {
select_hte();
hte_mem_init(mrc_params, MRC_MEM_INIT);
select_mem_mgr();
}
LEAVEFN();
}
/*
* Execute memory test
* if error detected it is indicated in mrc_params->status
*/
void memory_test(struct mrc_params *mrc_params)
{
uint32_t result = 0;
ENTERFN();
select_hte();
result = hte_mem_init(mrc_params, MRC_MEM_TEST);
select_mem_mgr();
DPF(D_INFO, "Memory test result %x\n", result);
mrc_params->status = ((result == 0) ? MRC_SUCCESS : MRC_E_MEMTEST);
LEAVEFN();
}
/* Lock MCU registers at the end of initialization sequence */
void lock_registers(struct mrc_params *mrc_params)
{
u32 dco;
ENTERFN();
dco = msg_port_read(MEM_CTLR, DCO);
dco &= ~(DCO_PMICTL | DCO_PMIDIS);
dco |= (DCO_DRPLOCK | DCO_CPGCLOCK);
msg_port_write(MEM_CTLR, DCO, dco);
LEAVEFN();
}