u-boot/arch/arm/mach-stm32mp/psci.c

809 lines
23 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* Copyright (C) 2018, STMicroelectronics - All Rights Reserved
*/
#include <config.h>
#include <common.h>
#include <asm/armv7.h>
#include <asm/cache.h>
#include <asm/gic.h>
#include <asm/io.h>
#include <asm/psci.h>
#include <asm/secure.h>
#include <hang.h>
#include <linux/bitops.h>
/* PWR */
#define PWR_CR3 0x0c
#define PWR_MPUCR 0x10
#define PWR_CR3_DDRSREN BIT(10)
#define PWR_CR3_DDRRETEN BIT(12)
#define PWR_MPUCR_PDDS BIT(0)
#define PWR_MPUCR_CSTDBYDIS BIT(3)
#define PWR_MPUCR_CSSF BIT(9)
/* RCC */
#define RCC_MSSCKSELR 0x48
#define RCC_DDRITFCR 0xd8
#define RCC_DDRITFCR_DDRC1EN BIT(0)
#define RCC_DDRITFCR_DDRC1LPEN BIT(1)
#define RCC_DDRITFCR_DDRC2EN BIT(2)
#define RCC_DDRITFCR_DDRC2LPEN BIT(3)
#define RCC_DDRITFCR_DDRPHYCEN BIT(4)
#define RCC_DDRITFCR_DDRPHYCLPEN BIT(5)
#define RCC_DDRITFCR_DDRCAPBEN BIT(6)
#define RCC_DDRITFCR_DDRCAPBLPEN BIT(7)
#define RCC_DDRITFCR_AXIDCGEN BIT(8)
#define RCC_DDRITFCR_DDRPHYCAPBEN BIT(9)
#define RCC_DDRITFCR_DDRPHYCAPBLPEN BIT(10)
#define RCC_DDRITFCR_DDRCKMOD_MASK GENMASK(22, 20)
#define RCC_DDRITFCR_GSKPCTRL BIT(24)
#define RCC_MP_SREQSETR 0x104
#define RCC_MP_SREQCLRR 0x108
#define RCC_MP_CIER 0x414
#define RCC_MP_CIFR 0x418
#define RCC_MP_CIFR_WKUPF BIT(20)
#define RCC_MCUDIVR 0x830
#define RCC_PLL3CR 0x880
#define RCC_PLL4CR 0x894
/* SYSCFG */
#define SYSCFG_CMPCR 0x20
#define SYSCFG_CMPCR_SW_CTRL BIT(2)
#define SYSCFG_CMPENSETR 0x24
#define SYSCFG_CMPENCLRR 0x28
#define SYSCFG_CMPENR_MPUEN BIT(0)
/* DDR Controller registers offsets */
#define DDRCTRL_STAT 0x004
#define DDRCTRL_PWRCTL 0x030
#define DDRCTRL_PWRTMG 0x034
#define DDRCTRL_HWLPCTL 0x038
#define DDRCTRL_DFIMISC 0x1b0
#define DDRCTRL_SWCTL 0x320
#define DDRCTRL_SWSTAT 0x324
#define DDRCTRL_PSTAT 0x3fc
#define DDRCTRL_PCTRL_0 0x490
#define DDRCTRL_PCTRL_1 0x540
/* DDR Controller Register fields */
#define DDRCTRL_STAT_OPERATING_MODE_MASK GENMASK(2, 0)
#define DDRCTRL_STAT_OPERATING_MODE_NORMAL 0x1
#define DDRCTRL_STAT_OPERATING_MODE_SR 0x3
#define DDRCTRL_STAT_SELFREF_TYPE_MASK GENMASK(5, 4)
#define DDRCTRL_STAT_SELFREF_TYPE_ASR (0x3 << 4)
#define DDRCTRL_STAT_SELFREF_TYPE_SR (0x2 << 4)
#define DDRCTRL_PWRCTL_SELFREF_EN BIT(0)
#define DDRCTRL_PWRCTL_EN_DFI_DRAM_CLK_DISABLE BIT(3)
#define DDRCTRL_PWRCTL_SELFREF_SW BIT(5)
#define DDRCTRL_PWRTMG_SELFREF_TO_X32_MASK GENMASK(23, 16)
#define DDRCTRL_PWRTMG_SELFREF_TO_X32_0 BIT(16)
#define DDRCTRL_HWLPCTL_HW_LP_EN BIT(0)
#define DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN BIT(0)
#define DDRCTRL_SWCTL_SW_DONE BIT(0)
#define DDRCTRL_SWSTAT_SW_DONE_ACK BIT(0)
#define DDRCTRL_PSTAT_RD_PORT_BUSY_0 BIT(0)
#define DDRCTRL_PSTAT_RD_PORT_BUSY_1 BIT(1)
#define DDRCTRL_PSTAT_WR_PORT_BUSY_0 BIT(16)
#define DDRCTRL_PSTAT_WR_PORT_BUSY_1 BIT(17)
#define DDRCTRL_PCTRL_N_PORT_EN BIT(0)
/* DDR PHY registers offsets */
#define DDRPHYC_PIR 0x004
#define DDRPHYC_PGSR 0x00c
#define DDRPHYC_ACDLLCR 0x014
#define DDRPHYC_ACIOCR 0x024
#define DDRPHYC_DXCCR 0x028
#define DDRPHYC_DSGCR 0x02c
#define DDRPHYC_ZQ0CR0 0x180
#define DDRPHYC_DX0DLLCR 0x1cc
#define DDRPHYC_DX1DLLCR 0x20c
#define DDRPHYC_DX2DLLCR 0x24c
#define DDRPHYC_DX3DLLCR 0x28c
/* DDR PHY Register fields */
#define DDRPHYC_PIR_INIT BIT(0)
#define DDRPHYC_PIR_DLLSRST BIT(1)
#define DDRPHYC_PIR_DLLLOCK BIT(2)
#define DDRPHYC_PIR_ITMSRST BIT(4)
#define DDRPHYC_PGSR_IDONE BIT(0)
#define DDRPHYC_ACDLLCR_DLLSRST BIT(30)
#define DDRPHYC_ACDLLCR_DLLDIS BIT(31)
#define DDRPHYC_ACIOCR_ACOE BIT(1)
#define DDRPHYC_ACIOCR_ACPDD BIT(3)
#define DDRPHYC_ACIOCR_ACPDR BIT(4)
#define DDRPHYC_ACIOCR_CKPDD_MASK GENMASK(10, 8)
#define DDRPHYC_ACIOCR_CKPDD_0 BIT(8)
#define DDRPHYC_ACIOCR_CKPDR_MASK GENMASK(13, 11)
#define DDRPHYC_ACIOCR_CKPDR_0 BIT(11)
#define DDRPHYC_ACIOCR_CSPDD_MASK GENMASK(20, 18)
#define DDRPHYC_ACIOCR_CSPDD_0 BIT(18)
#define DDRPHYC_DXCCR_DXPDD BIT(2)
#define DDRPHYC_DXCCR_DXPDR BIT(3)
#define DDRPHYC_DSGCR_CKEPDD_MASK GENMASK(19, 16)
#define DDRPHYC_DSGCR_CKEPDD_0 BIT(16)
#define DDRPHYC_DSGCR_ODTPDD_MASK GENMASK(23, 20)
#define DDRPHYC_DSGCR_ODTPDD_0 BIT(20)
#define DDRPHYC_DSGCR_NL2PD BIT(24)
#define DDRPHYC_DSGCR_CKOE BIT(28)
#define DDRPHYC_ZQ0CRN_ZQPD BIT(31)
#define DDRPHYC_DXNDLLCR_DLLDIS BIT(31)
#define BOOT_API_A7_CORE0_MAGIC_NUMBER 0xca7face0
#define BOOT_API_A7_CORE1_MAGIC_NUMBER 0xca7face1
#define MPIDR_AFF0 GENMASK(7, 0)
#define RCC_MP_GRSTCSETR (STM32_RCC_BASE + 0x0404)
#define RCC_MP_GRSTCSETR_MPSYSRST BIT(0)
#define RCC_MP_GRSTCSETR_MPUP0RST BIT(4)
#define RCC_MP_GRSTCSETR_MPUP1RST BIT(5)
/* IWDG */
#define IWDG_KR 0x00
#define IWDG_KR_RELOAD_KEY 0xaaaa
#define IWDG_EWCR 0x14
#define IWDG_EWCR_EWIC BIT(14)
#define STM32MP1_PSCI_NR_CPUS 2
#if STM32MP1_PSCI_NR_CPUS > CONFIG_ARMV7_PSCI_NR_CPUS
#error "invalid value for CONFIG_ARMV7_PSCI_NR_CPUS"
#endif
u8 psci_state[STM32MP1_PSCI_NR_CPUS] __secure_data = {
PSCI_AFFINITY_LEVEL_ON,
PSCI_AFFINITY_LEVEL_OFF};
static u32 __secure_data cntfrq;
static u32 __secure cp15_read_cntfrq(void)
{
u32 frq;
asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (frq));
return frq;
}
static void __secure cp15_write_cntfrq(u32 frq)
{
asm volatile ("mcr p15, 0, %0, c14, c0, 0" : : "r" (frq));
}
static inline void psci_set_state(int cpu, u8 state)
{
psci_state[cpu] = state;
dsb();
isb();
}
static u32 __secure stm32mp_get_gicd_base_address(void)
{
u32 periphbase;
/* get the GIC base address from the CBAR register */
asm("mrc p15, 4, %0, c15, c0, 0\n" : "=r" (periphbase));
return (periphbase & CBAR_MASK) + GIC_DIST_OFFSET;
}
static void __secure stm32mp_raise_sgi0(int cpu)
{
u32 gic_dist_addr;
gic_dist_addr = stm32mp_get_gicd_base_address();
/* ask cpu with SGI0 */
writel((BIT(cpu) << 16), gic_dist_addr + GICD_SGIR);
}
void __secure psci_arch_cpu_entry(void)
{
u32 cpu = psci_get_cpu_id();
psci_set_state(cpu, PSCI_AFFINITY_LEVEL_ON);
/* write the saved cntfrq */
cp15_write_cntfrq(cntfrq);
/* reset magic in TAMP register */
writel(0xFFFFFFFF, TAMP_BACKUP_MAGIC_NUMBER);
}
s32 __secure psci_features(u32 function_id, u32 psci_fid)
{
switch (psci_fid) {
case ARM_PSCI_0_2_FN_PSCI_VERSION:
case ARM_PSCI_0_2_FN_CPU_OFF:
case ARM_PSCI_0_2_FN_CPU_ON:
case ARM_PSCI_0_2_FN_AFFINITY_INFO:
case ARM_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
case ARM_PSCI_0_2_FN_SYSTEM_OFF:
case ARM_PSCI_0_2_FN_SYSTEM_RESET:
case ARM_PSCI_1_0_FN_SYSTEM_SUSPEND:
return 0x0;
}
return ARM_PSCI_RET_NI;
}
u32 __secure psci_version(void)
{
return ARM_PSCI_VER_1_0;
}
s32 __secure psci_affinity_info(u32 function_id, u32 target_affinity,
u32 lowest_affinity_level)
{
u32 cpu = target_affinity & MPIDR_AFF0;
if (lowest_affinity_level > 0)
return ARM_PSCI_RET_INVAL;
if (target_affinity & ~MPIDR_AFF0)
return ARM_PSCI_RET_INVAL;
if (cpu >= STM32MP1_PSCI_NR_CPUS)
return ARM_PSCI_RET_INVAL;
return psci_state[cpu];
}
u32 __secure psci_migrate_info_type(void)
{
/*
* in Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
* return 2 = Trusted OS is either not present or does not require
* migration, system of this type does not require the caller
* to use the MIGRATE function.
* MIGRATE function calls return NOT_SUPPORTED.
*/
return 2;
}
s32 __secure psci_cpu_on(u32 function_id, u32 target_cpu, u32 pc,
u32 context_id)
{
u32 cpu = target_cpu & MPIDR_AFF0;
if (target_cpu & ~MPIDR_AFF0)
return ARM_PSCI_RET_INVAL;
if (cpu >= STM32MP1_PSCI_NR_CPUS)
return ARM_PSCI_RET_INVAL;
if (psci_state[cpu] == PSCI_AFFINITY_LEVEL_ON)
return ARM_PSCI_RET_ALREADY_ON;
/* read and save cntfrq of current cpu to write on target cpu */
cntfrq = cp15_read_cntfrq();
/* reset magic in TAMP register */
if (readl(TAMP_BACKUP_MAGIC_NUMBER))
writel(0xFFFFFFFF, TAMP_BACKUP_MAGIC_NUMBER);
/*
* ROM code need a first SGI0 after core reset
* core is ready when magic is set to 0 in ROM code
*/
while (readl(TAMP_BACKUP_MAGIC_NUMBER))
stm32mp_raise_sgi0(cpu);
/* store target PC and context id*/
psci_save(cpu, pc, context_id);
/* write entrypoint in backup RAM register */
writel((u32)&psci_cpu_entry, TAMP_BACKUP_BRANCH_ADDRESS);
psci_set_state(cpu, PSCI_AFFINITY_LEVEL_ON_PENDING);
/* write magic number in backup register */
if (cpu == 0x01)
writel(BOOT_API_A7_CORE1_MAGIC_NUMBER,
TAMP_BACKUP_MAGIC_NUMBER);
else
writel(BOOT_API_A7_CORE0_MAGIC_NUMBER,
TAMP_BACKUP_MAGIC_NUMBER);
/* Generate an IT to start the core */
stm32mp_raise_sgi0(cpu);
return ARM_PSCI_RET_SUCCESS;
}
s32 __secure psci_cpu_off(void)
{
u32 cpu;
cpu = psci_get_cpu_id();
psci_cpu_off_common();
psci_set_state(cpu, PSCI_AFFINITY_LEVEL_OFF);
/* reset core: wfi is managed by BootRom */
if (cpu == 0x01)
writel(RCC_MP_GRSTCSETR_MPUP1RST, RCC_MP_GRSTCSETR);
else
writel(RCC_MP_GRSTCSETR_MPUP0RST, RCC_MP_GRSTCSETR);
/* just waiting reset */
while (1)
wfi();
}
void __secure psci_system_reset(void)
{
/* System reset */
writel(RCC_MP_GRSTCSETR_MPSYSRST, RCC_MP_GRSTCSETR);
/* just waiting reset */
while (1)
wfi();
}
void __secure psci_system_off(void)
{
/* System Off is not managed, waiting user power off
* TODO: handle I2C write in PMIC Main Control register bit 0 = SWOFF
*/
while (1)
wfi();
}
static void __secure secure_udelay(unsigned int delay)
{
u32 freq = cp15_read_cntfrq() / 1000000;
u64 start, end;
delay *= freq;
asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (start));
for (;;) {
asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (end));
if ((end - start) > delay)
break;
}
}
static int __secure secure_waitbits(u32 reg, u32 mask, u32 val)
{
u32 freq = cp15_read_cntfrq() / 1000000;
u32 delay = 500 * freq; /* 500 us */
u64 start, end;
u32 tmp;
asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (start));
for (;;) {
tmp = readl(reg);
tmp &= mask;
if ((tmp & val) == val)
return 0;
asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (end));
if ((end - start) > delay)
return -ETIMEDOUT;
}
}
static void __secure ddr_sr_mode_ssr(u32 *saved_pwrctl)
{
setbits_le32(STM32_RCC_BASE + RCC_DDRITFCR,
RCC_DDRITFCR_DDRC1LPEN | RCC_DDRITFCR_DDRC1EN |
RCC_DDRITFCR_DDRC2LPEN | RCC_DDRITFCR_DDRC2EN |
RCC_DDRITFCR_DDRCAPBLPEN | RCC_DDRITFCR_DDRPHYCAPBLPEN |
RCC_DDRITFCR_DDRCAPBEN | RCC_DDRITFCR_DDRPHYCAPBEN |
RCC_DDRITFCR_DDRPHYCEN);
clrbits_le32(STM32_RCC_BASE + RCC_DDRITFCR,
RCC_DDRITFCR_AXIDCGEN | RCC_DDRITFCR_DDRCKMOD_MASK);
/* Disable HW LP interface of uMCTL2 */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_HWLPCTL,
DDRCTRL_HWLPCTL_HW_LP_EN);
/* Configure Automatic LP modes of uMCTL2 */
clrsetbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRTMG,
DDRCTRL_PWRTMG_SELFREF_TO_X32_MASK,
DDRCTRL_PWRTMG_SELFREF_TO_X32_0);
/* Save PWRCTL register to restart ASR after suspend (if applicable) */
*saved_pwrctl = readl(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL);
/*
* Disable Clock disable with LP modes
* (used in RUN mode for LPDDR2 with specific timing).
*/
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL,
DDRCTRL_PWRCTL_EN_DFI_DRAM_CLK_DISABLE);
/* Disable automatic Self-Refresh mode */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL,
DDRCTRL_PWRCTL_SELFREF_EN);
}
static void __secure ddr_sr_mode_restore(u32 saved_pwrctl)
{
saved_pwrctl &= DDRCTRL_PWRCTL_EN_DFI_DRAM_CLK_DISABLE |
DDRCTRL_PWRCTL_SELFREF_EN;
/* Restore ASR mode in case it was enabled before suspend. */
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL, saved_pwrctl);
}
static int __secure ddr_sw_self_refresh_in(void)
{
int ret;
clrbits_le32(STM32_RCC_BASE + RCC_DDRITFCR, RCC_DDRITFCR_AXIDCGEN);
/* Blocks AXI ports from taking anymore transactions */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PCTRL_0,
DDRCTRL_PCTRL_N_PORT_EN);
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PCTRL_1,
DDRCTRL_PCTRL_N_PORT_EN);
/*
* Waits unit all AXI ports are idle
* Poll PSTAT.rd_port_busy_n = 0
* Poll PSTAT.wr_port_busy_n = 0
*/
ret = secure_waitbits(STM32_DDRCTRL_BASE + DDRCTRL_PSTAT,
DDRCTRL_PSTAT_RD_PORT_BUSY_0 |
DDRCTRL_PSTAT_RD_PORT_BUSY_1 |
DDRCTRL_PSTAT_WR_PORT_BUSY_0 |
DDRCTRL_PSTAT_WR_PORT_BUSY_1, 0);
if (ret)
goto pstat_failed;
/* SW Self-Refresh entry */
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL, DDRCTRL_PWRCTL_SELFREF_SW);
/*
* Wait operating mode change in self-refresh mode
* with STAT.operating_mode[1:0]==11.
* Ensure transition to self-refresh was due to software
* by checking also that STAT.selfref_type[1:0]=2.
*/
ret = secure_waitbits(STM32_DDRCTRL_BASE + DDRCTRL_STAT,
DDRCTRL_STAT_OPERATING_MODE_MASK |
DDRCTRL_STAT_SELFREF_TYPE_MASK,
DDRCTRL_STAT_OPERATING_MODE_SR |
DDRCTRL_STAT_SELFREF_TYPE_SR);
if (ret)
goto selfref_sw_failed;
/* IOs powering down (PUBL registers) */
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_ACPDD);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_ACPDR);
clrsetbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR,
DDRPHYC_ACIOCR_CKPDD_MASK,
DDRPHYC_ACIOCR_CKPDD_0);
clrsetbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR,
DDRPHYC_ACIOCR_CKPDR_MASK,
DDRPHYC_ACIOCR_CKPDR_0);
clrsetbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR,
DDRPHYC_ACIOCR_CSPDD_MASK,
DDRPHYC_ACIOCR_CSPDD_0);
/* Disable command/address output driver */
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_ACOE);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DXCCR, DDRPHYC_DXCCR_DXPDD);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DXCCR, DDRPHYC_DXCCR_DXPDR);
clrsetbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR,
DDRPHYC_DSGCR_ODTPDD_MASK,
DDRPHYC_DSGCR_ODTPDD_0);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR, DDRPHYC_DSGCR_NL2PD);
clrsetbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR,
DDRPHYC_DSGCR_CKEPDD_MASK,
DDRPHYC_DSGCR_CKEPDD_0);
/* Disable PZQ cell (PUBL register) */
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ZQ0CR0, DDRPHYC_ZQ0CRN_ZQPD);
/* Set latch */
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR, DDRPHYC_DSGCR_CKOE);
/* Additional delay to avoid early latch */
secure_udelay(10);
/* Activate sw retention in PWRCTRL */
setbits_le32(STM32_PWR_BASE + PWR_CR3, PWR_CR3_DDRRETEN);
/* Switch controller clocks (uMCTL2/PUBL) to DLL ref clock */
setbits_le32(STM32_RCC_BASE + RCC_DDRITFCR, RCC_DDRITFCR_GSKPCTRL);
/* Disable all DLLs: GLITCH window */
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACDLLCR, DDRPHYC_ACDLLCR_DLLDIS);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX0DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX1DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX2DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX3DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
/* Switch controller clocks (uMCTL2/PUBL) to DLL output clock */
clrbits_le32(STM32_RCC_BASE + RCC_DDRITFCR, RCC_DDRITFCR_GSKPCTRL);
/* Deactivate all DDR clocks */
clrbits_le32(STM32_RCC_BASE + RCC_DDRITFCR,
RCC_DDRITFCR_DDRC1EN | RCC_DDRITFCR_DDRC2EN |
RCC_DDRITFCR_DDRCAPBEN | RCC_DDRITFCR_DDRPHYCAPBEN);
return 0;
selfref_sw_failed:
/* This bit should be cleared to restore DDR in its previous state */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL,
DDRCTRL_PWRCTL_SELFREF_SW);
pstat_failed:
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PCTRL_0,
DDRCTRL_PCTRL_N_PORT_EN);
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PCTRL_1,
DDRCTRL_PCTRL_N_PORT_EN);
return -EINVAL;
};
static void __secure ddr_sw_self_refresh_exit(void)
{
int ret;
/* Enable all clocks */
setbits_le32(STM32_RCC_BASE + RCC_DDRITFCR,
RCC_DDRITFCR_DDRC1EN | RCC_DDRITFCR_DDRC2EN |
RCC_DDRITFCR_DDRPHYCEN | RCC_DDRITFCR_DDRPHYCAPBEN |
RCC_DDRITFCR_DDRCAPBEN);
/* Handshake */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_SWCTL, DDRCTRL_SWCTL_SW_DONE);
/* Mask dfi_init_complete_en */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_DFIMISC,
DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
/* Ack */
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_SWCTL, DDRCTRL_SWCTL_SW_DONE);
ret = secure_waitbits(STM32_DDRCTRL_BASE + DDRCTRL_SWSTAT,
DDRCTRL_SWSTAT_SW_DONE_ACK,
DDRCTRL_SWSTAT_SW_DONE_ACK);
if (ret)
hang();
/* Switch controller clocks (uMCTL2/PUBL) to DLL ref clock */
setbits_le32(STM32_RCC_BASE + RCC_DDRITFCR, RCC_DDRITFCR_GSKPCTRL);
/* Enable all DLLs: GLITCH window */
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACDLLCR,
DDRPHYC_ACDLLCR_DLLDIS);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX0DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX1DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX2DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX3DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
/* Additional delay to avoid early DLL clock switch */
secure_udelay(50);
/* Switch controller clocks (uMCTL2/PUBL) to DLL ref clock */
clrbits_le32(STM32_RCC_BASE + RCC_DDRITFCR, RCC_DDRITFCR_GSKPCTRL);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACDLLCR, DDRPHYC_ACDLLCR_DLLSRST);
secure_udelay(10);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACDLLCR, DDRPHYC_ACDLLCR_DLLSRST);
/* PHY partial init: (DLL lock and ITM reset) */
writel(DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK |
DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_INIT,
STM32_DDRPHYC_BASE + DDRPHYC_PIR);
/* Need to wait at least 10 clock cycles before accessing PGSR */
secure_udelay(1);
/* Pool end of init */
ret = secure_waitbits(STM32_DDRPHYC_BASE + DDRPHYC_PGSR,
DDRPHYC_PGSR_IDONE, DDRPHYC_PGSR_IDONE);
if (ret)
hang();
/* Handshake */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_SWCTL, DDRCTRL_SWCTL_SW_DONE);
/* Unmask dfi_init_complete_en to uMCTL2 */
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_DFIMISC, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
/* Ack */
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_SWCTL, DDRCTRL_SWCTL_SW_DONE);
ret = secure_waitbits(STM32_DDRCTRL_BASE + DDRCTRL_SWSTAT,
DDRCTRL_SWSTAT_SW_DONE_ACK,
DDRCTRL_SWSTAT_SW_DONE_ACK);
if (ret)
hang();
/* Deactivate sw retention in PWR */
clrbits_le32(STM32_PWR_BASE + PWR_CR3, PWR_CR3_DDRRETEN);
/* Enable PZQ cell (PUBL register) */
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ZQ0CR0, DDRPHYC_ZQ0CRN_ZQPD);
/* Enable pad drivers */
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_ACPDD);
/* Enable command/address output driver */
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_ACOE);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_CKPDD_MASK);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_CSPDD_MASK);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DXCCR, DDRPHYC_DXCCR_DXPDD);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DXCCR, DDRPHYC_DXCCR_DXPDR);
/* Release latch */
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR, DDRPHYC_DSGCR_CKOE);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR, DDRPHYC_DSGCR_ODTPDD_MASK);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR, DDRPHYC_DSGCR_NL2PD);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR, DDRPHYC_DSGCR_CKEPDD_MASK);
/* Remove selfrefresh */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL, DDRCTRL_PWRCTL_SELFREF_SW);
/* Wait operating_mode == normal */
ret = secure_waitbits(STM32_DDRCTRL_BASE + DDRCTRL_STAT,
DDRCTRL_STAT_OPERATING_MODE_MASK,
DDRCTRL_STAT_OPERATING_MODE_NORMAL);
if (ret)
hang();
/* AXI ports are no longer blocked from taking transactions */
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PCTRL_0, DDRCTRL_PCTRL_N_PORT_EN);
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PCTRL_1, DDRCTRL_PCTRL_N_PORT_EN);
setbits_le32(STM32_RCC_BASE + RCC_DDRITFCR, RCC_DDRITFCR_AXIDCGEN);
}
void __secure psci_system_suspend(u32 __always_unused function_id,
u32 ep, u32 context_id)
{
u32 saved_mcudivr, saved_pll3cr, saved_pll4cr, saved_mssckselr;
u32 gicd_addr = stm32mp_get_gicd_base_address();
bool iwdg1_wake = false;
bool iwdg2_wake = false;
bool other_wake = false;
u32 saved_pwrctl, reg;
u32 gic_enabled[8];
u32 irqs;
int i;
/* Cache enable mask of all 256 SPI */
for (i = 0; i < ARRAY_SIZE(gic_enabled); i++)
gic_enabled[i] = readl(gicd_addr + GICD_ISENABLERn + 0x4 + 4 * i);
/* Disable IO compensation */
/* Place current APSRC/ANSRC into RAPSRC/RANSRC */
reg = readl(STM32_SYSCFG_BASE + SYSCFG_CMPCR);
reg >>= 8;
reg &= 0xff << 16;
reg |= SYSCFG_CMPCR_SW_CTRL;
writel(reg, STM32_SYSCFG_BASE + SYSCFG_CMPCR);
writel(SYSCFG_CMPENR_MPUEN, STM32_SYSCFG_BASE + SYSCFG_CMPENCLRR);
writel(RCC_MP_CIFR_WKUPF, STM32_RCC_BASE + RCC_MP_CIFR);
setbits_le32(STM32_RCC_BASE + RCC_MP_CIER, RCC_MP_CIFR_WKUPF);
setbits_le32(STM32_PWR_BASE + PWR_MPUCR,
PWR_MPUCR_CSSF | PWR_MPUCR_CSTDBYDIS | PWR_MPUCR_PDDS);
saved_mcudivr = readl(STM32_RCC_BASE + RCC_MCUDIVR);
saved_pll3cr = readl(STM32_RCC_BASE + RCC_PLL3CR);
saved_pll4cr = readl(STM32_RCC_BASE + RCC_PLL4CR);
saved_mssckselr = readl(STM32_RCC_BASE + RCC_MSSCKSELR);
psci_v7_flush_dcache_all();
ddr_sr_mode_ssr(&saved_pwrctl);
ddr_sw_self_refresh_in();
setbits_le32(STM32_PWR_BASE + PWR_CR3, PWR_CR3_DDRSREN);
writel(0x3, STM32_RCC_BASE + RCC_MP_SREQSETR);
/* Ping the IWDG before entering suspend */
iwdg1_wake = !!(gic_enabled[4] & BIT(22)); /* SPI 150 */
iwdg2_wake = !!(gic_enabled[4] & BIT(23)); /* SPI 151 */
for (;;) {
/* Ping IWDG1 and ACK pretimer IRQ */
if (iwdg1_wake) {
writel(IWDG_KR_RELOAD_KEY, STM32_IWDG1_BASE + IWDG_KR);
writel(IWDG_EWCR_EWIC, STM32_IWDG1_BASE + IWDG_EWCR);
}
/* Ping IWDG2 and ACK pretimer IRQ */
if (iwdg2_wake) {
writel(IWDG_KR_RELOAD_KEY, STM32_IWDG2_BASE + IWDG_KR);
writel(IWDG_EWCR_EWIC, STM32_IWDG2_BASE + IWDG_EWCR);
}
iwdg1_wake = false;
iwdg2_wake = false;
/* Zzz, enter stop mode */
asm volatile(
"isb\n"
"dsb\n"
"wfi\n");
/* Determine the wake up source */
for (i = 0; i < ARRAY_SIZE(gic_enabled); i++) {
irqs = readl(gicd_addr + GICR_IGROUPMODRn + 0x4 + 4 * i);
irqs &= gic_enabled[i];
if (!irqs)
continue;
/* Test whether IWDG pretimeout triggered the wake up. */
if (i == 4) { /* SPI Num 128..159 */
iwdg1_wake = !!(irqs & BIT(22)); /* SPI 150 */
iwdg2_wake = !!(irqs & BIT(23)); /* SPI 151 */
irqs &= ~(BIT(22) | BIT(23));
}
/* Test whether there is any other wake up trigger. */
if (irqs) {
other_wake = true;
break;
}
}
/* Other wake up triggers pending, let OS deal with all of it. */
if (other_wake)
break;
}
writel(0x3, STM32_RCC_BASE + RCC_MP_SREQCLRR);
ddr_sw_self_refresh_exit();
ddr_sr_mode_restore(saved_pwrctl);
writel(saved_mcudivr, STM32_RCC_BASE + RCC_MCUDIVR);
writel(saved_pll3cr, STM32_RCC_BASE + RCC_PLL3CR);
writel(saved_pll4cr, STM32_RCC_BASE + RCC_PLL4CR);
writel(saved_mssckselr, STM32_RCC_BASE + RCC_MSSCKSELR);
writel(SYSCFG_CMPENR_MPUEN, STM32_SYSCFG_BASE + SYSCFG_CMPENSETR);
clrbits_le32(STM32_SYSCFG_BASE + SYSCFG_CMPCR, SYSCFG_CMPCR_SW_CTRL);
}