u-boot/board/siemens/iot2050/board.c

523 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Board specific initialization for IOT2050
* Copyright (c) Siemens AG, 2018-2023
*
* Authors:
* Le Jin <le.jin@siemens.com>
* Jan Kiszka <jan.kiszka@siemens.com>
*/
#include <common.h>
#include <bootstage.h>
#include <dm.h>
#include <fdt_support.h>
#include <i2c.h>
#include <led.h>
#include <malloc.h>
#include <mapmem.h>
#include <net.h>
#include <phy.h>
#include <spl.h>
#include <version.h>
#include <linux/delay.h>
#include <asm/arch/hardware.h>
#include <asm/gpio.h>
#include <asm/io.h>
#define IOT2050_INFO_MAGIC 0x20502050
struct iot2050_info {
u32 magic;
u16 size;
char name[20 + 1];
char serial[16 + 1];
char mlfb[18 + 1];
char uuid[32 + 1];
char a5e[18 + 1];
u8 mac_addr_cnt;
u8 mac_addr[8][ARP_HLEN];
char seboot_version[40 + 1];
} __packed;
/*
* Scratch SRAM (available before DDR RAM) contains extracted EEPROM data.
*/
#define IOT2050_INFO_DATA ((struct iot2050_info *) \
TI_SRAM_SCRATCH_BOARD_EEPROM_START)
DECLARE_GLOBAL_DATA_PTR;
struct gpio_config {
const char *gpio_name;
const char *label;
};
enum m2_connector_mode {
BKEY_PCIEX2 = 0,
BKEY_PCIE_EKEY_PCIE,
BKEY_USB30_EKEY_PCIE,
CONNECTOR_MODE_INVALID
};
struct m2_config_pins {
int config[4];
};
struct serdes_mux_control {
int ctrl_usb30_pcie0_lane0;
int ctrl_pcie1_pcie0;
int ctrl_usb30_pcie0_lane1;
};
struct m2_config_table {
struct m2_config_pins config_pins;
enum m2_connector_mode mode;
};
static const struct gpio_config serdes_mux_ctl_pin_info[] = {
{"gpio@600000_88", "CTRL_USB30_PCIE0_LANE0"},
{"gpio@600000_82", "CTRL_PCIE1_PCIE0"},
{"gpio@600000_89", "CTRL_USB30_PCIE0_LANE1"},
};
static const struct gpio_config m2_bkey_cfg_pin_info[] = {
{"gpio@601000_18", "KEY_CONFIG_0"},
{"gpio@601000_19", "KEY_CONFIG_1"},
{"gpio@601000_88", "KEY_CONFIG_2"},
{"gpio@601000_89", "KEY_CONFIG_3"},
};
static const struct m2_config_table m2_config_table[] = {
{{{0, 1, 0, 0}}, BKEY_PCIEX2},
{{{0, 0, 1, 0}}, BKEY_PCIE_EKEY_PCIE},
{{{0, 1, 1, 0}}, BKEY_PCIE_EKEY_PCIE},
{{{1, 0, 0, 1}}, BKEY_PCIE_EKEY_PCIE},
{{{1, 1, 0, 1}}, BKEY_PCIE_EKEY_PCIE},
{{{0, 0, 0, 1}}, BKEY_USB30_EKEY_PCIE},
{{{0, 1, 0, 1}}, BKEY_USB30_EKEY_PCIE},
{{{0, 0, 1, 1}}, BKEY_USB30_EKEY_PCIE},
{{{0, 1, 1, 1}}, BKEY_USB30_EKEY_PCIE},
{{{1, 0, 1, 1}}, BKEY_USB30_EKEY_PCIE},
};
static const struct serdes_mux_control serdes_mux_ctrl[] = {
[BKEY_PCIEX2] = {0, 0, 1},
[BKEY_PCIE_EKEY_PCIE] = {0, 1, 0},
[BKEY_USB30_EKEY_PCIE] = {1, 1, 0},
};
static const char *m2_connector_mode_name[] = {
[BKEY_PCIEX2] = "PCIe x2 (key B)",
[BKEY_PCIE_EKEY_PCIE] = "PCIe (key B) / PCIe (key E)",
[BKEY_USB30_EKEY_PCIE] = "USB 3.0 (key B) / PCIe (key E)",
};
static enum m2_connector_mode connector_mode;
#if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_OF_BOARD_SETUP)
static void *connector_overlay;
static u32 connector_overlay_size;
#endif
static int get_pinvalue(const char *gpio_name, const char *label)
{
struct gpio_desc gpio;
if (dm_gpio_lookup_name(gpio_name, &gpio) < 0 ||
dm_gpio_request(&gpio, label) < 0 ||
dm_gpio_set_dir_flags(&gpio, GPIOD_IS_IN) < 0) {
pr_err("Cannot get pin %s for M.2 configuration\n", gpio_name);
return 0;
}
return dm_gpio_get_value(&gpio);
}
static void set_pinvalue(const char *gpio_name, const char *label, int value)
{
struct gpio_desc gpio;
if (dm_gpio_lookup_name(gpio_name, &gpio) < 0 ||
dm_gpio_request(&gpio, label) < 0 ||
dm_gpio_set_dir_flags(&gpio, GPIOD_IS_OUT) < 0) {
pr_err("Cannot set pin %s for M.2 configuration\n", gpio_name);
return;
}
dm_gpio_set_value(&gpio, value);
}
static bool board_is_advanced(void)
{
struct iot2050_info *info = IOT2050_INFO_DATA;
return info->magic == IOT2050_INFO_MAGIC &&
strstr((char *)info->name, "IOT2050-ADVANCED") != NULL;
}
static bool board_is_sr1(void)
{
struct iot2050_info *info = IOT2050_INFO_DATA;
return info->magic == IOT2050_INFO_MAGIC &&
strstr((char *)info->name, "-PG2") != NULL;
}
static bool board_is_m2(void)
{
struct iot2050_info *info = IOT2050_INFO_DATA;
return !board_is_sr1() && info->magic == IOT2050_INFO_MAGIC &&
strcmp((char *)info->name, "IOT2050-ADVANCED-M2") == 0;
}
static void remove_mmc1_target(void)
{
char *boot_targets = strdup(env_get("boot_targets"));
char *mmc1 = strstr(boot_targets, "mmc1");
if (mmc1) {
memmove(mmc1, mmc1 + 4, strlen(mmc1 + 4) + 1);
env_set("boot_targets", boot_targets);
}
free(boot_targets);
}
void set_board_info_env(void)
{
struct iot2050_info *info = IOT2050_INFO_DATA;
u8 __maybe_unused mac_cnt;
const char *fdtfile;
if (info->magic != IOT2050_INFO_MAGIC) {
pr_err("IOT2050: Board info parsing error!\n");
return;
}
if (env_get("board_uuid"))
return;
env_set("board_name", info->name);
env_set("board_serial", info->serial);
env_set("mlfb", info->mlfb);
env_set("board_uuid", info->uuid);
env_set("board_a5e", info->a5e);
env_set("fw_version", PLAIN_VERSION);
env_set("seboot_version", info->seboot_version);
if (IS_ENABLED(CONFIG_NET)) {
/* set MAC addresses to ensure forwarding to the OS */
for (mac_cnt = 0; mac_cnt < info->mac_addr_cnt; mac_cnt++) {
if (is_valid_ethaddr(info->mac_addr[mac_cnt]))
eth_env_set_enetaddr_by_index("eth",
mac_cnt + 1,
info->mac_addr[mac_cnt]);
}
}
if (board_is_advanced()) {
if (board_is_sr1())
fdtfile = "ti/k3-am6548-iot2050-advanced.dtb";
else if(board_is_m2())
fdtfile = "ti/k3-am6548-iot2050-advanced-m2.dtb";
else
fdtfile = "ti/k3-am6548-iot2050-advanced-pg2.dtb";
} else {
if (board_is_sr1())
fdtfile = "ti/k3-am6528-iot2050-basic.dtb";
else
fdtfile = "ti/k3-am6528-iot2050-basic-pg2.dtb";
/* remove the unavailable eMMC (mmc1) from the list */
remove_mmc1_target();
}
env_set("fdtfile", fdtfile);
env_save();
}
static void m2_overlay_prepare(void)
{
#if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_OF_BOARD_SETUP)
const char *overlay_path;
void *overlay;
u64 loadaddr;
ofnode node;
int ret;
if (connector_mode == BKEY_PCIEX2)
return;
if (connector_mode == BKEY_PCIE_EKEY_PCIE)
overlay_path = "/fit-images/bkey-ekey-pcie-overlay";
else
overlay_path = "/fit-images/bkey-usb3-overlay";
node = ofnode_path(overlay_path);
if (!ofnode_valid(node))
goto fit_error;
ret = ofnode_read_u64(node, "load", &loadaddr);
if (ret)
goto fit_error;
ret = ofnode_read_u32(node, "size", &connector_overlay_size);
if (ret)
goto fit_error;
overlay = map_sysmem(loadaddr, connector_overlay_size);
connector_overlay = malloc(connector_overlay_size);
if (!connector_overlay)
goto fit_error;
memcpy(connector_overlay, overlay, connector_overlay_size);
return;
fit_error:
pr_err("M.2 device tree overlay %s not available,\n", overlay_path);
#endif
}
static void m2_connector_setup(void)
{
ulong m2_manual_config = env_get_ulong("m2_manual_config", 10,
CONNECTOR_MODE_INVALID);
const char *mode_info = "";
struct m2_config_pins config_pins;
unsigned int n;
/* enable M.2 connector power */
set_pinvalue("gpio@601000_17", "P3V3_M2_EN", 1);
udelay(4 * 100);
if (m2_manual_config < CONNECTOR_MODE_INVALID) {
mode_info = " [manual mode]";
connector_mode = m2_manual_config;
} else { /* auto detection */
for (n = 0; n < ARRAY_SIZE(config_pins.config); n++)
config_pins.config[n] =
get_pinvalue(m2_bkey_cfg_pin_info[n].gpio_name,
m2_bkey_cfg_pin_info[n].label);
connector_mode = CONNECTOR_MODE_INVALID;
for (n = 0; n < ARRAY_SIZE(m2_config_table); n++) {
if (!memcmp(config_pins.config,
m2_config_table[n].config_pins.config,
sizeof(config_pins.config))) {
connector_mode = m2_config_table[n].mode;
break;
}
}
if (connector_mode == CONNECTOR_MODE_INVALID) {
mode_info = " [fallback, card unknown/unsupported]";
connector_mode = BKEY_USB30_EKEY_PCIE;
}
}
printf("M.2: %s%s\n", m2_connector_mode_name[connector_mode],
mode_info);
/* configure serdes mux */
set_pinvalue(serdes_mux_ctl_pin_info[0].gpio_name,
serdes_mux_ctl_pin_info[0].label,
serdes_mux_ctrl[connector_mode].ctrl_usb30_pcie0_lane0);
set_pinvalue(serdes_mux_ctl_pin_info[1].gpio_name,
serdes_mux_ctl_pin_info[1].label,
serdes_mux_ctrl[connector_mode].ctrl_pcie1_pcie0);
set_pinvalue(serdes_mux_ctl_pin_info[2].gpio_name,
serdes_mux_ctl_pin_info[2].label,
serdes_mux_ctrl[connector_mode].ctrl_usb30_pcie0_lane1);
m2_overlay_prepare();
}
int board_init(void)
{
return 0;
}
int dram_init(void)
{
if (board_is_advanced())
gd->ram_size = SZ_2G;
else
gd->ram_size = SZ_1G;
return 0;
}
int dram_init_banksize(void)
{
dram_init();
/* Bank 0 declares the memory available in the DDR low region */
gd->bd->bi_dram[0].start = CFG_SYS_SDRAM_BASE;
gd->bd->bi_dram[0].size = gd->ram_size;
/* Bank 1 declares the memory available in the DDR high region */
gd->bd->bi_dram[1].start = 0;
gd->bd->bi_dram[1].size = 0;
return 0;
}
#ifdef CONFIG_SPL_LOAD_FIT
int board_fit_config_name_match(const char *name)
{
struct iot2050_info *info = IOT2050_INFO_DATA;
char upper_name[32];
/* skip the prefix "k3-am65x8-" */
name += 10;
if (info->magic != IOT2050_INFO_MAGIC ||
strlen(name) >= sizeof(upper_name))
return -1;
str_to_upper(name, upper_name, sizeof(upper_name));
if (!strcmp(upper_name, (char *)info->name))
return 0;
return -1;
}
#endif
int do_board_detect(void)
{
return 0;
}
#ifdef CONFIG_IOT2050_BOOT_SWITCH
static bool user_button_pressed(void)
{
struct udevice *red_led = NULL;
unsigned long count = 0;
struct gpio_desc gpio;
memset(&gpio, 0, sizeof(gpio));
if (dm_gpio_lookup_name("gpio@42110000_25", &gpio) < 0 ||
dm_gpio_request(&gpio, "USER button") < 0 ||
dm_gpio_set_dir_flags(&gpio, GPIOD_IS_IN) < 0)
return false;
if (dm_gpio_get_value(&gpio) == 1)
return false;
printf("USER button pressed - booting from external media only\n");
led_get_by_label("status-led-red", &red_led);
if (red_led)
led_set_state(red_led, LEDST_ON);
while (dm_gpio_get_value(&gpio) == 0 && count++ < 10000)
mdelay(1);
if (red_led)
led_set_state(red_led, LEDST_OFF);
return true;
}
#endif
#define SERDES0_LANE_SELECT 0x00104080
int board_late_init(void)
{
/* change CTRL_MMR register to let serdes0 not output USB3.0 signals. */
writel(0x3, SERDES0_LANE_SELECT);
if (board_is_m2())
m2_connector_setup();
set_board_info_env();
/* remove the eMMC if requested via button */
if (IS_ENABLED(CONFIG_IOT2050_BOOT_SWITCH) && board_is_advanced() &&
user_button_pressed())
remove_mmc1_target();
return 0;
}
#if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_OF_BOARD_SETUP)
static void m2_fdt_fixup(void *blob)
{
void *overlay_copy = NULL;
void *fdt_copy = NULL;
u32 fdt_size;
int err;
if (!connector_overlay)
return;
/*
* We need to work with temporary copies here because fdt_overlay_apply
* is destructive to the overlay and also to the target blob, even if
* application fails.
*/
fdt_size = fdt_totalsize(blob);
fdt_copy = malloc(fdt_size);
if (!fdt_copy)
goto fixup_error;
memcpy(fdt_copy, blob, fdt_size);
overlay_copy = malloc(connector_overlay_size);
if (!overlay_copy)
goto fixup_error;
memcpy(overlay_copy, connector_overlay, connector_overlay_size);
err = fdt_overlay_apply_verbose(fdt_copy, overlay_copy);
if (err)
goto fixup_error;
memcpy(blob, fdt_copy, fdt_size);
cleanup:
free(fdt_copy);
free(overlay_copy);
return;
fixup_error:
pr_err("Could not apply M.2 device tree overlay\n");
goto cleanup;
}
int ft_board_setup(void *blob, struct bd_info *bd)
{
if (board_is_m2())
m2_fdt_fixup(blob);
return 0;
}
#endif
void spl_board_init(void)
{
}
#if CONFIG_IS_ENABLED(LED) && CONFIG_IS_ENABLED(SHOW_BOOT_PROGRESS)
/*
* Indicate any error or (accidental?) entering of CLI via the red status LED.
*/
void show_boot_progress(int progress)
{
struct udevice *dev;
int ret;
if ((progress < 0 && progress != -BOOTSTAGE_ID_NET_ETH_START) ||
progress == BOOTSTAGE_ID_ENTER_CLI_LOOP) {
ret = led_get_by_label("status-led-green", &dev);
if (ret == 0)
led_set_state(dev, LEDST_OFF);
ret = led_get_by_label("status-led-red", &dev);
if (ret == 0)
led_set_state(dev, LEDST_ON);
}
}
#endif