u-boot/lib/efi_loader/efi_runtime.c

959 lines
25 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* EFI application runtime services
*
* Copyright (c) 2016 Alexander Graf
*/
#include <command.h>
#include <cpu_func.h>
#include <dm.h>
#include <elf.h>
#include <efi_loader.h>
#include <log.h>
#include <malloc.h>
#include <rtc.h>
#include <asm/global_data.h>
#include <u-boot/crc.h>
/* For manual relocation support */
DECLARE_GLOBAL_DATA_PTR;
/* GUID of the runtime properties table */
static const efi_guid_t efi_rt_properties_table_guid =
EFI_RT_PROPERTIES_TABLE_GUID;
struct efi_runtime_mmio_list {
struct list_head link;
void **ptr;
u64 paddr;
u64 len;
};
/* This list contains all runtime available mmio regions */
static LIST_HEAD(efi_runtime_mmio);
static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void);
/*
* TODO(sjg@chromium.org): These defines and structures should come from the ELF
* header for each architecture (or a generic header) rather than being repeated
* here.
*/
#if defined(__aarch64__)
#define R_RELATIVE R_AARCH64_RELATIVE
#define R_MASK 0xffffffffULL
#define IS_RELA 1
#elif defined(__arm__)
#define R_RELATIVE R_ARM_RELATIVE
#define R_MASK 0xffULL
#elif defined(__i386__)
#define R_RELATIVE R_386_RELATIVE
#define R_MASK 0xffULL
#elif defined(__x86_64__)
#define R_RELATIVE R_X86_64_RELATIVE
#define R_MASK 0xffffffffULL
#define IS_RELA 1
#elif defined(__riscv)
#define R_RELATIVE R_RISCV_RELATIVE
#define R_MASK 0xffULL
#define IS_RELA 1
struct dyn_sym {
ulong foo1;
ulong addr;
u32 foo2;
u32 foo3;
};
#if (__riscv_xlen == 32)
#define R_ABSOLUTE R_RISCV_32
#define SYM_INDEX 8
#elif (__riscv_xlen == 64)
#define R_ABSOLUTE R_RISCV_64
#define SYM_INDEX 32
#else
#error unknown riscv target
#endif
#else
#error Need to add relocation awareness
#endif
struct elf_rel {
ulong *offset;
ulong info;
};
struct elf_rela {
ulong *offset;
ulong info;
long addend;
};
static __efi_runtime_data struct efi_mem_desc *efi_virtmap;
static __efi_runtime_data efi_uintn_t efi_descriptor_count;
static __efi_runtime_data efi_uintn_t efi_descriptor_size;
/*
* EFI runtime code lives in two stages. In the first stage, U-Boot and an EFI
* payload are running concurrently at the same time. In this mode, we can
* handle a good number of runtime callbacks
*/
/**
* efi_init_runtime_supported() - create runtime properties table
*
* Create a configuration table specifying which services are available at
* runtime.
*
* Return: status code
*/
efi_status_t efi_init_runtime_supported(void)
{
efi_status_t ret;
struct efi_rt_properties_table *rt_table;
ret = efi_allocate_pool(EFI_RUNTIME_SERVICES_DATA,
sizeof(struct efi_rt_properties_table),
(void **)&rt_table);
if (ret != EFI_SUCCESS)
return ret;
rt_table->version = EFI_RT_PROPERTIES_TABLE_VERSION;
rt_table->length = sizeof(struct efi_rt_properties_table);
rt_table->runtime_services_supported =
EFI_RT_SUPPORTED_GET_VARIABLE |
EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME |
EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP |
EFI_RT_SUPPORTED_CONVERT_POINTER;
/*
* This value must be synced with efi_runtime_detach_list
* as well as efi_runtime_services.
*/
#ifdef CONFIG_EFI_HAVE_RUNTIME_RESET
rt_table->runtime_services_supported |= EFI_RT_SUPPORTED_RESET_SYSTEM;
#endif
ret = efi_install_configuration_table(&efi_rt_properties_table_guid,
rt_table);
return ret;
}
/**
* efi_memcpy_runtime() - copy memory area
*
* At runtime memcpy() is not available.
*
* Overlapping memory areas can be copied safely if src >= dest.
*
* @dest: destination buffer
* @src: source buffer
* @n: number of bytes to copy
* Return: pointer to destination buffer
*/
void __efi_runtime efi_memcpy_runtime(void *dest, const void *src, size_t n)
{
u8 *d = dest;
const u8 *s = src;
for (; n; --n)
*d++ = *s++;
}
/**
* efi_update_table_header_crc32() - Update crc32 in table header
*
* @table: EFI table
*/
void __efi_runtime efi_update_table_header_crc32(struct efi_table_hdr *table)
{
table->crc32 = 0;
table->crc32 = crc32(0, (const unsigned char *)table,
table->headersize);
}
/**
* efi_reset_system_boottime() - reset system at boot time
*
* This function implements the ResetSystem() runtime service before
* SetVirtualAddressMap() is called.
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @reset_type: type of reset to perform
* @reset_status: status code for the reset
* @data_size: size of reset_data
* @reset_data: information about the reset
*/
static void EFIAPI efi_reset_system_boottime(
enum efi_reset_type reset_type,
efi_status_t reset_status,
unsigned long data_size, void *reset_data)
{
struct efi_event *evt;
EFI_ENTRY("%d %lx %lx %p", reset_type, reset_status, data_size,
reset_data);
/* Notify reset */
list_for_each_entry(evt, &efi_events, link) {
if (evt->group &&
!guidcmp(evt->group,
&efi_guid_event_group_reset_system)) {
efi_signal_event(evt);
break;
}
}
switch (reset_type) {
case EFI_RESET_COLD:
case EFI_RESET_WARM:
case EFI_RESET_PLATFORM_SPECIFIC:
do_reset(NULL, 0, 0, NULL);
break;
case EFI_RESET_SHUTDOWN:
#ifdef CONFIG_CMD_POWEROFF
do_poweroff(NULL, 0, 0, NULL);
#endif
break;
}
while (1) { }
}
/**
* efi_get_time_boottime() - get current time at boot time
*
* This function implements the GetTime runtime service before
* SetVirtualAddressMap() is called.
*
* See the Unified Extensible Firmware Interface (UEFI) specification
* for details.
*
* @time: pointer to structure to receive current time
* @capabilities: pointer to structure to receive RTC properties
* Returns: status code
*/
static efi_status_t EFIAPI efi_get_time_boottime(
struct efi_time *time,
struct efi_time_cap *capabilities)
{
#ifdef CONFIG_EFI_GET_TIME
efi_status_t ret = EFI_SUCCESS;
struct rtc_time tm;
struct udevice *dev;
EFI_ENTRY("%p %p", time, capabilities);
if (!time) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
if (uclass_get_device(UCLASS_RTC, 0, &dev) ||
dm_rtc_get(dev, &tm)) {
ret = EFI_UNSUPPORTED;
goto out;
}
if (dm_rtc_get(dev, &tm)) {
ret = EFI_DEVICE_ERROR;
goto out;
}
memset(time, 0, sizeof(*time));
time->year = tm.tm_year;
time->month = tm.tm_mon;
time->day = tm.tm_mday;
time->hour = tm.tm_hour;
time->minute = tm.tm_min;
time->second = tm.tm_sec;
if (tm.tm_isdst > 0)
time->daylight =
EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT;
else if (!tm.tm_isdst)
time->daylight = EFI_TIME_ADJUST_DAYLIGHT;
else
time->daylight = 0;
time->timezone = EFI_UNSPECIFIED_TIMEZONE;
if (capabilities) {
/* Set reasonable dummy values */
capabilities->resolution = 1; /* 1 Hz */
capabilities->accuracy = 100000000; /* 100 ppm */
capabilities->sets_to_zero = false;
}
out:
return EFI_EXIT(ret);
#else
EFI_ENTRY("%p %p", time, capabilities);
return EFI_EXIT(EFI_UNSUPPORTED);
#endif
}
#ifdef CONFIG_EFI_SET_TIME
/**
* efi_validate_time() - checks if timestamp is valid
*
* @time: timestamp to validate
* Returns: 0 if timestamp is valid, 1 otherwise
*/
static int efi_validate_time(struct efi_time *time)
{
return (!time ||
time->year < 1900 || time->year > 9999 ||
!time->month || time->month > 12 || !time->day ||
time->day > rtc_month_days(time->month - 1, time->year) ||
time->hour > 23 || time->minute > 59 || time->second > 59 ||
time->nanosecond > 999999999 ||
time->daylight &
~(EFI_TIME_IN_DAYLIGHT | EFI_TIME_ADJUST_DAYLIGHT) ||
((time->timezone < -1440 || time->timezone > 1440) &&
time->timezone != EFI_UNSPECIFIED_TIMEZONE));
}
#endif
/**
* efi_set_time_boottime() - set current time
*
* This function implements the SetTime() runtime service before
* SetVirtualAddressMap() is called.
*
* See the Unified Extensible Firmware Interface (UEFI) specification
* for details.
*
* @time: pointer to structure to with current time
* Returns: status code
*/
static efi_status_t EFIAPI efi_set_time_boottime(struct efi_time *time)
{
#ifdef CONFIG_EFI_SET_TIME
efi_status_t ret = EFI_SUCCESS;
struct rtc_time tm;
struct udevice *dev;
EFI_ENTRY("%p", time);
if (efi_validate_time(time)) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
if (uclass_get_device(UCLASS_RTC, 0, &dev)) {
ret = EFI_UNSUPPORTED;
goto out;
}
memset(&tm, 0, sizeof(tm));
tm.tm_year = time->year;
tm.tm_mon = time->month;
tm.tm_mday = time->day;
tm.tm_hour = time->hour;
tm.tm_min = time->minute;
tm.tm_sec = time->second;
switch (time->daylight) {
case EFI_TIME_ADJUST_DAYLIGHT:
tm.tm_isdst = 0;
break;
case EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT:
tm.tm_isdst = 1;
break;
default:
tm.tm_isdst = -1;
break;
}
/* Calculate day of week */
rtc_calc_weekday(&tm);
if (dm_rtc_set(dev, &tm))
ret = EFI_DEVICE_ERROR;
out:
return EFI_EXIT(ret);
#else
EFI_ENTRY("%p", time);
return EFI_EXIT(EFI_UNSUPPORTED);
#endif
}
/**
* efi_reset_system() - reset system
*
* This function implements the ResetSystem() runtime service after
* SetVirtualAddressMap() is called. As this placeholder cannot reset the
* system it simply return to the caller.
*
* Boards may override the helpers below to implement reset functionality.
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @reset_type: type of reset to perform
* @reset_status: status code for the reset
* @data_size: size of reset_data
* @reset_data: information about the reset
*/
void __weak __efi_runtime EFIAPI efi_reset_system(
enum efi_reset_type reset_type,
efi_status_t reset_status,
unsigned long data_size, void *reset_data)
{
return;
}
/**
* efi_reset_system_init() - initialize the reset driver
*
* Boards may override this function to initialize the reset driver.
*/
efi_status_t __weak efi_reset_system_init(void)
{
return EFI_SUCCESS;
}
/**
* efi_get_time() - get current time
*
* This function implements the GetTime runtime service after
* SetVirtualAddressMap() is called. As the U-Boot driver are not available
* anymore only an error code is returned.
*
* See the Unified Extensible Firmware Interface (UEFI) specification
* for details.
*
* @time: pointer to structure to receive current time
* @capabilities: pointer to structure to receive RTC properties
* Returns: status code
*/
efi_status_t __weak __efi_runtime EFIAPI efi_get_time(
struct efi_time *time,
struct efi_time_cap *capabilities)
{
return EFI_UNSUPPORTED;
}
/**
* efi_set_time() - set current time
*
* This function implements the SetTime runtime service after
* SetVirtualAddressMap() is called. As the U-Boot driver are not available
* anymore only an error code is returned.
*
* See the Unified Extensible Firmware Interface (UEFI) specification
* for details.
*
* @time: pointer to structure to with current time
* Returns: status code
*/
efi_status_t __weak __efi_runtime EFIAPI efi_set_time(struct efi_time *time)
{
return EFI_UNSUPPORTED;
}
/**
* efi_update_capsule_unsupported() - process information from operating system
*
* This function implements the UpdateCapsule() runtime service.
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @capsule_header_array: pointer to array of virtual pointers
* @capsule_count: number of pointers in capsule_header_array
* @scatter_gather_list: pointer to array of physical pointers
* Returns: status code
*/
static efi_status_t __efi_runtime EFIAPI efi_update_capsule_unsupported(
struct efi_capsule_header **capsule_header_array,
efi_uintn_t capsule_count,
u64 scatter_gather_list)
{
return EFI_UNSUPPORTED;
}
/**
* efi_query_capsule_caps_unsupported() - check if capsule is supported
*
* This function implements the QueryCapsuleCapabilities() runtime service.
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @capsule_header_array: pointer to array of virtual pointers
* @capsule_count: number of pointers in capsule_header_array
* @maximum_capsule_size: maximum capsule size
* @reset_type: type of reset needed for capsule update
* Returns: status code
*/
static efi_status_t __efi_runtime EFIAPI efi_query_capsule_caps_unsupported(
struct efi_capsule_header **capsule_header_array,
efi_uintn_t capsule_count,
u64 *maximum_capsule_size,
u32 *reset_type)
{
return EFI_UNSUPPORTED;
}
/**
* efi_is_runtime_service_pointer() - check if pointer points to runtime table
*
* @p: pointer to check
* Return: true if the pointer points to a service function pointer in the
* runtime table
*/
static bool efi_is_runtime_service_pointer(void *p)
{
return (p >= (void *)&efi_runtime_services.get_time &&
p <= (void *)&efi_runtime_services.query_variable_info) ||
p == (void *)&efi_events.prev ||
p == (void *)&efi_events.next;
}
/**
* efi_runtime_detach() - detach unimplemented runtime functions
*/
void efi_runtime_detach(void)
{
efi_runtime_services.reset_system = efi_reset_system;
efi_runtime_services.get_time = efi_get_time;
efi_runtime_services.set_time = efi_set_time;
if (IS_ENABLED(CONFIG_EFI_RUNTIME_UPDATE_CAPSULE)) {
/* won't support at runtime */
efi_runtime_services.update_capsule =
efi_update_capsule_unsupported;
efi_runtime_services.query_capsule_caps =
efi_query_capsule_caps_unsupported;
}
/* Update CRC32 */
efi_update_table_header_crc32(&efi_runtime_services.hdr);
}
/**
* efi_set_virtual_address_map_runtime() - change from physical to virtual
* mapping
*
* This function implements the SetVirtualAddressMap() runtime service after
* it is first called.
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @memory_map_size: size of the virtual map
* @descriptor_size: size of an entry in the map
* @descriptor_version: version of the map entries
* @virtmap: virtual address mapping information
* Return: status code EFI_UNSUPPORTED
*/
static __efi_runtime efi_status_t EFIAPI efi_set_virtual_address_map_runtime(
efi_uintn_t memory_map_size,
efi_uintn_t descriptor_size,
uint32_t descriptor_version,
struct efi_mem_desc *virtmap)
{
return EFI_UNSUPPORTED;
}
/**
* efi_convert_pointer_runtime() - convert from physical to virtual pointer
*
* This function implements the ConvertPointer() runtime service after
* the first call to SetVirtualAddressMap().
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @debug_disposition: indicates if pointer may be converted to NULL
* @address: pointer to be converted
* Return: status code EFI_UNSUPPORTED
*/
static __efi_runtime efi_status_t EFIAPI efi_convert_pointer_runtime(
efi_uintn_t debug_disposition, void **address)
{
return EFI_UNSUPPORTED;
}
/**
* efi_convert_pointer() - convert from physical to virtual pointer
*
* This function implements the ConvertPointer() runtime service until
* the first call to SetVirtualAddressMap().
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @debug_disposition: indicates if pointer may be converted to NULL
* @address: pointer to be converted
* Return: status code
*/
__efi_runtime efi_status_t EFIAPI
efi_convert_pointer(efi_uintn_t debug_disposition, void **address)
{
efi_physical_addr_t addr;
efi_uintn_t i;
efi_status_t ret = EFI_NOT_FOUND;
if (!efi_virtmap) {
ret = EFI_UNSUPPORTED;
goto out;
}
if (!address) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
if (!*address) {
if (debug_disposition & EFI_OPTIONAL_PTR)
return EFI_SUCCESS;
else
return EFI_INVALID_PARAMETER;
}
addr = (uintptr_t)*address;
for (i = 0; i < efi_descriptor_count; i++) {
struct efi_mem_desc *map = (void *)efi_virtmap +
(efi_descriptor_size * i);
if (addr >= map->physical_start &&
(addr < map->physical_start
+ (map->num_pages << EFI_PAGE_SHIFT))) {
*address = (void *)(uintptr_t)
(addr + map->virtual_start -
map->physical_start);
ret = EFI_SUCCESS;
break;
}
}
out:
return ret;
}
static __efi_runtime void efi_relocate_runtime_table(ulong offset)
{
ulong patchoff;
void **pos;
/* Relocate the runtime services pointers */
patchoff = offset - gd->relocaddr;
for (pos = (void **)&efi_runtime_services.get_time;
pos <= (void **)&efi_runtime_services.query_variable_info; ++pos) {
if (*pos)
*pos += patchoff;
}
/*
* The entry for SetVirtualAddress() must point to a physical address.
* After the first execution the service must return EFI_UNSUPPORTED.
*/
efi_runtime_services.set_virtual_address_map =
&efi_set_virtual_address_map_runtime;
/*
* The entry for ConvertPointer() must point to a physical address.
* The service is not usable after SetVirtualAddress().
*/
efi_runtime_services.convert_pointer = &efi_convert_pointer_runtime;
/*
* TODO: Update UEFI variable RuntimeServicesSupported removing flags
* EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP and
* EFI_RT_SUPPORTED_CONVERT_POINTER as required by the UEFI spec 2.8.
*/
/* Update CRC32 */
efi_update_table_header_crc32(&efi_runtime_services.hdr);
}
/* Relocate EFI runtime to uboot_reloc_base = offset */
void efi_runtime_relocate(ulong offset, struct efi_mem_desc *map)
{
#ifdef IS_RELA
struct elf_rela *rel = (void*)&__efi_runtime_rel_start;
#else
struct elf_rel *rel = (void*)&__efi_runtime_rel_start;
static ulong lastoff = CONFIG_TEXT_BASE;
#endif
debug("%s: Relocating to offset=%lx\n", __func__, offset);
for (; (ulong)rel < (ulong)&__efi_runtime_rel_stop; rel++) {
ulong base = CONFIG_TEXT_BASE;
ulong *p;
ulong newaddr;
p = (void*)((ulong)rel->offset - base) + gd->relocaddr;
/*
* The runtime services table is updated in
* efi_relocate_runtime_table()
*/
if (map && efi_is_runtime_service_pointer(p))
continue;
debug("%s: rel->info=%#lx *p=%#lx rel->offset=%p\n", __func__,
rel->info, *p, rel->offset);
switch (rel->info & R_MASK) {
case R_RELATIVE:
#ifdef IS_RELA
newaddr = rel->addend + offset - CONFIG_TEXT_BASE;
#else
newaddr = *p - lastoff + offset;
#endif
break;
#ifdef R_ABSOLUTE
case R_ABSOLUTE: {
ulong symidx = rel->info >> SYM_INDEX;
extern struct dyn_sym __dyn_sym_start[];
newaddr = __dyn_sym_start[symidx].addr + offset;
#ifdef IS_RELA
newaddr -= CONFIG_TEXT_BASE;
#endif
break;
}
#endif
default:
printf("%s: Unknown relocation type %llx\n",
__func__, rel->info & R_MASK);
continue;
}
/* Check if the relocation is inside bounds */
if (map && ((newaddr < map->virtual_start) ||
newaddr > (map->virtual_start +
(map->num_pages << EFI_PAGE_SHIFT)))) {
printf("%s: Relocation at %p is out of range (%lx)\n",
__func__, p, newaddr);
continue;
}
debug("%s: Setting %p to %lx\n", __func__, p, newaddr);
*p = newaddr;
flush_dcache_range((ulong)p & ~(EFI_CACHELINE_SIZE - 1),
ALIGN((ulong)&p[1], EFI_CACHELINE_SIZE));
}
#ifndef IS_RELA
lastoff = offset;
#endif
invalidate_icache_all();
}
/**
* efi_set_virtual_address_map() - change from physical to virtual mapping
*
* This function implements the SetVirtualAddressMap() runtime service.
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @memory_map_size: size of the virtual map
* @descriptor_size: size of an entry in the map
* @descriptor_version: version of the map entries
* @virtmap: virtual address mapping information
* Return: status code
*/
static efi_status_t EFIAPI efi_set_virtual_address_map(
efi_uintn_t memory_map_size,
efi_uintn_t descriptor_size,
uint32_t descriptor_version,
struct efi_mem_desc *virtmap)
{
efi_uintn_t n = memory_map_size / descriptor_size;
efi_uintn_t i;
efi_status_t ret = EFI_INVALID_PARAMETER;
int rt_code_sections = 0;
struct efi_event *event;
EFI_ENTRY("%zx %zx %x %p", memory_map_size, descriptor_size,
descriptor_version, virtmap);
if (descriptor_version != EFI_MEMORY_DESCRIPTOR_VERSION ||
descriptor_size < sizeof(struct efi_mem_desc))
goto out;
efi_virtmap = virtmap;
efi_descriptor_size = descriptor_size;
efi_descriptor_count = n;
/*
* TODO:
* Further down we are cheating. While really we should implement
* SetVirtualAddressMap() events and ConvertPointer() to allow
* dynamically loaded drivers to expose runtime services, we don't
* today.
*
* So let's ensure we see exactly one single runtime section, as
* that is the built-in one. If we see more (or less), someone must
* have tried adding or removing to that which we don't support yet.
* In that case, let's better fail rather than expose broken runtime
* services.
*/
for (i = 0; i < n; i++) {
struct efi_mem_desc *map = (void*)virtmap +
(descriptor_size * i);
if (map->type == EFI_RUNTIME_SERVICES_CODE)
rt_code_sections++;
}
if (rt_code_sections != 1) {
/*
* We expose exactly one single runtime code section, so
* something is definitely going wrong.
*/
goto out;
}
/* Notify EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE */
list_for_each_entry(event, &efi_events, link) {
if (event->notify_function)
EFI_CALL_VOID(event->notify_function(
event, event->notify_context));
}
/* Rebind mmio pointers */
for (i = 0; i < n; i++) {
struct efi_mem_desc *map = (void*)virtmap +
(descriptor_size * i);
struct list_head *lhandle;
efi_physical_addr_t map_start = map->physical_start;
efi_physical_addr_t map_len = map->num_pages << EFI_PAGE_SHIFT;
efi_physical_addr_t map_end = map_start + map_len;
u64 off = map->virtual_start - map_start;
/* Adjust all mmio pointers in this region */
list_for_each(lhandle, &efi_runtime_mmio) {
struct efi_runtime_mmio_list *lmmio;
lmmio = list_entry(lhandle,
struct efi_runtime_mmio_list,
link);
if ((map_start <= lmmio->paddr) &&
(map_end >= lmmio->paddr)) {
uintptr_t new_addr = lmmio->paddr + off;
*lmmio->ptr = (void *)new_addr;
}
}
if ((map_start <= (uintptr_t)systab.tables) &&
(map_end >= (uintptr_t)systab.tables)) {
char *ptr = (char *)systab.tables;
ptr += off;
systab.tables = (struct efi_configuration_table *)ptr;
}
}
/* Relocate the runtime. See TODO above */
for (i = 0; i < n; i++) {
struct efi_mem_desc *map;
map = (void*)virtmap + (descriptor_size * i);
if (map->type == EFI_RUNTIME_SERVICES_CODE) {
ulong new_offset = map->virtual_start -
map->physical_start + gd->relocaddr;
efi_relocate_runtime_table(new_offset);
efi_runtime_relocate(new_offset, map);
ret = EFI_SUCCESS;
goto out;
}
}
out:
return EFI_EXIT(ret);
}
/**
* efi_add_runtime_mmio() - add memory-mapped IO region
*
* This function adds a memory-mapped IO region to the memory map to make it
* available at runtime.
*
* @mmio_ptr: pointer to a pointer to the start of the memory-mapped
* IO region
* @len: size of the memory-mapped IO region
* Returns: status code
*/
efi_status_t efi_add_runtime_mmio(void *mmio_ptr, u64 len)
{
struct efi_runtime_mmio_list *newmmio;
uint64_t addr = *(uintptr_t *)mmio_ptr;
efi_status_t ret;
ret = efi_add_memory_map(addr, len, EFI_MMAP_IO);
if (ret != EFI_SUCCESS)
return EFI_OUT_OF_RESOURCES;
newmmio = calloc(1, sizeof(*newmmio));
if (!newmmio)
return EFI_OUT_OF_RESOURCES;
newmmio->ptr = mmio_ptr;
newmmio->paddr = *(uintptr_t *)mmio_ptr;
newmmio->len = len;
list_add_tail(&newmmio->link, &efi_runtime_mmio);
return EFI_SUCCESS;
}
/*
* In the second stage, U-Boot has disappeared. To isolate our runtime code
* that at this point still exists from the rest, we put it into a special
* section.
*
* !!WARNING!!
*
* This means that we can not rely on any code outside of this file in any
* function or variable below this line.
*
* Please keep everything fully self-contained and annotated with
* __efi_runtime and __efi_runtime_data markers.
*/
/*
* Relocate the EFI runtime stub to a different place. We need to call this
* the first time we expose the runtime interface to a user and on set virtual
* address map calls.
*/
/**
* efi_unimplemented() - replacement function, returns EFI_UNSUPPORTED
*
* This function is used after SetVirtualAddressMap() is called as replacement
* for services that are not available anymore due to constraints of the U-Boot
* implementation.
*
* Return: EFI_UNSUPPORTED
*/
static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void)
{
return EFI_UNSUPPORTED;
}
struct efi_runtime_services __efi_runtime_data efi_runtime_services = {
.hdr = {
.signature = EFI_RUNTIME_SERVICES_SIGNATURE,
.revision = EFI_SPECIFICATION_VERSION,
.headersize = sizeof(struct efi_runtime_services),
},
.get_time = &efi_get_time_boottime,
.set_time = &efi_set_time_boottime,
.get_wakeup_time = (void *)&efi_unimplemented,
.set_wakeup_time = (void *)&efi_unimplemented,
.set_virtual_address_map = &efi_set_virtual_address_map,
.convert_pointer = efi_convert_pointer,
efi_loader: efi variable support Add EFI variable support, mapping to u-boot environment variables. Variables are pretty important for setting up boot order, among other things. If the board supports saveenv, then it will be called in ExitBootServices() to persist variables set by the efi payload. (For example, fallback.efi configuring BootOrder and BootXXXX load-option variables.) Variables are *not* currently exposed at runtime, post ExitBootServices. On boards without a dedicated device for storage, which the loaded OS is not trying to also use, this is rather tricky. One idea, at least for boards that can persist RAM across reboot, is to keep a "journal" of modified variables in RAM, and then turn halt into a reboot into u-boot, plus store variables, plus halt. Whatever the solution, it likely involves some per-board support. Mapping between EFI variables and u-boot variables: efi_$guid_$varname = {attributes}(type)value For example: efi_8be4df61-93ca-11d2-aa0d-00e098032b8c_OsIndicationsSupported= "{ro,boot,run}(blob)0000000000000000" efi_8be4df61-93ca-11d2-aa0d-00e098032b8c_BootOrder= "(blob)00010000" The attributes are a comma separated list of these possible attributes: + ro - read-only + boot - boot-services access + run - runtime access NOTE: with current implementation, no variables are available after ExitBootServices, and all are persisted (if possible). If not specified, the attributes default to "{boot}". The required type is one of: + utf8 - raw utf8 string + blob - arbitrary length hex string Signed-off-by: Rob Clark <robdclark@gmail.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2017-09-13 22:05:37 +00:00
.get_variable = efi_get_variable,
.get_next_variable_name = efi_get_next_variable_name,
efi_loader: efi variable support Add EFI variable support, mapping to u-boot environment variables. Variables are pretty important for setting up boot order, among other things. If the board supports saveenv, then it will be called in ExitBootServices() to persist variables set by the efi payload. (For example, fallback.efi configuring BootOrder and BootXXXX load-option variables.) Variables are *not* currently exposed at runtime, post ExitBootServices. On boards without a dedicated device for storage, which the loaded OS is not trying to also use, this is rather tricky. One idea, at least for boards that can persist RAM across reboot, is to keep a "journal" of modified variables in RAM, and then turn halt into a reboot into u-boot, plus store variables, plus halt. Whatever the solution, it likely involves some per-board support. Mapping between EFI variables and u-boot variables: efi_$guid_$varname = {attributes}(type)value For example: efi_8be4df61-93ca-11d2-aa0d-00e098032b8c_OsIndicationsSupported= "{ro,boot,run}(blob)0000000000000000" efi_8be4df61-93ca-11d2-aa0d-00e098032b8c_BootOrder= "(blob)00010000" The attributes are a comma separated list of these possible attributes: + ro - read-only + boot - boot-services access + run - runtime access NOTE: with current implementation, no variables are available after ExitBootServices, and all are persisted (if possible). If not specified, the attributes default to "{boot}". The required type is one of: + utf8 - raw utf8 string + blob - arbitrary length hex string Signed-off-by: Rob Clark <robdclark@gmail.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2017-09-13 22:05:37 +00:00
.set_variable = efi_set_variable,
.get_next_high_mono_count = (void *)&efi_unimplemented,
.reset_system = &efi_reset_system_boottime,
#ifdef CONFIG_EFI_RUNTIME_UPDATE_CAPSULE
.update_capsule = efi_update_capsule,
.query_capsule_caps = efi_query_capsule_caps,
#else
.update_capsule = efi_update_capsule_unsupported,
.query_capsule_caps = efi_query_capsule_caps_unsupported,
#endif
.query_variable_info = efi_query_variable_info,
};