u-boot/drivers/firmware/arm-ffa/Kconfig

43 lines
1.7 KiB
Text
Raw Normal View History

arm_ffa: introduce Arm FF-A support Add Arm FF-A support implementing Arm Firmware Framework for Armv8-A v1.0 The Firmware Framework for Arm A-profile processors (FF-A v1.0) [1] describes interfaces (ABIs) that standardize communication between the Secure World and Normal World leveraging TrustZone technology. This driver uses 64-bit registers as per SMCCCv1.2 spec and comes on top of the SMCCC layer. The driver provides the FF-A ABIs needed for querying the FF-A framework from the secure world. The driver uses SMC32 calling convention which means using the first 32-bit data of the Xn registers. All supported ABIs come with their 32-bit version except FFA_RXTX_MAP which has 64-bit version supported. Both 32-bit and 64-bit direct messaging are supported which allows both 32-bit and 64-bit clients to use the FF-A bus. FF-A is a discoverable bus and similar to architecture features. FF-A bus is discovered using ARM_SMCCC_FEATURES mechanism performed by the PSCI driver. Clients are able to probe then use the FF-A bus by calling the DM class searching APIs (e.g: uclass_first_device). The Secure World is considered as one entity to communicate with using the FF-A bus. FF-A communication is handled by one device and one instance (the bus). This FF-A driver takes care of all the interactions between Normal world and Secure World. The driver exports its operations to be used by upper layers. Exported operations: - ffa_partition_info_get - ffa_sync_send_receive - ffa_rxtx_unmap Generic FF-A methods are implemented in the Uclass (arm-ffa-uclass.c). Arm specific methods are implemented in the Arm driver (arm-ffa.c). For more details please refer to the driver documentation [2]. [1]: https://developer.arm.com/documentation/den0077/latest/ [2]: doc/arch/arm64.ffa.rst Signed-off-by: Abdellatif El Khlifi <abdellatif.elkhlifi@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org> Reviewed-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Cc: Tom Rini <trini@konsulko.com> Cc: Jens Wiklander <jens.wiklander@linaro.org> Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
2023-08-04 13:33:40 +00:00
# SPDX-License-Identifier: GPL-2.0
config ARM_FFA_TRANSPORT
bool "Enable Arm Firmware Framework for Armv8-A driver"
depends on DM && (ARM64 || SANDBOX)
select ARM_SMCCC if !SANDBOX
select ARM_SMCCC_FEATURES if !SANDBOX
imply CMD_ARMFFA
arm_ffa: introduce Arm FF-A support Add Arm FF-A support implementing Arm Firmware Framework for Armv8-A v1.0 The Firmware Framework for Arm A-profile processors (FF-A v1.0) [1] describes interfaces (ABIs) that standardize communication between the Secure World and Normal World leveraging TrustZone technology. This driver uses 64-bit registers as per SMCCCv1.2 spec and comes on top of the SMCCC layer. The driver provides the FF-A ABIs needed for querying the FF-A framework from the secure world. The driver uses SMC32 calling convention which means using the first 32-bit data of the Xn registers. All supported ABIs come with their 32-bit version except FFA_RXTX_MAP which has 64-bit version supported. Both 32-bit and 64-bit direct messaging are supported which allows both 32-bit and 64-bit clients to use the FF-A bus. FF-A is a discoverable bus and similar to architecture features. FF-A bus is discovered using ARM_SMCCC_FEATURES mechanism performed by the PSCI driver. Clients are able to probe then use the FF-A bus by calling the DM class searching APIs (e.g: uclass_first_device). The Secure World is considered as one entity to communicate with using the FF-A bus. FF-A communication is handled by one device and one instance (the bus). This FF-A driver takes care of all the interactions between Normal world and Secure World. The driver exports its operations to be used by upper layers. Exported operations: - ffa_partition_info_get - ffa_sync_send_receive - ffa_rxtx_unmap Generic FF-A methods are implemented in the Uclass (arm-ffa-uclass.c). Arm specific methods are implemented in the Arm driver (arm-ffa.c). For more details please refer to the driver documentation [2]. [1]: https://developer.arm.com/documentation/den0077/latest/ [2]: doc/arch/arm64.ffa.rst Signed-off-by: Abdellatif El Khlifi <abdellatif.elkhlifi@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org> Reviewed-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Cc: Tom Rini <trini@konsulko.com> Cc: Jens Wiklander <jens.wiklander@linaro.org> Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
2023-08-04 13:33:40 +00:00
select LIB_UUID
select DEVRES
help
The Firmware Framework for Arm A-profile processors (FF-A)
describes interfaces (ABIs) that standardize communication
between the Secure World and Normal World leveraging TrustZone
technology.
The FF-A support in U-Boot is based on FF-A specification v1.0 and uses SMC32
calling convention.
FF-A specification:
https://developer.arm.com/documentation/den0077/a/?lang=en
In U-Boot FF-A design, FF-A is considered as a discoverable bus.
FF-A bus is discovered using ARM_SMCCC_FEATURES mechanism performed
by the PSCI driver.
The Secure World is considered as one entity to communicate with
using the FF-A bus.
FF-A communication is handled by one device and one instance (the bus).
The FF-A support on U-Boot takes care of all the interactions between Normal
world and Secure World.
Generic FF-A methods are implemented in the Uclass (arm-ffa-uclass.c).
Arm specific methods are implemented in the Arm driver (arm-ffa.c).
FF-A sandbox is provided to run FF-A under sandbox and allows to test the FF-A Uclass.
Sandbox support includes an emulator for Arm FF-A which emulates the FF-A side of
the Secure World and provides FF-A ABIs inspection methods (ffa-emul-uclass.c).
An FF-A sandbox driver is also provided for FF-A communication with the emulated
Secure World (sandbox_ffa.c).
arm_ffa: introduce Arm FF-A support Add Arm FF-A support implementing Arm Firmware Framework for Armv8-A v1.0 The Firmware Framework for Arm A-profile processors (FF-A v1.0) [1] describes interfaces (ABIs) that standardize communication between the Secure World and Normal World leveraging TrustZone technology. This driver uses 64-bit registers as per SMCCCv1.2 spec and comes on top of the SMCCC layer. The driver provides the FF-A ABIs needed for querying the FF-A framework from the secure world. The driver uses SMC32 calling convention which means using the first 32-bit data of the Xn registers. All supported ABIs come with their 32-bit version except FFA_RXTX_MAP which has 64-bit version supported. Both 32-bit and 64-bit direct messaging are supported which allows both 32-bit and 64-bit clients to use the FF-A bus. FF-A is a discoverable bus and similar to architecture features. FF-A bus is discovered using ARM_SMCCC_FEATURES mechanism performed by the PSCI driver. Clients are able to probe then use the FF-A bus by calling the DM class searching APIs (e.g: uclass_first_device). The Secure World is considered as one entity to communicate with using the FF-A bus. FF-A communication is handled by one device and one instance (the bus). This FF-A driver takes care of all the interactions between Normal world and Secure World. The driver exports its operations to be used by upper layers. Exported operations: - ffa_partition_info_get - ffa_sync_send_receive - ffa_rxtx_unmap Generic FF-A methods are implemented in the Uclass (arm-ffa-uclass.c). Arm specific methods are implemented in the Arm driver (arm-ffa.c). For more details please refer to the driver documentation [2]. [1]: https://developer.arm.com/documentation/den0077/latest/ [2]: doc/arch/arm64.ffa.rst Signed-off-by: Abdellatif El Khlifi <abdellatif.elkhlifi@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org> Reviewed-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Cc: Tom Rini <trini@konsulko.com> Cc: Jens Wiklander <jens.wiklander@linaro.org> Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
2023-08-04 13:33:40 +00:00
For more details about the FF-A support, please refer to doc/arch/arm64.ffa.rst