u-boot/drivers/spi/ich.c

787 lines
20 KiB
C
Raw Normal View History

/*
* Copyright (c) 2011-12 The Chromium OS Authors.
*
* SPDX-License-Identifier: GPL-2.0+
*
* This file is derived from the flashrom project.
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
#include <spi.h>
#include <pci.h>
#include <pci_ids.h>
#include <asm/io.h>
#include "ich.h"
#define SPI_OPCODE_WREN 0x06
#define SPI_OPCODE_FAST_READ 0x0b
struct ich_spi_platdata {
pci_dev_t dev; /* PCI device number */
int ich_version; /* Controller version, 7 or 9 */
bool use_sbase; /* Use SBASE instead of RCB */
};
struct ich_spi_priv {
int ichspi_lock;
int locked;
int opmenu;
int menubytes;
void *base; /* Base of register set */
int preop;
int optype;
int addr;
int data;
unsigned databytes;
int status;
int control;
int bbar;
int bcr;
uint32_t *pr; /* only for ich9 */
int speed; /* pointer to speed control */
ulong max_speed; /* Maximum bus speed in MHz */
ulong cur_speed; /* Current bus speed */
struct spi_trans trans; /* current transaction in progress */
};
static u8 ich_readb(struct ich_spi_priv *priv, int reg)
{
u8 value = readb(priv->base + reg);
debug("read %2.2x from %4.4x\n", value, reg);
return value;
}
static u16 ich_readw(struct ich_spi_priv *priv, int reg)
{
u16 value = readw(priv->base + reg);
debug("read %4.4x from %4.4x\n", value, reg);
return value;
}
static u32 ich_readl(struct ich_spi_priv *priv, int reg)
{
u32 value = readl(priv->base + reg);
debug("read %8.8x from %4.4x\n", value, reg);
return value;
}
static void ich_writeb(struct ich_spi_priv *priv, u8 value, int reg)
{
writeb(value, priv->base + reg);
debug("wrote %2.2x to %4.4x\n", value, reg);
}
static void ich_writew(struct ich_spi_priv *priv, u16 value, int reg)
{
writew(value, priv->base + reg);
debug("wrote %4.4x to %4.4x\n", value, reg);
}
static void ich_writel(struct ich_spi_priv *priv, u32 value, int reg)
{
writel(value, priv->base + reg);
debug("wrote %8.8x to %4.4x\n", value, reg);
}
static void write_reg(struct ich_spi_priv *priv, const void *value,
int dest_reg, uint32_t size)
{
memcpy_toio(priv->base + dest_reg, value, size);
}
static void read_reg(struct ich_spi_priv *priv, int src_reg, void *value,
uint32_t size)
{
memcpy_fromio(value, priv->base + src_reg, size);
}
static void ich_set_bbar(struct ich_spi_priv *ctlr, uint32_t minaddr)
{
const uint32_t bbar_mask = 0x00ffff00;
uint32_t ichspi_bbar;
minaddr &= bbar_mask;
ichspi_bbar = ich_readl(ctlr, ctlr->bbar) & ~bbar_mask;
ichspi_bbar |= minaddr;
ich_writel(ctlr, ichspi_bbar, ctlr->bbar);
}
/*
* Check if this device ID matches one of supported Intel PCH devices.
*
* Return the ICH version if there is a match, or zero otherwise.
*/
static int get_ich_version(uint16_t device_id)
{
if (device_id == PCI_DEVICE_ID_INTEL_TGP_LPC ||
device_id == PCI_DEVICE_ID_INTEL_ITC_LPC ||
device_id == PCI_DEVICE_ID_INTEL_QRK_ILB)
return 7;
if ((device_id >= PCI_DEVICE_ID_INTEL_COUGARPOINT_LPC_MIN &&
device_id <= PCI_DEVICE_ID_INTEL_COUGARPOINT_LPC_MAX) ||
(device_id >= PCI_DEVICE_ID_INTEL_PANTHERPOINT_LPC_MIN &&
device_id <= PCI_DEVICE_ID_INTEL_PANTHERPOINT_LPC_MAX) ||
device_id == PCI_DEVICE_ID_INTEL_VALLEYVIEW_LPC ||
device_id == PCI_DEVICE_ID_INTEL_LYNXPOINT_LPC)
return 9;
return 0;
}
/* @return 1 if the SPI flash supports the 33MHz speed */
static int ich9_can_do_33mhz(pci_dev_t dev)
{
u32 fdod, speed;
/* Observe SPI Descriptor Component Section 0 */
pci_write_config_dword(dev, 0xb0, 0x1000);
/* Extract the Write/Erase SPI Frequency from descriptor */
pci_read_config_dword(dev, 0xb4, &fdod);
/* Bits 23:21 have the fast read clock frequency, 0=20MHz, 1=33MHz */
speed = (fdod >> 21) & 7;
return speed == 1;
}
static int ich_find_spi_controller(struct ich_spi_platdata *ich)
{
int last_bus = pci_last_busno();
int bus;
if (last_bus == -1) {
debug("No PCI busses?\n");
return -ENODEV;
}
for (bus = 0; bus <= last_bus; bus++) {
uint16_t vendor_id, device_id;
uint32_t ids;
pci_dev_t dev;
dev = PCI_BDF(bus, 31, 0);
pci_read_config_dword(dev, 0, &ids);
vendor_id = ids;
device_id = ids >> 16;
if (vendor_id == PCI_VENDOR_ID_INTEL) {
ich->dev = dev;
ich->ich_version = get_ich_version(device_id);
if (device_id == PCI_DEVICE_ID_INTEL_VALLEYVIEW_LPC)
ich->use_sbase = true;
return ich->ich_version == 0 ? -ENODEV : 0;
}
}
debug("ICH SPI: No ICH found.\n");
return -ENODEV;
}
static int ich_init_controller(struct ich_spi_platdata *plat,
struct ich_spi_priv *ctlr)
{
uint8_t *rcrb; /* Root Complex Register Block */
uint32_t rcba; /* Root Complex Base Address */
uint32_t sbase_addr;
uint8_t *sbase;
pci_read_config_dword(plat->dev, 0xf0, &rcba);
/* Bits 31-14 are the base address, 13-1 are reserved, 0 is enable. */
rcrb = (uint8_t *)(rcba & 0xffffc000);
/* SBASE is similar */
pci_read_config_dword(plat->dev, 0x54, &sbase_addr);
sbase = (uint8_t *)(sbase_addr & 0xfffffe00);
if (plat->ich_version == 7) {
struct ich7_spi_regs *ich7_spi;
ich7_spi = (struct ich7_spi_regs *)(rcrb + 0x3020);
ctlr->ichspi_lock = readw(&ich7_spi->spis) & SPIS_LOCK;
ctlr->opmenu = offsetof(struct ich7_spi_regs, opmenu);
ctlr->menubytes = sizeof(ich7_spi->opmenu);
ctlr->optype = offsetof(struct ich7_spi_regs, optype);
ctlr->addr = offsetof(struct ich7_spi_regs, spia);
ctlr->data = offsetof(struct ich7_spi_regs, spid);
ctlr->databytes = sizeof(ich7_spi->spid);
ctlr->status = offsetof(struct ich7_spi_regs, spis);
ctlr->control = offsetof(struct ich7_spi_regs, spic);
ctlr->bbar = offsetof(struct ich7_spi_regs, bbar);
ctlr->preop = offsetof(struct ich7_spi_regs, preop);
ctlr->base = ich7_spi;
} else if (plat->ich_version == 9) {
struct ich9_spi_regs *ich9_spi;
if (plat->use_sbase)
ich9_spi = (struct ich9_spi_regs *)sbase;
else
ich9_spi = (struct ich9_spi_regs *)(rcrb + 0x3800);
ctlr->ichspi_lock = readw(&ich9_spi->hsfs) & HSFS_FLOCKDN;
ctlr->opmenu = offsetof(struct ich9_spi_regs, opmenu);
ctlr->menubytes = sizeof(ich9_spi->opmenu);
ctlr->optype = offsetof(struct ich9_spi_regs, optype);
ctlr->addr = offsetof(struct ich9_spi_regs, faddr);
ctlr->data = offsetof(struct ich9_spi_regs, fdata);
ctlr->databytes = sizeof(ich9_spi->fdata);
ctlr->status = offsetof(struct ich9_spi_regs, ssfs);
ctlr->control = offsetof(struct ich9_spi_regs, ssfc);
ctlr->speed = ctlr->control + 2;
ctlr->bbar = offsetof(struct ich9_spi_regs, bbar);
ctlr->preop = offsetof(struct ich9_spi_regs, preop);
ctlr->bcr = offsetof(struct ich9_spi_regs, bcr);
ctlr->pr = &ich9_spi->pr[0];
ctlr->base = ich9_spi;
} else {
debug("ICH SPI: Unrecognised ICH version %d\n",
plat->ich_version);
return -EINVAL;
}
/* Work out the maximum speed we can support */
ctlr->max_speed = 20000000;
if (plat->ich_version == 9 && ich9_can_do_33mhz(plat->dev))
ctlr->max_speed = 33000000;
debug("ICH SPI: Version %d detected at %p, speed %ld\n",
plat->ich_version, ctlr->base, ctlr->max_speed);
ich_set_bbar(ctlr, 0);
return 0;
}
static inline void spi_use_out(struct spi_trans *trans, unsigned bytes)
{
trans->out += bytes;
trans->bytesout -= bytes;
}
static inline void spi_use_in(struct spi_trans *trans, unsigned bytes)
{
trans->in += bytes;
trans->bytesin -= bytes;
}
static void spi_setup_type(struct spi_trans *trans, int data_bytes)
{
trans->type = 0xFF;
/* Try to guess spi type from read/write sizes. */
if (trans->bytesin == 0) {
if (trans->bytesout + data_bytes > 4)
/*
* If bytesin = 0 and bytesout > 4, we presume this is
* a write data operation, which is accompanied by an
* address.
*/
trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
else
trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
return;
}
if (trans->bytesout == 1) { /* and bytesin is > 0 */
trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
return;
}
if (trans->bytesout == 4) /* and bytesin is > 0 */
trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
/* Fast read command is called with 5 bytes instead of 4 */
if (trans->out[0] == SPI_OPCODE_FAST_READ && trans->bytesout == 5) {
trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
--trans->bytesout;
}
}
static int spi_setup_opcode(struct ich_spi_priv *ctlr, struct spi_trans *trans)
{
uint16_t optypes;
uint8_t opmenu[ctlr->menubytes];
trans->opcode = trans->out[0];
spi_use_out(trans, 1);
if (!ctlr->ichspi_lock) {
/* The lock is off, so just use index 0. */
ich_writeb(ctlr, trans->opcode, ctlr->opmenu);
optypes = ich_readw(ctlr, ctlr->optype);
optypes = (optypes & 0xfffc) | (trans->type & 0x3);
ich_writew(ctlr, optypes, ctlr->optype);
return 0;
} else {
/* The lock is on. See if what we need is on the menu. */
uint8_t optype;
uint16_t opcode_index;
/* Write Enable is handled as atomic prefix */
if (trans->opcode == SPI_OPCODE_WREN)
return 0;
read_reg(ctlr, ctlr->opmenu, opmenu, sizeof(opmenu));
for (opcode_index = 0; opcode_index < ctlr->menubytes;
opcode_index++) {
if (opmenu[opcode_index] == trans->opcode)
break;
}
if (opcode_index == ctlr->menubytes) {
printf("ICH SPI: Opcode %x not found\n",
trans->opcode);
return -EINVAL;
}
optypes = ich_readw(ctlr, ctlr->optype);
optype = (optypes >> (opcode_index * 2)) & 0x3;
if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS &&
optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS &&
trans->bytesout >= 3) {
/* We guessed wrong earlier. Fix it up. */
trans->type = optype;
}
if (optype != trans->type) {
printf("ICH SPI: Transaction doesn't fit type %d\n",
optype);
return -ENOSPC;
}
return opcode_index;
}
}
static int spi_setup_offset(struct spi_trans *trans)
{
/* Separate the SPI address and data. */
switch (trans->type) {
case SPI_OPCODE_TYPE_READ_NO_ADDRESS:
case SPI_OPCODE_TYPE_WRITE_NO_ADDRESS:
return 0;
case SPI_OPCODE_TYPE_READ_WITH_ADDRESS:
case SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS:
trans->offset = ((uint32_t)trans->out[0] << 16) |
((uint32_t)trans->out[1] << 8) |
((uint32_t)trans->out[2] << 0);
spi_use_out(trans, 3);
return 1;
default:
printf("Unrecognized SPI transaction type %#x\n", trans->type);
return -EPROTO;
}
}
/*
* Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set
* below is true) or 0. In case the wait was for the bit(s) to set - write
* those bits back, which would cause resetting them.
*
* Return the last read status value on success or -1 on failure.
*/
static int ich_status_poll(struct ich_spi_priv *ctlr, u16 bitmask,
int wait_til_set)
{
int timeout = 600000; /* This will result in 6s */
u16 status = 0;
while (timeout--) {
status = ich_readw(ctlr, ctlr->status);
if (wait_til_set ^ ((status & bitmask) == 0)) {
if (wait_til_set) {
ich_writew(ctlr, status & bitmask,
ctlr->status);
}
return status;
}
udelay(10);
}
printf("ICH SPI: SCIP timeout, read %x, expected %x\n",
status, bitmask);
return -ETIMEDOUT;
}
static int ich_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev_get_parent(dev);
struct ich_spi_platdata *plat = dev_get_platdata(bus);
struct ich_spi_priv *ctlr = dev_get_priv(bus);
uint16_t control;
int16_t opcode_index;
int with_address;
int status;
int bytes = bitlen / 8;
struct spi_trans *trans = &ctlr->trans;
unsigned type = flags & (SPI_XFER_BEGIN | SPI_XFER_END);
int using_cmd = 0;
int ret;
/* We don't support writing partial bytes */
if (bitlen % 8) {
debug("ICH SPI: Accessing partial bytes not supported\n");
return -EPROTONOSUPPORT;
}
/* An empty end transaction can be ignored */
if (type == SPI_XFER_END && !dout && !din)
return 0;
if (type & SPI_XFER_BEGIN)
memset(trans, '\0', sizeof(*trans));
/* Dp we need to come back later to finish it? */
if (dout && type == SPI_XFER_BEGIN) {
if (bytes > ICH_MAX_CMD_LEN) {
debug("ICH SPI: Command length limit exceeded\n");
return -ENOSPC;
}
memcpy(trans->cmd, dout, bytes);
trans->cmd_len = bytes;
debug("ICH SPI: Saved %d bytes\n", bytes);
return 0;
}
/*
* We process a 'middle' spi_xfer() call, which has no
* SPI_XFER_BEGIN/END, as an independent transaction as if it had
* an end. We therefore repeat the command. This is because ICH
* seems to have no support for this, or because interest (in digging
* out the details and creating a special case in the code) is low.
*/
if (trans->cmd_len) {
trans->out = trans->cmd;
trans->bytesout = trans->cmd_len;
using_cmd = 1;
debug("ICH SPI: Using %d bytes\n", trans->cmd_len);
} else {
trans->out = dout;
trans->bytesout = dout ? bytes : 0;
}
trans->in = din;
trans->bytesin = din ? bytes : 0;
/* There has to always at least be an opcode. */
if (!trans->bytesout) {
debug("ICH SPI: No opcode for transfer\n");
return -EPROTO;
}
ret = ich_status_poll(ctlr, SPIS_SCIP, 0);
if (ret < 0)
return ret;
if (plat->ich_version == 7)
ich_writew(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status);
else
ich_writeb(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status);
spi_setup_type(trans, using_cmd ? bytes : 0);
opcode_index = spi_setup_opcode(ctlr, trans);
if (opcode_index < 0)
return -EINVAL;
with_address = spi_setup_offset(trans);
if (with_address < 0)
return -EINVAL;
if (trans->opcode == SPI_OPCODE_WREN) {
/*
* Treat Write Enable as Atomic Pre-Op if possible
* in order to prevent the Management Engine from
* issuing a transaction between WREN and DATA.
*/
if (!ctlr->ichspi_lock)
ich_writew(ctlr, trans->opcode, ctlr->preop);
return 0;
}
if (ctlr->speed && ctlr->max_speed >= 33000000) {
int byte;
byte = ich_readb(ctlr, ctlr->speed);
if (ctlr->cur_speed >= 33000000)
byte |= SSFC_SCF_33MHZ;
else
byte &= ~SSFC_SCF_33MHZ;
ich_writeb(ctlr, byte, ctlr->speed);
}
/* See if we have used up the command data */
if (using_cmd && dout && bytes) {
trans->out = dout;
trans->bytesout = bytes;
debug("ICH SPI: Moving to data, %d bytes\n", bytes);
}
/* Preset control fields */
control = ich_readw(ctlr, ctlr->control);
control &= ~SSFC_RESERVED;
control = SPIC_SCGO | ((opcode_index & 0x07) << 4);
/* Issue atomic preop cycle if needed */
if (ich_readw(ctlr, ctlr->preop))
control |= SPIC_ACS;
if (!trans->bytesout && !trans->bytesin) {
/* SPI addresses are 24 bit only */
if (with_address) {
ich_writel(ctlr, trans->offset & 0x00FFFFFF,
ctlr->addr);
}
/*
* This is a 'no data' command (like Write Enable), its
* bitesout size was 1, decremented to zero while executing
* spi_setup_opcode() above. Tell the chip to send the
* command.
*/
ich_writew(ctlr, control, ctlr->control);
/* wait for the result */
status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
if (status < 0)
return status;
if (status & SPIS_FCERR) {
debug("ICH SPI: Command transaction error\n");
return -EIO;
}
return 0;
}
/*
* Check if this is a write command atempting to transfer more bytes
* than the controller can handle. Iterations for writes are not
* supported here because each SPI write command needs to be preceded
* and followed by other SPI commands, and this sequence is controlled
* by the SPI chip driver.
*/
if (trans->bytesout > ctlr->databytes) {
debug("ICH SPI: Too much to write. This should be prevented by the driver's max_write_size?\n");
return -EPROTO;
}
/*
* Read or write up to databytes bytes at a time until everything has
* been sent.
*/
while (trans->bytesout || trans->bytesin) {
uint32_t data_length;
/* SPI addresses are 24 bit only */
ich_writel(ctlr, trans->offset & 0x00FFFFFF, ctlr->addr);
if (trans->bytesout)
data_length = min(trans->bytesout, ctlr->databytes);
else
data_length = min(trans->bytesin, ctlr->databytes);
/* Program data into FDATA0 to N */
if (trans->bytesout) {
write_reg(ctlr, trans->out, ctlr->data, data_length);
spi_use_out(trans, data_length);
if (with_address)
trans->offset += data_length;
}
/* Add proper control fields' values */
control &= ~((ctlr->databytes - 1) << 8);
control |= SPIC_DS;
control |= (data_length - 1) << 8;
/* write it */
ich_writew(ctlr, control, ctlr->control);
/* Wait for Cycle Done Status or Flash Cycle Error. */
status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
if (status < 0)
return status;
if (status & SPIS_FCERR) {
debug("ICH SPI: Data transaction error %x\n", status);
return -EIO;
}
if (trans->bytesin) {
read_reg(ctlr, ctlr->data, trans->in, data_length);
spi_use_in(trans, data_length);
if (with_address)
trans->offset += data_length;
}
}
/* Clear atomic preop now that xfer is done */
ich_writew(ctlr, 0, ctlr->preop);
return 0;
}
/*
* This uses the SPI controller from the Intel Cougar Point and Panther Point
* PCH to write-protect portions of the SPI flash until reboot. The changes
* don't actually take effect until the HSFS[FLOCKDN] bit is set, but that's
* done elsewhere.
*/
int spi_write_protect_region(struct udevice *dev, uint32_t lower_limit,
uint32_t length, int hint)
{
struct udevice *bus = dev->parent;
struct ich_spi_priv *ctlr = dev_get_priv(bus);
uint32_t tmplong;
uint32_t upper_limit;
if (!ctlr->pr) {
printf("%s: operation not supported on this chipset\n",
__func__);
return -ENOSYS;
}
if (length == 0 ||
lower_limit > (0xFFFFFFFFUL - length) + 1 ||
hint < 0 || hint > 4) {
printf("%s(0x%x, 0x%x, %d): invalid args\n", __func__,
lower_limit, length, hint);
return -EPERM;
}
upper_limit = lower_limit + length - 1;
/*
* Determine bits to write, as follows:
* 31 Write-protection enable (includes erase operation)
* 30:29 reserved
* 28:16 Upper Limit (FLA address bits 24:12, with 11:0 == 0xfff)
* 15 Read-protection enable
* 14:13 reserved
* 12:0 Lower Limit (FLA address bits 24:12, with 11:0 == 0x000)
*/
tmplong = 0x80000000 |
((upper_limit & 0x01fff000) << 4) |
((lower_limit & 0x01fff000) >> 12);
printf("%s: writing 0x%08x to %p\n", __func__, tmplong,
&ctlr->pr[hint]);
ctlr->pr[hint] = tmplong;
return 0;
}
static int ich_spi_probe(struct udevice *bus)
{
struct ich_spi_platdata *plat = dev_get_platdata(bus);
struct ich_spi_priv *priv = dev_get_priv(bus);
uint8_t bios_cntl;
int ret;
ret = ich_init_controller(plat, priv);
if (ret)
return ret;
/*
* Disable the BIOS write protect so write commands are allowed. On
* v9, deassert SMM BIOS Write Protect Disable.
*/
if (plat->use_sbase) {
bios_cntl = ich_readb(priv, priv->bcr);
bios_cntl &= ~(1 << 5); /* clear Enable InSMM_STS (EISS) */
bios_cntl |= 1; /* Write Protect Disable (WPD) */
ich_writeb(priv, bios_cntl, priv->bcr);
} else {
pci_read_config_byte(plat->dev, 0xdc, &bios_cntl);
if (plat->ich_version == 9)
bios_cntl &= ~(1 << 5);
pci_write_config_byte(plat->dev, 0xdc, bios_cntl | 0x1);
}
priv->cur_speed = priv->max_speed;
return 0;
}
static int ich_spi_ofdata_to_platdata(struct udevice *bus)
{
struct ich_spi_platdata *plat = dev_get_platdata(bus);
int ret;
ret = ich_find_spi_controller(plat);
if (ret)
return ret;
return 0;
}
static int ich_spi_set_speed(struct udevice *bus, uint speed)
{
struct ich_spi_priv *priv = dev_get_priv(bus);
priv->cur_speed = speed;
return 0;
}
static int ich_spi_set_mode(struct udevice *bus, uint mode)
{
debug("%s: mode=%d\n", __func__, mode);
return 0;
}
static int ich_spi_child_pre_probe(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct ich_spi_platdata *plat = dev_get_platdata(bus);
struct ich_spi_priv *priv = dev_get_priv(bus);
struct spi_slave *slave = dev_get_parentdata(dev);
/*
* Yes this controller can only write a small number of bytes at
* once! The limit is typically 64 bytes.
*/
slave->max_write_size = priv->databytes;
/*
* ICH 7 SPI controller only supports array read command
* and byte program command for SST flash
*/
if (plat->ich_version == 7) {
slave->op_mode_rx = SPI_OPM_RX_AS;
slave->op_mode_tx = SPI_OPM_TX_BP;
}
return 0;
}
static const struct dm_spi_ops ich_spi_ops = {
.xfer = ich_spi_xfer,
.set_speed = ich_spi_set_speed,
.set_mode = ich_spi_set_mode,
/*
* cs_info is not needed, since we require all chip selects to be
* in the device tree explicitly
*/
};
static const struct udevice_id ich_spi_ids[] = {
{ .compatible = "intel,ich-spi" },
{ }
};
U_BOOT_DRIVER(ich_spi) = {
.name = "ich_spi",
.id = UCLASS_SPI,
.of_match = ich_spi_ids,
.ops = &ich_spi_ops,
.ofdata_to_platdata = ich_spi_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct ich_spi_platdata),
.priv_auto_alloc_size = sizeof(struct ich_spi_priv),
.child_pre_probe = ich_spi_child_pre_probe,
.probe = ich_spi_probe,
};