u-boot/drivers/mmc/omap_hsmmc.c

1112 lines
28 KiB
C
Raw Normal View History

/*
* (C) Copyright 2008
* Texas Instruments, <www.ti.com>
* Sukumar Ghorai <s-ghorai@ti.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation's version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <common.h>
#include <malloc.h>
#include <memalign.h>
#include <mmc.h>
#include <part.h>
#include <i2c.h>
#if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
#include <palmas.h>
#endif
#include <asm/io.h>
#include <asm/arch/mmc_host_def.h>
#if !defined(CONFIG_SOC_KEYSTONE)
#include <asm/gpio.h>
#include <asm/arch/sys_proto.h>
#endif
#ifdef CONFIG_MMC_OMAP36XX_PINS
#include <asm/arch/mux.h>
#endif
#include <dm.h>
DECLARE_GLOBAL_DATA_PTR;
/* simplify defines to OMAP_HSMMC_USE_GPIO */
#if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
(defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
#define OMAP_HSMMC_USE_GPIO
#else
#undef OMAP_HSMMC_USE_GPIO
#endif
/* common definitions for all OMAPs */
#define SYSCTL_SRC (1 << 25)
#define SYSCTL_SRD (1 << 26)
struct omap_hsmmc_data {
struct hsmmc *base_addr;
#if !CONFIG_IS_ENABLED(DM_MMC)
struct mmc_config cfg;
#endif
#ifdef OMAP_HSMMC_USE_GPIO
#if CONFIG_IS_ENABLED(DM_MMC)
struct gpio_desc cd_gpio; /* Change Detect GPIO */
struct gpio_desc wp_gpio; /* Write Protect GPIO */
bool cd_inverted;
#else
int cd_gpio;
int wp_gpio;
#endif
#endif
u8 controller_flags;
#ifndef CONFIG_OMAP34XX
struct omap_hsmmc_adma_desc *adma_desc_table;
uint desc_slot;
#endif
};
#ifndef CONFIG_OMAP34XX
struct omap_hsmmc_adma_desc {
u8 attr;
u8 reserved;
u16 len;
u32 addr;
};
#define ADMA_MAX_LEN 63488
/* Decriptor table defines */
#define ADMA_DESC_ATTR_VALID BIT(0)
#define ADMA_DESC_ATTR_END BIT(1)
#define ADMA_DESC_ATTR_INT BIT(2)
#define ADMA_DESC_ATTR_ACT1 BIT(4)
#define ADMA_DESC_ATTR_ACT2 BIT(5)
#define ADMA_DESC_TRANSFER_DATA ADMA_DESC_ATTR_ACT2
#define ADMA_DESC_LINK_DESC (ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2)
#endif
/* If we fail after 1 second wait, something is really bad */
#define MAX_RETRY_MS 1000
/* DMA transfers can take a long time if a lot a data is transferred.
* The timeout must take in account the amount of data. Let's assume
* that the time will never exceed 333 ms per MB (in other word we assume
* that the bandwidth is always above 3MB/s).
*/
#define DMA_TIMEOUT_PER_MB 333
#define OMAP_HSMMC_USE_ADMA BIT(2)
static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
unsigned int siz);
static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc)
{
#if CONFIG_IS_ENABLED(DM_MMC)
return dev_get_priv(mmc->dev);
#else
return (struct omap_hsmmc_data *)mmc->priv;
#endif
}
static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc)
{
#if CONFIG_IS_ENABLED(DM_MMC)
struct omap_hsmmc_plat *plat = dev_get_platdata(mmc->dev);
return &plat->cfg;
#else
return &((struct omap_hsmmc_data *)mmc->priv)->cfg;
#endif
}
#if defined(OMAP_HSMMC_USE_GPIO) && !CONFIG_IS_ENABLED(DM_MMC)
static int omap_mmc_setup_gpio_in(int gpio, const char *label)
{
int ret;
#ifndef CONFIG_DM_GPIO
if (!gpio_is_valid(gpio))
return -1;
#endif
ret = gpio_request(gpio, label);
if (ret)
return ret;
ret = gpio_direction_input(gpio);
if (ret)
return ret;
return gpio;
}
#endif
static unsigned char mmc_board_init(struct mmc *mmc)
{
#if defined(CONFIG_OMAP34XX)
struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
t2_t *t2_base = (t2_t *)T2_BASE;
struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
u32 pbias_lite;
#ifdef CONFIG_MMC_OMAP36XX_PINS
u32 wkup_ctrl = readl(OMAP34XX_CTRL_WKUP_CTRL);
#endif
pbias_lite = readl(&t2_base->pbias_lite);
pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
#ifdef CONFIG_TARGET_OMAP3_CAIRO
/* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
pbias_lite &= ~PBIASLITEVMODE0;
#endif
#ifdef CONFIG_MMC_OMAP36XX_PINS
if (get_cpu_family() == CPU_OMAP36XX) {
/* Disable extended drain IO before changing PBIAS */
wkup_ctrl &= ~OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ;
writel(wkup_ctrl, OMAP34XX_CTRL_WKUP_CTRL);
}
#endif
writel(pbias_lite, &t2_base->pbias_lite);
writel(pbias_lite | PBIASLITEPWRDNZ1 |
PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
&t2_base->pbias_lite);
#ifdef CONFIG_MMC_OMAP36XX_PINS
if (get_cpu_family() == CPU_OMAP36XX)
/* Enable extended drain IO after changing PBIAS */
writel(wkup_ctrl |
OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ,
OMAP34XX_CTRL_WKUP_CTRL);
#endif
writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
&t2_base->devconf0);
writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
&t2_base->devconf1);
/* Change from default of 52MHz to 26MHz if necessary */
if (!(cfg->host_caps & MMC_MODE_HS_52MHz))
writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
&t2_base->ctl_prog_io1);
writel(readl(&prcm_base->fclken1_core) |
EN_MMC1 | EN_MMC2 | EN_MMC3,
&prcm_base->fclken1_core);
writel(readl(&prcm_base->iclken1_core) |
EN_MMC1 | EN_MMC2 | EN_MMC3,
&prcm_base->iclken1_core);
#endif
#if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
/* PBIAS config needed for MMC1 only */
if (mmc_get_blk_desc(mmc)->devnum == 0)
vmmc_pbias_config(LDO_VOLT_3V0);
#endif
return 0;
}
void mmc_init_stream(struct hsmmc *mmc_base)
{
ulong start;
writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
writel(MMC_CMD0, &mmc_base->cmd);
start = get_timer(0);
while (!(readl(&mmc_base->stat) & CC_MASK)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc!\n", __func__);
return;
}
}
writel(CC_MASK, &mmc_base->stat)
;
writel(MMC_CMD0, &mmc_base->cmd)
;
start = get_timer(0);
while (!(readl(&mmc_base->stat) & CC_MASK)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc2!\n", __func__);
return;
}
}
writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
}
static int omap_hsmmc_init_setup(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct hsmmc *mmc_base;
unsigned int reg_val;
unsigned int dsor;
ulong start;
mmc_base = priv->base_addr;
mmc_board_init(mmc);
writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
&mmc_base->sysconfig);
start = get_timer(0);
while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc2!\n", __func__);
return -ETIMEDOUT;
}
}
writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for softresetall!\n",
__func__);
return -ETIMEDOUT;
}
}
#ifndef CONFIG_OMAP34XX
reg_val = readl(&mmc_base->hl_hwinfo);
if (reg_val & MADMA_EN)
priv->controller_flags |= OMAP_HSMMC_USE_ADMA;
#endif
writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP,
&mmc_base->capa);
reg_val = readl(&mmc_base->con) & RESERVED_MASK;
writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
dsor = 240;
mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
(ICE_STOP | DTO_15THDTO));
mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for ics!\n", __func__);
return -ETIMEDOUT;
}
}
writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
writel(IE_BADA | IE_CERR | IE_DEB | IE_DCRC | IE_DTO | IE_CIE |
IE_CEB | IE_CCRC | IE_ADMAE | IE_CTO | IE_BRR | IE_BWR | IE_TC |
IE_CC, &mmc_base->ie);
mmc_init_stream(mmc_base);
return 0;
}
/*
* MMC controller internal finite state machine reset
*
* Used to reset command or data internal state machines, using respectively
* SRC or SRD bit of SYSCTL register
*/
static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
{
ulong start;
mmc_reg_out(&mmc_base->sysctl, bit, bit);
omap_hsmmc: omap4+/am335x: modify MMC controller internal fsm reset func "mmc_send_cmd: timeout: No status update" error sometimes happens in omap_hsmmc driver func mmc_send_cmd() when the MMC controller card identification and selection sequence is executed for eMMC on OMAP4 boards. It happens due to incorrect execution of CMD line reset procedure for OMAP4. Because CMD(DAT) lines reset procedures are slightly different for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx). According to OMAP3 TRM: Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it returns to 0x0. According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset procedure steps must be as follows: 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in MMCHS_SYSCTL register (SD_SYSCTL for AM335x). 2. Poll the SRC(SRD) bit until it is set to 0x1. 3. Wait until the SRC(SRD) bit returns to 0x0 (reset procedure is completed). Unfortunately, at present omap_hsmmc driver has support only for OMAP3. And as result step #2 is missing for OMAP4(AM335x,OMAP5,DRA7xx). This sometimes leads to the fact that the waiting loop which is required in step #3 does not executed, because SRC bit does not set yet (at the moment of checking a condition of a loop execution). And as a result this can cause to timeout error when sending a next command. In the particular case (working with eMMC witch do not respond to some SD specific command) due to incorrect reset sequence after command SD_CMD_SEND_IF_COND which finished with CTO flag within 64 clock cycles, the next command MMC_CMD_APP_CMD leads to a timeout error within 1s. So, extend CMD(DATA) lines reset procedure in func mmc_reset_controller_fsm() by adding the missing step #2 for OMAP4+/AM335x boards. Signed-off-by: Oleksandr Tyshchenko <oleksandr.tyshchenko@ti.com> Acked-by: Pantelis Antoniou <panto@antoniou-consulting.com>
2013-08-06 10:44:16 +00:00
/*
* CMD(DAT) lines reset procedures are slightly different
* for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
* According to OMAP3 TRM:
* Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
* returns to 0x0.
* According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
* procedure steps must be as follows:
* 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
* MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
* 2. Poll the SRC(SRD) bit until it is set to 0x1.
* 3. Wait until the SRC (SRD) bit returns to 0x0
* (reset procedure is completed).
*/
#if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX)
omap_hsmmc: omap4+/am335x: modify MMC controller internal fsm reset func "mmc_send_cmd: timeout: No status update" error sometimes happens in omap_hsmmc driver func mmc_send_cmd() when the MMC controller card identification and selection sequence is executed for eMMC on OMAP4 boards. It happens due to incorrect execution of CMD line reset procedure for OMAP4. Because CMD(DAT) lines reset procedures are slightly different for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx). According to OMAP3 TRM: Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it returns to 0x0. According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset procedure steps must be as follows: 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in MMCHS_SYSCTL register (SD_SYSCTL for AM335x). 2. Poll the SRC(SRD) bit until it is set to 0x1. 3. Wait until the SRC(SRD) bit returns to 0x0 (reset procedure is completed). Unfortunately, at present omap_hsmmc driver has support only for OMAP3. And as result step #2 is missing for OMAP4(AM335x,OMAP5,DRA7xx). This sometimes leads to the fact that the waiting loop which is required in step #3 does not executed, because SRC bit does not set yet (at the moment of checking a condition of a loop execution). And as a result this can cause to timeout error when sending a next command. In the particular case (working with eMMC witch do not respond to some SD specific command) due to incorrect reset sequence after command SD_CMD_SEND_IF_COND which finished with CTO flag within 64 clock cycles, the next command MMC_CMD_APP_CMD leads to a timeout error within 1s. So, extend CMD(DATA) lines reset procedure in func mmc_reset_controller_fsm() by adding the missing step #2 for OMAP4+/AM335x boards. Signed-off-by: Oleksandr Tyshchenko <oleksandr.tyshchenko@ti.com> Acked-by: Pantelis Antoniou <panto@antoniou-consulting.com>
2013-08-06 10:44:16 +00:00
if (!(readl(&mmc_base->sysctl) & bit)) {
start = get_timer(0);
while (!(readl(&mmc_base->sysctl) & bit)) {
if (get_timer(0) - start > MAX_RETRY_MS)
return;
}
}
#endif
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & bit) != 0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for sysctl %x to clear\n",
__func__, bit);
return;
}
}
}
#ifndef CONFIG_OMAP34XX
static void omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct omap_hsmmc_adma_desc *desc;
u8 attr;
desc = &priv->adma_desc_table[priv->desc_slot];
attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
if (!end)
priv->desc_slot++;
else
attr |= ADMA_DESC_ATTR_END;
desc->len = len;
desc->addr = (u32)buf;
desc->reserved = 0;
desc->attr = attr;
}
static void omap_hsmmc_prepare_adma_table(struct mmc *mmc,
struct mmc_data *data)
{
uint total_len = data->blocksize * data->blocks;
uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN);
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
int i = desc_count;
char *buf;
priv->desc_slot = 0;
priv->adma_desc_table = (struct omap_hsmmc_adma_desc *)
memalign(ARCH_DMA_MINALIGN, desc_count *
sizeof(struct omap_hsmmc_adma_desc));
if (data->flags & MMC_DATA_READ)
buf = data->dest;
else
buf = (char *)data->src;
while (--i) {
omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false);
buf += ADMA_MAX_LEN;
total_len -= ADMA_MAX_LEN;
}
omap_hsmmc_adma_desc(mmc, buf, total_len, true);
flush_dcache_range((long)priv->adma_desc_table,
(long)priv->adma_desc_table +
ROUND(desc_count *
sizeof(struct omap_hsmmc_adma_desc),
ARCH_DMA_MINALIGN));
}
static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data)
{
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 val;
char *buf;
mmc_base = priv->base_addr;
omap_hsmmc_prepare_adma_table(mmc, data);
if (data->flags & MMC_DATA_READ)
buf = data->dest;
else
buf = (char *)data->src;
val = readl(&mmc_base->hctl);
val |= DMA_SELECT;
writel(val, &mmc_base->hctl);
val = readl(&mmc_base->con);
val |= DMA_MASTER;
writel(val, &mmc_base->con);
writel((u32)priv->adma_desc_table, &mmc_base->admasal);
flush_dcache_range((u32)buf,
(u32)buf +
ROUND(data->blocksize * data->blocks,
ARCH_DMA_MINALIGN));
}
static void omap_hsmmc_dma_cleanup(struct mmc *mmc)
{
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 val;
mmc_base = priv->base_addr;
val = readl(&mmc_base->con);
val &= ~DMA_MASTER;
writel(val, &mmc_base->con);
val = readl(&mmc_base->hctl);
val &= ~DMA_SELECT;
writel(val, &mmc_base->hctl);
kfree(priv->adma_desc_table);
}
#else
#define omap_hsmmc_adma_desc
#define omap_hsmmc_prepare_adma_table
#define omap_hsmmc_prepare_data
#define omap_hsmmc_dma_cleanup
#endif
#if !CONFIG_IS_ENABLED(DM_MMC)
static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
#else
static int omap_hsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct omap_hsmmc_data *priv = dev_get_priv(dev);
#ifndef CONFIG_OMAP34XX
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct mmc *mmc = upriv->mmc;
#endif
#endif
struct hsmmc *mmc_base;
unsigned int flags, mmc_stat;
ulong start;
mmc_base = priv->base_addr;
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
return 0;
start = get_timer(0);
while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting on cmd inhibit to clear\n",
__func__);
return -ETIMEDOUT;
}
}
writel(0xFFFFFFFF, &mmc_base->stat);
start = get_timer(0);
while (readl(&mmc_base->stat)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for STAT (%x) to clear\n",
__func__, readl(&mmc_base->stat));
return -ETIMEDOUT;
}
}
/*
* CMDREG
* CMDIDX[13:8] : Command index
* DATAPRNT[5] : Data Present Select
* ENCMDIDX[4] : Command Index Check Enable
* ENCMDCRC[3] : Command CRC Check Enable
* RSPTYP[1:0]
* 00 = No Response
* 01 = Length 136
* 10 = Length 48
* 11 = Length 48 Check busy after response
*/
/* Delay added before checking the status of frq change
* retry not supported by mmc.c(core file)
*/
if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
udelay(50000); /* wait 50 ms */
if (!(cmd->resp_type & MMC_RSP_PRESENT))
flags = 0;
else if (cmd->resp_type & MMC_RSP_136)
flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
else if (cmd->resp_type & MMC_RSP_BUSY)
flags = RSP_TYPE_LGHT48B;
else
flags = RSP_TYPE_LGHT48;
/* enable default flags */
flags = flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
MSBS_SGLEBLK);
flags &= ~(ACEN_ENABLE | BCE_ENABLE | DE_ENABLE);
if (cmd->resp_type & MMC_RSP_CRC)
flags |= CCCE_CHECK;
if (cmd->resp_type & MMC_RSP_OPCODE)
flags |= CICE_CHECK;
if (data) {
if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
(cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
flags |= (MSBS_MULTIBLK | BCE_ENABLE | ACEN_ENABLE);
data->blocksize = 512;
writel(data->blocksize | (data->blocks << 16),
&mmc_base->blk);
} else
writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
if (data->flags & MMC_DATA_READ)
flags |= (DP_DATA | DDIR_READ);
else
flags |= (DP_DATA | DDIR_WRITE);
#ifndef CONFIG_OMAP34XX
if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) &&
!mmc_is_tuning_cmd(cmd->cmdidx)) {
omap_hsmmc_prepare_data(mmc, data);
flags |= DE_ENABLE;
}
#endif
}
writel(cmd->cmdarg, &mmc_base->arg);
udelay(20); /* To fix "No status update" error on eMMC */
writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (get_timer(start) > MAX_RETRY_MS) {
printf("%s : timeout: No status update\n", __func__);
return -ETIMEDOUT;
}
} while (!mmc_stat);
if ((mmc_stat & IE_CTO) != 0) {
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
return -ETIMEDOUT;
} else if ((mmc_stat & ERRI_MASK) != 0)
return -1;
if (mmc_stat & CC_MASK) {
writel(CC_MASK, &mmc_base->stat);
if (cmd->resp_type & MMC_RSP_PRESENT) {
if (cmd->resp_type & MMC_RSP_136) {
/* response type 2 */
cmd->response[3] = readl(&mmc_base->rsp10);
cmd->response[2] = readl(&mmc_base->rsp32);
cmd->response[1] = readl(&mmc_base->rsp54);
cmd->response[0] = readl(&mmc_base->rsp76);
} else
/* response types 1, 1b, 3, 4, 5, 6 */
cmd->response[0] = readl(&mmc_base->rsp10);
}
}
#ifndef CONFIG_OMAP34XX
if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && data &&
!mmc_is_tuning_cmd(cmd->cmdidx)) {
u32 sz_mb, timeout;
if (mmc_stat & IE_ADMAE) {
omap_hsmmc_dma_cleanup(mmc);
return -EIO;
}
sz_mb = DIV_ROUND_UP(data->blocksize * data->blocks, 1 << 20);
timeout = sz_mb * DMA_TIMEOUT_PER_MB;
if (timeout < MAX_RETRY_MS)
timeout = MAX_RETRY_MS;
start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (mmc_stat & TC_MASK) {
writel(readl(&mmc_base->stat) | TC_MASK,
&mmc_base->stat);
break;
}
if (get_timer(start) > timeout) {
printf("%s : DMA timeout: No status update\n",
__func__);
return -ETIMEDOUT;
}
} while (1);
omap_hsmmc_dma_cleanup(mmc);
return 0;
}
#endif
if (data && (data->flags & MMC_DATA_READ)) {
mmc_read_data(mmc_base, data->dest,
data->blocksize * data->blocks);
} else if (data && (data->flags & MMC_DATA_WRITE)) {
mmc_write_data(mmc_base, data->src,
data->blocksize * data->blocks);
}
return 0;
}
static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
{
unsigned int *output_buf = (unsigned int *)buf;
unsigned int mmc_stat;
unsigned int count;
/*
* Start Polled Read
*/
count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
count /= 4;
while (size) {
ulong start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for status!\n",
__func__);
return -ETIMEDOUT;
}
} while (mmc_stat == 0);
if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
if ((mmc_stat & ERRI_MASK) != 0)
return 1;
if (mmc_stat & BRR_MASK) {
unsigned int k;
writel(readl(&mmc_base->stat) | BRR_MASK,
&mmc_base->stat);
for (k = 0; k < count; k++) {
*output_buf = readl(&mmc_base->data);
output_buf++;
}
size -= (count*4);
}
if (mmc_stat & BWR_MASK)
writel(readl(&mmc_base->stat) | BWR_MASK,
&mmc_base->stat);
if (mmc_stat & TC_MASK) {
writel(readl(&mmc_base->stat) | TC_MASK,
&mmc_base->stat);
break;
}
}
return 0;
}
static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
unsigned int size)
{
unsigned int *input_buf = (unsigned int *)buf;
unsigned int mmc_stat;
unsigned int count;
/*
* Start Polled Write
*/
count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
count /= 4;
while (size) {
ulong start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for status!\n",
__func__);
return -ETIMEDOUT;
}
} while (mmc_stat == 0);
if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
if ((mmc_stat & ERRI_MASK) != 0)
return 1;
if (mmc_stat & BWR_MASK) {
unsigned int k;
writel(readl(&mmc_base->stat) | BWR_MASK,
&mmc_base->stat);
for (k = 0; k < count; k++) {
writel(*input_buf, &mmc_base->data);
input_buf++;
}
size -= (count*4);
}
if (mmc_stat & BRR_MASK)
writel(readl(&mmc_base->stat) | BRR_MASK,
&mmc_base->stat);
if (mmc_stat & TC_MASK) {
writel(readl(&mmc_base->stat) | TC_MASK,
&mmc_base->stat);
break;
}
}
return 0;
}
#if !CONFIG_IS_ENABLED(DM_MMC)
static int omap_hsmmc_set_ios(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
#else
static int omap_hsmmc_set_ios(struct udevice *dev)
{
struct omap_hsmmc_data *priv = dev_get_priv(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct mmc *mmc = upriv->mmc;
#endif
struct hsmmc *mmc_base;
unsigned int dsor = 0;
ulong start;
mmc_base = priv->base_addr;
/* configue bus width */
switch (mmc->bus_width) {
case 8:
writel(readl(&mmc_base->con) | DTW_8_BITMODE,
&mmc_base->con);
break;
case 4:
writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
&mmc_base->con);
writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
&mmc_base->hctl);
break;
case 1:
default:
writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
&mmc_base->con);
writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
&mmc_base->hctl);
break;
}
/* configure clock with 96Mhz system clock.
*/
if (mmc->clock != 0) {
dsor = (MMC_CLOCK_REFERENCE * 1000000 / mmc->clock);
if ((MMC_CLOCK_REFERENCE * 1000000) / dsor > mmc->clock)
dsor++;
}
mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
(ICE_STOP | DTO_15THDTO));
mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for ics!\n", __func__);
return -ETIMEDOUT;
}
}
writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
return 0;
}
#ifdef OMAP_HSMMC_USE_GPIO
#if CONFIG_IS_ENABLED(DM_MMC)
static int omap_hsmmc_getcd(struct udevice *dev)
{
struct omap_hsmmc_data *priv = dev_get_priv(dev);
int value;
value = dm_gpio_get_value(&priv->cd_gpio);
/* if no CD return as 1 */
if (value < 0)
return 1;
if (priv->cd_inverted)
return !value;
return value;
}
static int omap_hsmmc_getwp(struct udevice *dev)
{
struct omap_hsmmc_data *priv = dev_get_priv(dev);
int value;
value = dm_gpio_get_value(&priv->wp_gpio);
/* if no WP return as 0 */
if (value < 0)
return 0;
return value;
}
#else
static int omap_hsmmc_getcd(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
int cd_gpio;
/* if no CD return as 1 */
cd_gpio = priv->cd_gpio;
if (cd_gpio < 0)
return 1;
/* NOTE: assumes card detect signal is active-low */
return !gpio_get_value(cd_gpio);
}
static int omap_hsmmc_getwp(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
int wp_gpio;
/* if no WP return as 0 */
wp_gpio = priv->wp_gpio;
if (wp_gpio < 0)
return 0;
/* NOTE: assumes write protect signal is active-high */
return gpio_get_value(wp_gpio);
}
#endif
#endif
#if CONFIG_IS_ENABLED(DM_MMC)
static const struct dm_mmc_ops omap_hsmmc_ops = {
.send_cmd = omap_hsmmc_send_cmd,
.set_ios = omap_hsmmc_set_ios,
#ifdef OMAP_HSMMC_USE_GPIO
.get_cd = omap_hsmmc_getcd,
.get_wp = omap_hsmmc_getwp,
#endif
};
#else
static const struct mmc_ops omap_hsmmc_ops = {
.send_cmd = omap_hsmmc_send_cmd,
.set_ios = omap_hsmmc_set_ios,
.init = omap_hsmmc_init_setup,
#ifdef OMAP_HSMMC_USE_GPIO
.getcd = omap_hsmmc_getcd,
.getwp = omap_hsmmc_getwp,
#endif
};
#endif
#if !CONFIG_IS_ENABLED(DM_MMC)
int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
int wp_gpio)
{
struct mmc *mmc;
struct omap_hsmmc_data *priv;
struct mmc_config *cfg;
uint host_caps_val;
priv = malloc(sizeof(*priv));
if (priv == NULL)
return -1;
host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;
switch (dev_index) {
case 0:
priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
break;
#ifdef OMAP_HSMMC2_BASE
case 1:
priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
#if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \
defined(CONFIG_AM43XX) || defined(CONFIG_SOC_KEYSTONE)) && \
defined(CONFIG_HSMMC2_8BIT)
/* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
host_caps_val |= MMC_MODE_8BIT;
#endif
break;
#endif
#ifdef OMAP_HSMMC3_BASE
case 2:
priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
#if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
/* Enable 8-bit interface for eMMC on DRA7XX */
host_caps_val |= MMC_MODE_8BIT;
#endif
break;
#endif
default:
priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
return 1;
}
#ifdef OMAP_HSMMC_USE_GPIO
/* on error gpio values are set to -1, which is what we want */
priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
#endif
cfg = &priv->cfg;
cfg->name = "OMAP SD/MMC";
cfg->ops = &omap_hsmmc_ops;
cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
cfg->host_caps = host_caps_val & ~host_caps_mask;
cfg->f_min = 400000;
if (f_max != 0)
cfg->f_max = f_max;
else {
if (cfg->host_caps & MMC_MODE_HS) {
if (cfg->host_caps & MMC_MODE_HS_52MHz)
cfg->f_max = 52000000;
else
cfg->f_max = 26000000;
} else
cfg->f_max = 20000000;
}
cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
#if defined(CONFIG_OMAP34XX)
/*
* Silicon revs 2.1 and older do not support multiblock transfers.
*/
if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
cfg->b_max = 1;
#endif
mmc = mmc_create(cfg, priv);
if (mmc == NULL)
return -1;
return 0;
}
#else
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
static int omap_hsmmc_ofdata_to_platdata(struct udevice *dev)
{
struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
struct mmc_config *cfg = &plat->cfg;
const void *fdt = gd->fdt_blob;
int node = dev_of_offset(dev);
int val;
plat->base_addr = map_physmem(devfdt_get_addr(dev),
sizeof(struct hsmmc *),
MAP_NOCACHE);
cfg->host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS;
val = fdtdec_get_int(fdt, node, "bus-width", -1);
if (val < 0) {
printf("error: bus-width property missing\n");
return -ENOENT;
}
switch (val) {
case 0x8:
cfg->host_caps |= MMC_MODE_8BIT;
case 0x4:
cfg->host_caps |= MMC_MODE_4BIT;
break;
default:
printf("error: invalid bus-width property\n");
return -ENOENT;
}
cfg->f_min = 400000;
cfg->f_max = fdtdec_get_int(fdt, node, "max-frequency", 52000000);
cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
#ifdef OMAP_HSMMC_USE_GPIO
plat->cd_inverted = fdtdec_get_bool(fdt, node, "cd-inverted");
#endif
return 0;
}
#endif
#ifdef CONFIG_BLK
static int omap_hsmmc_bind(struct udevice *dev)
{
struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
#endif
static int omap_hsmmc_probe(struct udevice *dev)
{
struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct omap_hsmmc_data *priv = dev_get_priv(dev);
struct mmc_config *cfg = &plat->cfg;
struct mmc *mmc;
cfg->name = "OMAP SD/MMC";
priv->base_addr = plat->base_addr;
#ifdef OMAP_HSMMC_USE_GPIO
priv->cd_inverted = plat->cd_inverted;
#endif
#ifdef CONFIG_BLK
mmc = &plat->mmc;
#else
mmc = mmc_create(cfg, priv);
if (mmc == NULL)
return -1;
#endif
#if defined(OMAP_HSMMC_USE_GPIO) && CONFIG_IS_ENABLED(OF_CONTROL)
gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN);
gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN);
#endif
mmc->dev = dev;
upriv->mmc = mmc;
return omap_hsmmc_init_setup(mmc);
}
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
static const struct udevice_id omap_hsmmc_ids[] = {
{ .compatible = "ti,omap3-hsmmc" },
{ .compatible = "ti,omap4-hsmmc" },
{ .compatible = "ti,am33xx-hsmmc" },
{ }
};
#endif
U_BOOT_DRIVER(omap_hsmmc) = {
.name = "omap_hsmmc",
.id = UCLASS_MMC,
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
.of_match = omap_hsmmc_ids,
.ofdata_to_platdata = omap_hsmmc_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct omap_hsmmc_plat),
#endif
#ifdef CONFIG_BLK
.bind = omap_hsmmc_bind,
#endif
.ops = &omap_hsmmc_ops,
.probe = omap_hsmmc_probe,
.priv_auto_alloc_size = sizeof(struct omap_hsmmc_data),
.flags = DM_FLAG_PRE_RELOC,
};
#endif