u-boot/arch/arm/mach-stm32mp/cmd_stm32prog/stm32prog_serial.c

995 lines
23 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* Copyright (C) 2020, STMicroelectronics - All Rights Reserved
*/
#include <common.h>
#include <console.h>
#include <dfu.h>
#include <malloc.h>
#include <serial.h>
#include <watchdog.h>
#include <dm/lists.h>
#include <dm/device-internal.h>
#include <linux/delay.h>
#include "stm32prog.h"
/* - configuration part -----------------------------*/
#define USART_BL_VERSION 0x40 /* USART bootloader version V4.0*/
#define UBOOT_BL_VERSION 0x03 /* bootloader version V0.3*/
#define DEVICE_ID_BYTE1 0x05 /* MSB byte of device ID*/
#define DEVICE_ID_BYTE2 0x00 /* LSB byte of device ID*/
#define USART_RAM_BUFFER_SIZE 256 /* Size of USART_RAM_Buf buffer*/
/* - Commands -----------------------------*/
#define GET_CMD_COMMAND 0x00 /* Get CMD command*/
#define GET_VER_COMMAND 0x01 /* Get Version command*/
#define GET_ID_COMMAND 0x02 /* Get ID command*/
#define GET_PHASE_COMMAND 0x03 /* Get Phase command*/
#define RM_COMMAND 0x11 /* Read Memory command*/
#define READ_PART_COMMAND 0x12 /* Read Partition command*/
#define START_COMMAND 0x21 /* START command (Go)*/
#define DOWNLOAD_COMMAND 0x31 /* Download command*/
/* existing command for other STM32 but not used */
/* ERASE 0x43 */
/* EXTENDED_ERASE 0x44 */
/* WRITE_UNPROTECTED 0x73 */
/* READOUT_PROTECT 0x82 */
/* READOUT_UNPROTECT 0x92 */
/* - miscellaneous defines ----------------------------------------*/
#define INIT_BYTE 0x7F /*Init Byte ID*/
#define ACK_BYTE 0x79 /*Acknowlede Byte ID*/
#define NACK_BYTE 0x1F /*No Acknowlede Byte ID*/
#define ABORT_BYTE 0x5F /*ABORT*/
struct udevice *down_serial_dev;
const u8 cmd_id[] = {
GET_CMD_COMMAND,
GET_VER_COMMAND,
GET_ID_COMMAND,
GET_PHASE_COMMAND,
RM_COMMAND,
READ_PART_COMMAND,
START_COMMAND,
DOWNLOAD_COMMAND
};
#define NB_CMD sizeof(cmd_id)
/* DFU support for serial *********************************************/
static struct dfu_entity *stm32prog_get_entity(struct stm32prog_data *data)
{
int alt_id;
if (!data->cur_part)
if (data->phase == PHASE_FLASHLAYOUT)
alt_id = 0;
else
return NULL;
else
alt_id = data->cur_part->alt_id;
return dfu_get_entity(alt_id);
}
static int stm32prog_write(struct stm32prog_data *data, u8 *buffer,
u32 buffer_size)
{
struct dfu_entity *dfu_entity;
u8 ret = 0;
dfu_entity = stm32prog_get_entity(data);
if (!dfu_entity)
return -ENODEV;
ret = dfu_write(dfu_entity,
buffer,
buffer_size,
data->dfu_seq);
if (ret) {
stm32prog_err("DFU write failed [%d] cnt: %d",
ret, data->dfu_seq);
}
data->dfu_seq++;
/* handle rollover as in driver/dfu/dfu.c */
data->dfu_seq &= 0xffff;
if (buffer_size == 0)
data->dfu_seq = 0; /* flush done */
return ret;
}
static int stm32prog_read(struct stm32prog_data *data, u8 phase, u32 offset,
u8 *buffer, u32 buffer_size)
{
struct dfu_entity *dfu_entity;
struct stm32prog_part_t *part;
u32 size;
int ret, i;
if (data->dfu_seq) {
stm32prog_err("DFU write pending for phase %d, seq %d",
data->phase, data->dfu_seq);
return -EINVAL;
}
if (phase == PHASE_FLASHLAYOUT || phase > PHASE_LAST_USER) {
stm32prog_err("read failed : phase %d is invalid", phase);
return -EINVAL;
}
if (data->read_phase <= PHASE_LAST_USER &&
phase != data->read_phase) {
/* clear previous read session */
dfu_entity = dfu_get_entity(data->read_phase - 1);
if (dfu_entity)
dfu_transaction_cleanup(dfu_entity);
}
dfu_entity = NULL;
/* found partition for the expected phase */
for (i = 0; i < data->part_nb; i++) {
part = &data->part_array[i];
if (part->id == phase)
dfu_entity = dfu_get_entity(part->alt_id);
}
if (!dfu_entity) {
stm32prog_err("read failed : phase %d is unknown", phase);
return -ENODEV;
}
/* clear pending read before to force offset */
if (dfu_entity->inited &&
(data->read_phase != phase || data->offset != offset))
dfu_transaction_cleanup(dfu_entity);
/* initiate before to force offset */
if (!dfu_entity->inited) {
ret = dfu_transaction_initiate(dfu_entity, true);
if (ret < 0) {
stm32prog_err("DFU read init failed [%d] phase = %d offset = 0x%08x",
ret, phase, offset);
return ret;
}
}
/* force new offset */
if (dfu_entity->offset != offset)
dfu_entity->offset = offset;
data->offset = offset;
data->read_phase = phase;
pr_debug("\nSTM32 download read %s offset=0x%x\n",
dfu_entity->name, offset);
ret = dfu_read(dfu_entity, buffer, buffer_size,
dfu_entity->i_blk_seq_num);
if (ret < 0) {
stm32prog_err("DFU read failed [%d] phase = %d offset = 0x%08x",
ret, phase, offset);
return ret;
}
size = ret;
if (size < buffer_size) {
data->offset = 0;
data->read_phase = PHASE_END;
memset(buffer + size, 0, buffer_size - size);
} else {
data->offset += size;
}
return ret;
}
/* UART access ***************************************************/
int stm32prog_serial_init(struct stm32prog_data *data, int link_dev)
{
struct udevice *dev = NULL;
int node;
char alias[10];
const char *path;
struct dm_serial_ops *ops;
/* no parity, 8 bits, 1 stop */
u32 serial_config = SERIAL_DEFAULT_CONFIG;
down_serial_dev = NULL;
sprintf(alias, "serial%d", link_dev);
path = fdt_get_alias(gd->fdt_blob, alias);
if (!path) {
pr_err("%s alias not found", alias);
return -ENODEV;
}
node = fdt_path_offset(gd->fdt_blob, path);
if (!uclass_get_device_by_of_offset(UCLASS_SERIAL, node,
&dev)) {
down_serial_dev = dev;
} else if (node > 0 &&
!lists_bind_fdt(gd->dm_root, offset_to_ofnode(node),
&dev, false)) {
if (!device_probe(dev))
down_serial_dev = dev;
}
if (!down_serial_dev) {
pr_err("%s = %s device not found", alias, path);
return -ENODEV;
}
/* force silent console on uart only when used */
if (gd->cur_serial_dev == down_serial_dev)
gd->flags |= GD_FLG_DISABLE_CONSOLE | GD_FLG_SILENT;
else
gd->flags &= ~(GD_FLG_DISABLE_CONSOLE | GD_FLG_SILENT);
ops = serial_get_ops(down_serial_dev);
if (!ops) {
pr_err("%s = %s missing ops", alias, path);
return -ENODEV;
}
if (!ops->setconfig) {
pr_err("%s = %s missing setconfig", alias, path);
return -ENODEV;
}
clrsetbits_le32(&serial_config, SERIAL_PAR_MASK, SERIAL_PAR_EVEN);
data->buffer = memalign(CONFIG_SYS_CACHELINE_SIZE,
USART_RAM_BUFFER_SIZE);
return ops->setconfig(down_serial_dev, serial_config);
}
static void stm32prog_serial_flush(void)
{
struct dm_serial_ops *ops = serial_get_ops(down_serial_dev);
int err;
do {
err = ops->getc(down_serial_dev);
} while (err != -EAGAIN);
}
static int stm32prog_serial_getc_err(void)
{
struct dm_serial_ops *ops = serial_get_ops(down_serial_dev);
int err;
do {
err = ops->getc(down_serial_dev);
if (err == -EAGAIN) {
ctrlc();
WATCHDOG_RESET();
}
} while ((err == -EAGAIN) && (!had_ctrlc()));
return err;
}
static u8 stm32prog_serial_getc(void)
{
int err;
err = stm32prog_serial_getc_err();
return err >= 0 ? err : 0;
}
static bool stm32prog_serial_get_buffer(u8 *buffer, u32 *count)
{
struct dm_serial_ops *ops = serial_get_ops(down_serial_dev);
int err;
do {
err = ops->getc(down_serial_dev);
if (err >= 0) {
*buffer++ = err;
*count -= 1;
} else if (err == -EAGAIN) {
ctrlc();
WATCHDOG_RESET();
} else {
break;
}
} while (*count && !had_ctrlc());
return !!(err < 0);
}
static void stm32prog_serial_putc(u8 w_byte)
{
struct dm_serial_ops *ops = serial_get_ops(down_serial_dev);
int err;
do {
err = ops->putc(down_serial_dev, w_byte);
} while (err == -EAGAIN);
}
/* Helper function ************************************************/
static u8 stm32prog_header(struct stm32prog_data *data)
{
u8 ret;
u8 boot = 0;
struct dfu_entity *dfu_entity;
u64 size = 0;
dfu_entity = stm32prog_get_entity(data);
if (!dfu_entity)
return -ENODEV;
printf("\nSTM32 download write %s\n", dfu_entity->name);
/* force cleanup to avoid issue with previous read */
dfu_transaction_cleanup(dfu_entity);
ret = stm32prog_header_check(data->header_data,
&data->header);
/* no header : max size is partition size */
if (ret) {
dfu_entity->get_medium_size(dfu_entity, &size);
data->header.image_length = size;
}
/**** Flash the header if necessary for boot partition */
if (data->phase < PHASE_FIRST_USER)
boot = 1;
/* write header if boot partition */
if (boot) {
if (ret) {
stm32prog_err("invalid header (error %d)", ret);
} else {
ret = stm32prog_write(data,
(u8 *)data->header_data,
BL_HEADER_SIZE);
}
} else {
if (ret)
printf(" partition without checksum\n");
ret = 0;
}
free(data->header_data);
data->header_data = NULL;
return ret;
}
static u8 stm32prog_start(struct stm32prog_data *data, u32 address)
{
u8 ret = 0;
struct dfu_entity *dfu_entity;
if (address < 0x100) {
if (address == PHASE_OTP)
return stm32prog_otp_start(data);
if (address == PHASE_PMIC)
return stm32prog_pmic_start(data);
if (address == PHASE_RESET || address == PHASE_END) {
data->cur_part = NULL;
data->dfu_seq = 0;
data->phase = address;
return 0;
}
if (address != data->phase) {
stm32prog_err("invalid received phase id %d, current phase is %d",
(u8)address, (u8)data->phase);
return -EINVAL;
}
}
/* check the last loaded partition */
if (address == DEFAULT_ADDRESS || address == data->phase) {
switch (data->phase) {
case PHASE_END:
case PHASE_RESET:
case PHASE_DO_RESET:
data->cur_part = NULL;
data->phase = PHASE_DO_RESET;
return 0;
}
dfu_entity = stm32prog_get_entity(data);
if (!dfu_entity)
return -ENODEV;
if (data->dfu_seq) {
ret = dfu_flush(dfu_entity, NULL, 0, data->dfu_seq);
data->dfu_seq = 0;
if (ret) {
stm32prog_err("DFU flush failed [%d]", ret);
return ret;
}
}
printf("\n received length = 0x%x\n", data->cursor);
if (data->header.present) {
if (data->cursor !=
(data->header.image_length + BL_HEADER_SIZE)) {
stm32prog_err("transmission interrupted (length=0x%x expected=0x%x)",
data->cursor,
data->header.image_length +
BL_HEADER_SIZE);
return -EIO;
}
if (data->header.image_checksum != data->checksum) {
stm32prog_err("invalid checksum received (0x%x expected 0x%x)",
data->checksum,
data->header.image_checksum);
return -EIO;
}
printf("\n checksum OK (0x%x)\n", data->checksum);
}
/* update DFU with received flashlayout */
if (data->phase == PHASE_FLASHLAYOUT)
stm32prog_dfu_init(data);
} else {
void (*entry)(void) = (void *)address;
printf("## Starting application at 0x%x ...\n", address);
(*entry)();
printf("## Application terminated\n");
ret = -ENOEXEC;
}
return ret;
}
/**
* get_address() - Get address if it is valid
*
* @tmp_xor: Current xor value to update
* @return The address area
*/
static u32 get_address(u8 *tmp_xor)
{
u32 address = 0x0;
u8 data;
data = stm32prog_serial_getc();
*tmp_xor ^= data;
address |= ((u32)data) << 24;
data = stm32prog_serial_getc();
address |= ((u32)data) << 16;
*tmp_xor ^= data;
data = stm32prog_serial_getc();
address |= ((u32)data) << 8;
*tmp_xor ^= data;
data = stm32prog_serial_getc();
address |= ((u32)data);
*tmp_xor ^= data;
return address;
}
static void stm32prog_serial_result(u8 result)
{
/* always flush fifo before to send result */
stm32prog_serial_flush();
stm32prog_serial_putc(result);
}
/* Command -----------------------------------------------*/
/**
* get_cmd_command() - Respond to Get command
*
* @data: Current command context
*/
static void get_cmd_command(struct stm32prog_data *data)
{
u32 counter = 0x0;
stm32prog_serial_putc(NB_CMD);
stm32prog_serial_putc(USART_BL_VERSION);
for (counter = 0; counter < NB_CMD; counter++)
stm32prog_serial_putc(cmd_id[counter]);
stm32prog_serial_result(ACK_BYTE);
}
/**
* get_version_command() - Respond to Get Version command
*
* @data: Current command context
*/
static void get_version_command(struct stm32prog_data *data)
{
stm32prog_serial_putc(UBOOT_BL_VERSION);
stm32prog_serial_result(ACK_BYTE);
}
/**
* get_id_command() - Respond to Get ID command
*
* @data: Current command context
*/
static void get_id_command(struct stm32prog_data *data)
{
/* Send Device IDCode */
stm32prog_serial_putc(0x1);
stm32prog_serial_putc(DEVICE_ID_BYTE1);
stm32prog_serial_putc(DEVICE_ID_BYTE2);
stm32prog_serial_result(ACK_BYTE);
}
/**
* get_phase_command() - Respond to Get phase
*
* @data: Current command context
*/
static void get_phase_command(struct stm32prog_data *data)
{
char *err_msg = NULL;
u8 i, length = 0;
u32 destination = DEFAULT_ADDRESS; /* destination address */
int phase = data->phase;
if (phase == PHASE_RESET || phase == PHASE_DO_RESET) {
err_msg = stm32prog_get_error(data);
length = strlen(err_msg);
}
if (phase == PHASE_FLASHLAYOUT)
destination = STM32_DDR_BASE;
stm32prog_serial_putc(length + 5); /* Total length */
stm32prog_serial_putc(phase & 0xFF); /* partition ID */
stm32prog_serial_putc(destination); /* byte 1 of address */
stm32prog_serial_putc(destination >> 8); /* byte 2 of address */
stm32prog_serial_putc(destination >> 16); /* byte 3 of address */
stm32prog_serial_putc(destination >> 24); /* byte 4 of address */
stm32prog_serial_putc(length); /* Information length */
for (i = 0; i < length; i++)
stm32prog_serial_putc(err_msg[i]);
stm32prog_serial_result(ACK_BYTE);
if (phase == PHASE_RESET)
stm32prog_do_reset(data);
}
/**
* read_memory_command() - Read data from memory
*
* @data: Current command context
*/
static void read_memory_command(struct stm32prog_data *data)
{
u32 address = 0x0;
u8 rcv_data = 0x0, tmp_xor = 0x0;
u32 counter = 0x0;
/* Read memory address */
address = get_address(&tmp_xor);
/* If address memory is not received correctly */
rcv_data = stm32prog_serial_getc();
if (rcv_data != tmp_xor) {
stm32prog_serial_result(NACK_BYTE);
return;
}
stm32prog_serial_result(ACK_BYTE);
/* Read the number of bytes to be received:
* Max NbrOfData = Data + 1 = 256
*/
rcv_data = stm32prog_serial_getc();
tmp_xor = ~rcv_data;
if (stm32prog_serial_getc() != tmp_xor) {
stm32prog_serial_result(NACK_BYTE);
return;
}
/* If checksum is correct send ACK */
stm32prog_serial_result(ACK_BYTE);
/* Send data to the host:
* Number of data to read = data + 1
*/
for (counter = (rcv_data + 1); counter != 0; counter--)
stm32prog_serial_putc(*(u8 *)(address++));
}
/**
* start_command() - Respond to start command
*
* Jump to user application in RAM or partition check
*
* @data: Current command context
*/
static void start_command(struct stm32prog_data *data)
{
u32 address = 0;
u8 tmp_xor = 0x0;
u8 ret, rcv_data;
/* Read memory address */
address = get_address(&tmp_xor);
/* If address memory is not received correctly */
rcv_data = stm32prog_serial_getc();
if (rcv_data != tmp_xor) {
stm32prog_serial_result(NACK_BYTE);
return;
}
/* validate partition */
ret = stm32prog_start(data,
address);
if (ret)
stm32prog_serial_result(ABORT_BYTE);
else
stm32prog_serial_result(ACK_BYTE);
}
/**
* download_command() - Respond to download command
*
* Write data to not volatile memory, Flash
*
* @data: Current command context
*/
static void download_command(struct stm32prog_data *data)
{
u32 address = 0x0;
u8 my_xor = 0x0;
u8 rcv_xor;
u32 counter = 0x0, codesize = 0x0;
u8 *ramaddress = 0;
u8 rcv_data = 0x0;
struct image_header_s *image_header = &data->header;
u32 cursor = data->cursor;
long size = 0;
u8 operation;
u32 packet_number;
u32 result = ACK_BYTE;
u8 ret;
unsigned int i;
bool error;
int rcv;
address = get_address(&my_xor);
/* If address memory is not received correctly */
rcv_xor = stm32prog_serial_getc();
if (rcv_xor != my_xor) {
result = NACK_BYTE;
goto end;
}
/* If address valid send ACK */
stm32prog_serial_result(ACK_BYTE);
/* get packet number and operation type */
operation = (u8)((u32)address >> 24);
packet_number = ((u32)(((u32)address << 8))) >> 8;
switch (operation) {
/* supported operation */
case PHASE_FLASHLAYOUT:
case PHASE_OTP:
case PHASE_PMIC:
break;
default:
result = NACK_BYTE;
goto end;
}
/* check the packet number */
if (packet_number == 0) {
/* erase: re-initialize the image_header struct */
data->packet_number = 0;
if (data->header_data)
memset(data->header_data, 0, BL_HEADER_SIZE);
else
data->header_data = calloc(1, BL_HEADER_SIZE);
cursor = 0;
data->cursor = 0;
data->checksum = 0;
/*idx = cursor;*/
} else {
data->packet_number++;
}
/* Check with the number of current packet if the device receive
* the true packet
*/
if (packet_number != data->packet_number) {
data->packet_number--;
result = NACK_BYTE;
goto end;
}
/*-- Read number of bytes to be written and data -----------*/
/* Read the number of bytes to be written:
* Max NbrOfData = data + 1 <= 256
*/
rcv_data = stm32prog_serial_getc();
/* NbrOfData to write = data + 1 */
codesize = rcv_data + 0x01;
if (codesize > USART_RAM_BUFFER_SIZE) {
result = NACK_BYTE;
goto end;
}
/* Checksum Initialization */
my_xor = rcv_data;
/* UART receive data and send to Buffer */
counter = codesize;
error = stm32prog_serial_get_buffer(data->buffer, &counter);
/* read checksum */
if (!error) {
rcv = stm32prog_serial_getc_err();
error = !!(rcv < 0);
rcv_xor = rcv;
}
if (error) {
printf("transmission error on packet %d, byte %d\n",
packet_number, codesize - counter);
/* waiting end of packet before flush & NACK */
mdelay(30);
data->packet_number--;
result = NACK_BYTE;
goto end;
}
/* Compute Checksum */
ramaddress = data->buffer;
for (counter = codesize; counter != 0; counter--)
my_xor ^= *(ramaddress++);
/* If Checksum is incorrect */
if (rcv_xor != my_xor) {
printf("checksum error on packet %d\n",
packet_number);
/* wait to be sure that all data are received
* in the FIFO before flush
*/
mdelay(30);
data->packet_number--;
result = NACK_BYTE;
goto end;
}
/* Update current position in buffer */
data->cursor += codesize;
if (operation == PHASE_OTP) {
size = data->cursor - cursor;
/* no header for OTP */
if (stm32prog_otp_write(data, cursor,
data->buffer, &size))
result = ABORT_BYTE;
goto end;
}
if (operation == PHASE_PMIC) {
size = data->cursor - cursor;
/* no header for PMIC */
if (stm32prog_pmic_write(data, cursor,
data->buffer, &size))
result = ABORT_BYTE;
goto end;
}
if (cursor < BL_HEADER_SIZE) {
/* size = portion of header in this chunck */
if (data->cursor >= BL_HEADER_SIZE)
size = BL_HEADER_SIZE - cursor;
else
size = data->cursor - cursor;
memcpy((void *)((u32)(data->header_data) + cursor),
data->buffer, size);
cursor += size;
if (cursor == BL_HEADER_SIZE) {
/* Check and Write the header */
if (stm32prog_header(data)) {
result = ABORT_BYTE;
goto end;
}
} else {
goto end;
}
}
if (image_header->present) {
if (data->cursor <= BL_HEADER_SIZE)
goto end;
/* compute checksum on payload */
for (i = (unsigned long)size; i < codesize; i++)
data->checksum += data->buffer[i];
if (data->cursor >
image_header->image_length + BL_HEADER_SIZE) {
pr_err("expected size exceeded\n");
result = ABORT_BYTE;
goto end;
}
/* write data (payload) */
ret = stm32prog_write(data,
&data->buffer[size],
codesize - size);
} else {
/* write all */
ret = stm32prog_write(data,
data->buffer,
codesize);
}
if (ret)
result = ABORT_BYTE;
end:
stm32prog_serial_result(result);
}
/**
* read_partition() - Respond to read command
*
* Read data from not volatile memory, Flash
*
* @data: Current command context
*/
static void read_partition_command(struct stm32prog_data *data)
{
u32 i, part_id, codesize, offset = 0, rcv_data;
long size;
u8 tmp_xor;
int res;
u8 buffer[256];
part_id = stm32prog_serial_getc();
tmp_xor = part_id;
offset = get_address(&tmp_xor);
rcv_data = stm32prog_serial_getc();
if (rcv_data != tmp_xor) {
pr_debug("1st checksum received = %x, computed %x\n",
rcv_data, tmp_xor);
goto error;
}
stm32prog_serial_putc(ACK_BYTE);
/* NbrOfData to read = data + 1 */
rcv_data = stm32prog_serial_getc();
codesize = rcv_data + 0x01;
tmp_xor = rcv_data;
rcv_data = stm32prog_serial_getc();
if ((rcv_data ^ tmp_xor) != 0xFF) {
pr_debug("2nd checksum received = %x, computed %x\n",
rcv_data, tmp_xor);
goto error;
}
pr_debug("%s : %x\n", __func__, part_id);
rcv_data = 0;
switch (part_id) {
case PHASE_OTP:
size = codesize;
if (!stm32prog_otp_read(data, offset, buffer, &size))
rcv_data = size;
break;
case PHASE_PMIC:
size = codesize;
if (!stm32prog_pmic_read(data, offset, buffer, &size))
rcv_data = size;
break;
default:
res = stm32prog_read(data, part_id, offset,
buffer, codesize);
if (res > 0)
rcv_data = res;
break;
}
if (rcv_data > 0) {
stm32prog_serial_putc(ACK_BYTE);
/*----------- Send data to the host -----------*/
for (i = 0; i < rcv_data; i++)
stm32prog_serial_putc(buffer[i]);
/*----------- Send filler to the host -----------*/
for (; i < codesize; i++)
stm32prog_serial_putc(0x0);
return;
}
stm32prog_serial_result(ABORT_BYTE);
return;
error:
stm32prog_serial_result(NACK_BYTE);
}
/* MAIN function = SERIAL LOOP ***********************************************/
/**
* stm32prog_serial_loop() - USART bootloader Loop routine
*
* @data: Current command context
* @return true if reset is needed after loop
*/
bool stm32prog_serial_loop(struct stm32prog_data *data)
{
u32 counter = 0x0;
u8 command = 0x0;
u8 found;
int phase = data->phase;
/* element of cmd_func need to aligned with cmd_id[]*/
void (*cmd_func[NB_CMD])(struct stm32prog_data *) = {
/* GET_CMD_COMMAND */ get_cmd_command,
/* GET_VER_COMMAND */ get_version_command,
/* GET_ID_COMMAND */ get_id_command,
/* GET_PHASE_COMMAND */ get_phase_command,
/* RM_COMMAND */ read_memory_command,
/* READ_PART_COMMAND */ read_partition_command,
/* START_COMMAND */ start_command,
/* DOWNLOAD_COMMAND */ download_command
};
/* flush and NACK pending command received during u-boot init
* request command reemit
*/
stm32prog_serial_result(NACK_BYTE);
clear_ctrlc(); /* forget any previous Control C */
while (!had_ctrlc()) {
phase = data->phase;
if (phase == PHASE_DO_RESET)
return true;
/* Get the user command: read first byte */
command = stm32prog_serial_getc();
if (command == INIT_BYTE) {
puts("\nConnected\n");
stm32prog_serial_result(ACK_BYTE);
continue;
}
found = 0;
for (counter = 0; counter < NB_CMD; counter++)
if (cmd_id[counter] == command) {
found = 1;
break;
}
if (found)
if ((command ^ stm32prog_serial_getc()) != 0xFF)
found = 0;
if (!found) {
/* wait to be sure that all data are received
* in the FIFO before flush (CMD and XOR)
*/
mdelay(3);
stm32prog_serial_result(NACK_BYTE);
} else {
stm32prog_serial_result(ACK_BYTE);
cmd_func[counter](data);
}
WATCHDOG_RESET();
}
/* clean device */
if (gd->cur_serial_dev == down_serial_dev) {
/* restore console on uart */
gd->flags &= ~(GD_FLG_DISABLE_CONSOLE | GD_FLG_SILENT);
}
down_serial_dev = NULL;
return false; /* no reset after ctrlc */
}