u-boot/board/hidden_dragon/flash.c

576 lines
14 KiB
C
Raw Normal View History

/*
* (C) Copyright 2004
* Yusdi Santoso, Adaptec Inc., yusdi_santoso@adaptec.com
*
* (C) Copyright 2000-2005
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <mpc824x.h>
#include <asm/processor.h>
#include <asm/pci_io.h>
#include <w83c553f.h>
#define ROM_CS0_START 0xFF800000
#define ROM_CS1_START 0xFF000000
flash_info_t flash_info[CFG_MAX_FLASH_BANKS]; /* info for FLASH chips */
#if defined(CFG_ENV_IS_IN_FLASH)
# ifndef CFG_ENV_ADDR
# define CFG_ENV_ADDR (CFG_FLASH_BASE + CFG_ENV_OFFSET)
# endif
# ifndef CFG_ENV_SIZE
# define CFG_ENV_SIZE CFG_ENV_SECT_SIZE
# endif
# ifndef CFG_ENV_SECT_SIZE
# define CFG_ENV_SECT_SIZE CFG_ENV_SIZE
# endif
#endif
/*-----------------------------------------------------------------------
* Functions
*/
static int write_word (flash_info_t *info, ulong dest, ulong data);
/*flash command address offsets*/
#define ADDR0 (0xAAA)
#define ADDR1 (0x555)
#define ADDR3 (0x001)
#define FLASH_WORD_SIZE unsigned char
/*-----------------------------------------------------------------------
*/
static unsigned long flash_id (unsigned char mfct, unsigned char chip)
__attribute__ ((const));
typedef struct {
FLASH_WORD_SIZE extval;
unsigned short intval;
} map_entry;
static unsigned long flash_id (unsigned char mfct, unsigned char chip)
{
static const map_entry mfct_map[] = {
{(FLASH_WORD_SIZE) AMD_MANUFACT,
(unsigned short) ((unsigned long) FLASH_MAN_AMD >> 16)},
{(FLASH_WORD_SIZE) FUJ_MANUFACT,
(unsigned short) ((unsigned long) FLASH_MAN_FUJ >> 16)},
{(FLASH_WORD_SIZE) STM_MANUFACT,
(unsigned short) ((unsigned long) FLASH_MAN_STM >> 16)},
{(FLASH_WORD_SIZE) MT_MANUFACT,
(unsigned short) ((unsigned long) FLASH_MAN_MT >> 16)},
{(FLASH_WORD_SIZE) INTEL_MANUFACT,
(unsigned short) ((unsigned long) FLASH_MAN_INTEL >> 16)},
{(FLASH_WORD_SIZE) INTEL_ALT_MANU,
(unsigned short) ((unsigned long) FLASH_MAN_INTEL >> 16)}
};
static const map_entry chip_map[] = {
{AMD_ID_F040B, FLASH_AM040},
{(FLASH_WORD_SIZE) STM_ID_x800AB, FLASH_STM800AB}
};
const map_entry *p;
unsigned long result = FLASH_UNKNOWN;
/* find chip id */
for (p = &chip_map[0];
p < &chip_map[sizeof chip_map / sizeof chip_map[0]]; p++)
if (p->extval == chip) {
result = FLASH_VENDMASK | p->intval;
break;
}
/* find vendor id */
for (p = &mfct_map[0];
p < &mfct_map[sizeof mfct_map / sizeof mfct_map[0]]; p++)
if (p->extval == mfct) {
result &= ~FLASH_VENDMASK;
result |= (unsigned long) p->intval << 16;
break;
}
return result;
}
unsigned long flash_init (void)
{
unsigned long i;
unsigned char j;
static const ulong flash_banks[] = CFG_FLASH_BANKS;
/* Init: no FLASHes known */
for (i = 0; i < CFG_MAX_FLASH_BANKS; i++) {
flash_info_t *const pflinfo = &flash_info[i];
pflinfo->flash_id = FLASH_UNKNOWN;
pflinfo->size = 0;
pflinfo->sector_count = 0;
}
/* Enable writes to Hidden Dragon flash */
{
register unsigned char temp;
CONFIG_READ_BYTE (CFG_WINBOND_ISA_CFG_ADDR + WINBOND_CSCR,
temp);
temp &= ~0x20; /* clear BIOSWP bit */
CONFIG_WRITE_BYTE (CFG_WINBOND_ISA_CFG_ADDR + WINBOND_CSCR,
temp);
}
for (i = 0; i < sizeof flash_banks / sizeof flash_banks[0]; i++) {
flash_info_t *const pflinfo = &flash_info[i];
const unsigned long base_address = flash_banks[i];
volatile FLASH_WORD_SIZE *const flash =
(FLASH_WORD_SIZE *) base_address;
flash[0xAAA << (3 * i)] = 0xaa;
flash[0x555 << (3 * i)] = 0x55;
flash[0xAAA << (3 * i)] = 0x90;
__asm__ __volatile__ ("sync");
pflinfo->flash_id =
flash_id (flash[0x0], flash[0x2 + 14 * i]);
switch (pflinfo->flash_id & FLASH_TYPEMASK) {
case FLASH_AM040:
pflinfo->size = 0x00080000;
pflinfo->sector_count = 8;
for (j = 0; j < 8; j++) {
pflinfo->start[j] =
base_address + 0x00010000 * j;
pflinfo->protect[j] = flash[(j << 16) | 0x2];
}
break;
case FLASH_STM800AB:
pflinfo->size = 0x00100000;
pflinfo->sector_count = 19;
pflinfo->start[0] = base_address;
pflinfo->start[1] = base_address + 0x4000;
pflinfo->start[2] = base_address + 0x6000;
pflinfo->start[3] = base_address + 0x8000;
for (j = 1; j < 16; j++) {
pflinfo->start[j + 3] =
base_address + 0x00010000 * j;
}
break;
default:
/* The chip used is not listed in flash_id
TODO: Change this to explicitly detect the flash type
*/
{
int sector_addr = base_address;
pflinfo->size = 0x00200000;
pflinfo->sector_count = 35;
pflinfo->start[0] = sector_addr;
sector_addr += 0x4000; /* 16K */
pflinfo->start[1] = sector_addr;
sector_addr += 0x2000; /* 8K */
pflinfo->start[2] = sector_addr;
sector_addr += 0x2000; /* 8K */
pflinfo->start[3] = sector_addr;
sector_addr += 0x8000; /* 32K */
for (j = 4; j < 35; j++) {
pflinfo->start[j] = sector_addr;
sector_addr += 0x10000; /* 64K */
}
}
break;
}
/* Protect monitor and environment sectors
*/
#if CFG_MONITOR_BASE >= CFG_FLASH_BASE
flash_protect (FLAG_PROTECT_SET,
CFG_MONITOR_BASE,
CFG_MONITOR_BASE + monitor_flash_len - 1,
&flash_info[0]);
#endif
#if (CFG_ENV_IS_IN_FLASH == 1) && defined(CFG_ENV_ADDR)
flash_protect (FLAG_PROTECT_SET,
CFG_ENV_ADDR,
CFG_ENV_ADDR + CFG_ENV_SIZE - 1,
&flash_info[0]);
#endif
/* reset device to read mode */
flash[0x0000] = 0xf0;
__asm__ __volatile__ ("sync");
}
/* only have 1 bank */
return flash_info[0].size;
}
/*-----------------------------------------------------------------------
*/
void flash_print_info (flash_info_t * info)
{
static const char unk[] = "Unknown";
const char *mfct = unk, *type = unk;
unsigned int i;
if (info->flash_id != FLASH_UNKNOWN) {
switch (info->flash_id & FLASH_VENDMASK) {
case FLASH_MAN_AMD:
mfct = "AMD";
break;
case FLASH_MAN_FUJ:
mfct = "FUJITSU";
break;
case FLASH_MAN_STM:
mfct = "STM";
break;
case FLASH_MAN_SST:
mfct = "SST";
break;
case FLASH_MAN_BM:
mfct = "Bright Microelectonics";
break;
case FLASH_MAN_INTEL:
mfct = "Intel";
break;
}
switch (info->flash_id & FLASH_TYPEMASK) {
case FLASH_AM040:
type = "AM29F040B (512K * 8, uniform sector size)";
break;
case FLASH_AM400B:
type = "AM29LV400B (4 Mbit, bottom boot sect)";
break;
case FLASH_AM400T:
type = "AM29LV400T (4 Mbit, top boot sector)";
break;
case FLASH_AM800B:
type = "AM29LV800B (8 Mbit, bottom boot sect)";
break;
case FLASH_AM800T:
type = "AM29LV800T (8 Mbit, top boot sector)";
break;
case FLASH_AM160T:
type = "AM29LV160T (16 Mbit, top boot sector)";
break;
case FLASH_AM320B:
type = "AM29LV320B (32 Mbit, bottom boot sect)";
break;
case FLASH_AM320T:
type = "AM29LV320T (32 Mbit, top boot sector)";
break;
case FLASH_STM800AB:
type = "M29W800AB (8 Mbit, bottom boot sect)";
break;
case FLASH_SST800A:
type = "SST39LF/VF800 (8 Mbit, uniform sector size)";
break;
case FLASH_SST160A:
type = "SST39LF/VF160 (16 Mbit, uniform sector size)";
break;
}
}
printf ("\n Brand: %s Type: %s\n"
" Size: %lu KB in %d Sectors\n",
mfct, type, info->size >> 10, info->sector_count);
printf (" Sector Start Addresses:");
for (i = 0; i < info->sector_count; i++) {
unsigned long size;
unsigned int erased;
unsigned long *flash = (unsigned long *) info->start[i];
/*
* Check if whole sector is erased
*/
size = (i != (info->sector_count - 1)) ?
(info->start[i + 1] - info->start[i]) >> 2 :
(info->start[0] + info->size - info->start[i]) >> 2;
for (flash = (unsigned long *) info->start[i], erased = 1;
(flash != (unsigned long *) info->start[i] + size)
&& erased; flash++)
erased = *flash == ~0x0UL;
printf ("%s %08lX %s %s",
(i % 5) ? "" : "\n ",
info->start[i],
erased ? "E" : " ", info->protect[i] ? "RO" : " ");
}
puts ("\n");
return;
}
int flash_erase (flash_info_t * info, int s_first, int s_last)
{
volatile FLASH_WORD_SIZE *addr = (FLASH_WORD_SIZE *) (info->start[0]);
int flag, prot, sect, l_sect;
ulong start, now, last;
unsigned char sh8b;
if ((s_first < 0) || (s_first > s_last)) {
if (info->flash_id == FLASH_UNKNOWN) {
printf ("- missing\n");
} else {
printf ("- no sectors to erase\n");
}
return 1;
}
if ((info->flash_id == FLASH_UNKNOWN) ||
(info->flash_id > (FLASH_MAN_STM | FLASH_AMD_COMP))) {
printf ("Can't erase unknown flash type - aborted\n");
return 1;
}
prot = 0;
for (sect = s_first; sect <= s_last; ++sect) {
if (info->protect[sect]) {
prot++;
}
}
if (prot) {
printf ("- Warning: %d protected sectors will not be erased!\n", prot);
} else {
printf ("\n");
}
l_sect = -1;
/* Check the ROM CS */
if ((info->start[0] >= ROM_CS1_START)
&& (info->start[0] < ROM_CS0_START))
sh8b = 3;
else
sh8b = 0;
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts ();
addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE) 0x00AA00AA;
addr[ADDR1 << sh8b] = (FLASH_WORD_SIZE) 0x00550055;
addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE) 0x00800080;
addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE) 0x00AA00AA;
addr[ADDR1 << sh8b] = (FLASH_WORD_SIZE) 0x00550055;
/* Start erase on unprotected sectors */
for (sect = s_first; sect <= s_last; sect++) {
if (info->protect[sect] == 0) { /* not protected */
addr = (FLASH_WORD_SIZE *) (info->start[0] +
((info->start[sect] -
info->start[0]) << sh8b));
if (info->flash_id & FLASH_MAN_SST) {
addr[ADDR0 << sh8b] =
(FLASH_WORD_SIZE) 0x00AA00AA;
addr[ADDR1 << sh8b] =
(FLASH_WORD_SIZE) 0x00550055;
addr[ADDR0 << sh8b] =
(FLASH_WORD_SIZE) 0x00800080;
addr[ADDR0 << sh8b] =
(FLASH_WORD_SIZE) 0x00AA00AA;
addr[ADDR1 << sh8b] =
(FLASH_WORD_SIZE) 0x00550055;
addr[0] = (FLASH_WORD_SIZE) 0x00500050; /* block erase */
udelay (30000); /* wait 30 ms */
} else
addr[0] = (FLASH_WORD_SIZE) 0x00300030; /* sector erase */
l_sect = sect;
}
}
/* re-enable interrupts if necessary */
if (flag)
enable_interrupts ();
/* wait at least 80us - let's wait 1 ms */
udelay (1000);
/*
* We wait for the last triggered sector
*/
if (l_sect < 0)
goto DONE;
start = get_timer (0);
last = start;
addr = (FLASH_WORD_SIZE *) (info->start[0] + ((info->start[l_sect] -
info->
start[0]) << sh8b));
while ((addr[0] & (FLASH_WORD_SIZE) 0x00800080) !=
(FLASH_WORD_SIZE) 0x00800080) {
if ((now = get_timer (start)) > CFG_FLASH_ERASE_TOUT) {
printf ("Timeout\n");
return 1;
}
/* show that we're waiting */
if ((now - last) > 1000) { /* every second */
serial_putc ('.');
last = now;
}
}
DONE:
/* reset to read mode */
addr = (FLASH_WORD_SIZE *) info->start[0];
addr[0] = (FLASH_WORD_SIZE) 0x00F000F0; /* reset bank */
printf (" done\n");
return 0;
}
/*-----------------------------------------------------------------------
* Copy memory to flash, returns:
* 0 - OK
* 1 - write timeout
* 2 - Flash not erased
*/
int write_buff (flash_info_t * info, uchar * src, ulong addr, ulong cnt)
{
ulong cp, wp, data;
int i, l, rc;
wp = (addr & ~3); /* get lower word aligned address */
/*
* handle unaligned start bytes
*/
if ((l = addr - wp) != 0) {
data = 0;
for (i = 0, cp = wp; i < l; ++i, ++cp) {
data = (data << 8) | (*(uchar *) cp);
}
for (; i < 4 && cnt > 0; ++i) {
data = (data << 8) | *src++;
--cnt;
++cp;
}
for (; cnt == 0 && i < 4; ++i, ++cp) {
data = (data << 8) | (*(uchar *) cp);
}
if ((rc = write_word (info, wp, data)) != 0) {
return (rc);
}
wp += 4;
}
/*
* handle word aligned part
*/
while (cnt >= 4) {
data = 0;
for (i = 0; i < 4; ++i) {
data = (data << 8) | *src++;
}
if ((rc = write_word (info, wp, data)) != 0) {
return (rc);
}
wp += 4;
cnt -= 4;
}
if (cnt == 0) {
return (0);
}
/*
* handle unaligned tail bytes
*/
data = 0;
for (i = 0, cp = wp; i < 4 && cnt > 0; ++i, ++cp) {
data = (data << 8) | *src++;
--cnt;
}
for (; i < 4; ++i, ++cp) {
data = (data << 8) | (*(uchar *) cp);
}
return (write_word (info, wp, data));
}
/*-----------------------------------------------------------------------
* Write a word to Flash, returns:
* 0 - OK
* 1 - write timeout
* 2 - Flash not erased
*/
static int write_word (flash_info_t * info, ulong dest, ulong data)
{
volatile FLASH_WORD_SIZE *addr2 = (FLASH_WORD_SIZE *) info->start[0];
volatile FLASH_WORD_SIZE *dest2;
volatile FLASH_WORD_SIZE *data2 = (FLASH_WORD_SIZE *) & data;
ulong start;
int flag;
int i;
unsigned char sh8b;
/* Check the ROM CS */
if ((info->start[0] >= ROM_CS1_START)
&& (info->start[0] < ROM_CS0_START))
sh8b = 3;
else
sh8b = 0;
dest2 = (FLASH_WORD_SIZE *) (((dest - info->start[0]) << sh8b) +
info->start[0]);
/* Check if Flash is (sufficiently) erased */
if ((*dest2 & (FLASH_WORD_SIZE) data) != (FLASH_WORD_SIZE) data) {
return (2);
}
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts ();
for (i = 0; i < 4 / sizeof (FLASH_WORD_SIZE); i++) {
addr2[ADDR0 << sh8b] = (FLASH_WORD_SIZE) 0x00AA00AA;
addr2[ADDR1 << sh8b] = (FLASH_WORD_SIZE) 0x00550055;
addr2[ADDR0 << sh8b] = (FLASH_WORD_SIZE) 0x00A000A0;
dest2[i << sh8b] = data2[i];
/* re-enable interrupts if necessary */
if (flag)
enable_interrupts ();
/* data polling for D7 */
start = get_timer (0);
while ((dest2[i << sh8b] & (FLASH_WORD_SIZE) 0x00800080) !=
(data2[i] & (FLASH_WORD_SIZE) 0x00800080)) {
if (get_timer (start) > CFG_FLASH_WRITE_TOUT) {
return (1);
}
}
}
return (0);
}