u-boot/drivers/misc/qfw.c

395 lines
9.5 KiB
C
Raw Normal View History

/*
* (C) Copyright 2015 Miao Yan <yanmiaobest@gmail.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <errno.h>
#include <malloc.h>
#include <qfw.h>
#include <asm/io.h>
#ifdef CONFIG_GENERATE_ACPI_TABLE
#include <asm/tables.h>
#endif
#include <linux/list.h>
static bool fwcfg_present;
static bool fwcfg_dma_present;
static struct fw_cfg_arch_ops *fwcfg_arch_ops;
static LIST_HEAD(fw_list);
#ifdef CONFIG_GENERATE_ACPI_TABLE
/*
* This function allocates memory for ACPI tables
*
* @entry : BIOS linker command entry which tells where to allocate memory
* (either high memory or low memory)
* @addr : The address that should be used for low memory allcation. If the
* memory allocation request is 'ZONE_HIGH' then this parameter will
* be ignored.
* @return: 0 on success, or negative value on failure
*/
static int bios_linker_allocate(struct bios_linker_entry *entry, ulong *addr)
{
uint32_t size, align;
struct fw_file *file;
unsigned long aligned_addr;
align = le32_to_cpu(entry->alloc.align);
/* align must be power of 2 */
if (align & (align - 1)) {
printf("error: wrong alignment %u\n", align);
return -EINVAL;
}
file = qemu_fwcfg_find_file(entry->alloc.file);
if (!file) {
printf("error: can't find file %s\n", entry->alloc.file);
return -ENOENT;
}
size = be32_to_cpu(file->cfg.size);
/*
* ZONE_HIGH means we need to allocate from high memory, since
* malloc space is already at the end of RAM, so we directly use it.
* If allocation zone is ZONE_FSEG, then we use the 'addr' passed
* in which is low memory
*/
if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_HIGH) {
aligned_addr = (unsigned long)memalign(align, size);
if (!aligned_addr) {
printf("error: allocating resource\n");
return -ENOMEM;
}
} else if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG) {
aligned_addr = ALIGN(*addr, align);
} else {
printf("error: invalid allocation zone\n");
return -EINVAL;
}
debug("bios_linker_allocate: allocate file %s, size %u, zone %d, align %u, addr 0x%lx\n",
file->cfg.name, size, entry->alloc.zone, align, aligned_addr);
qemu_fwcfg_read_entry(be16_to_cpu(file->cfg.select),
size, (void *)aligned_addr);
file->addr = aligned_addr;
/* adjust address for low memory allocation */
if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG)
*addr = (aligned_addr + size);
return 0;
}
/*
* This function patches ACPI tables previously loaded
* by bios_linker_allocate()
*
* @entry : BIOS linker command entry which tells how to patch
* ACPI tables
* @return: 0 on success, or negative value on failure
*/
static int bios_linker_add_pointer(struct bios_linker_entry *entry)
{
struct fw_file *dest, *src;
uint32_t offset = le32_to_cpu(entry->pointer.offset);
uint64_t pointer = 0;
dest = qemu_fwcfg_find_file(entry->pointer.dest_file);
if (!dest || !dest->addr)
return -ENOENT;
src = qemu_fwcfg_find_file(entry->pointer.src_file);
if (!src || !src->addr)
return -ENOENT;
debug("bios_linker_add_pointer: dest->addr 0x%lx, src->addr 0x%lx, offset 0x%x size %u, 0x%llx\n",
dest->addr, src->addr, offset, entry->pointer.size, pointer);
memcpy(&pointer, (char *)dest->addr + offset, entry->pointer.size);
pointer = le64_to_cpu(pointer);
pointer += (unsigned long)src->addr;
pointer = cpu_to_le64(pointer);
memcpy((char *)dest->addr + offset, &pointer, entry->pointer.size);
return 0;
}
/*
* This function updates checksum fields of ACPI tables previously loaded
* by bios_linker_allocate()
*
* @entry : BIOS linker command entry which tells where to update ACPI table
* checksums
* @return: 0 on success, or negative value on failure
*/
static int bios_linker_add_checksum(struct bios_linker_entry *entry)
{
struct fw_file *file;
uint8_t *data, cksum = 0;
uint8_t *cksum_start;
file = qemu_fwcfg_find_file(entry->cksum.file);
if (!file || !file->addr)
return -ENOENT;
data = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.offset));
cksum_start = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.start));
cksum = table_compute_checksum(cksum_start,
le32_to_cpu(entry->cksum.length));
*data = cksum;
return 0;
}
/* This function loads and patches ACPI tables provided by QEMU */
ulong write_acpi_tables(ulong addr)
{
int i, ret = 0;
struct fw_file *file;
struct bios_linker_entry *table_loader;
struct bios_linker_entry *entry;
uint32_t size;
/* make sure fw_list is loaded */
ret = qemu_fwcfg_read_firmware_list();
if (ret) {
printf("error: can't read firmware file list\n");
return addr;
}
file = qemu_fwcfg_find_file("etc/table-loader");
if (!file) {
printf("error: can't find etc/table-loader\n");
return addr;
}
size = be32_to_cpu(file->cfg.size);
if ((size % sizeof(*entry)) != 0) {
printf("error: table-loader maybe corrupted\n");
return addr;
}
table_loader = malloc(size);
if (!table_loader) {
printf("error: no memory for table-loader\n");
return addr;
}
qemu_fwcfg_read_entry(be16_to_cpu(file->cfg.select),
size, table_loader);
for (i = 0; i < (size / sizeof(*entry)); i++) {
entry = table_loader + i;
switch (le32_to_cpu(entry->command)) {
case BIOS_LINKER_LOADER_COMMAND_ALLOCATE:
ret = bios_linker_allocate(entry, &addr);
if (ret)
goto out;
break;
case BIOS_LINKER_LOADER_COMMAND_ADD_POINTER:
ret = bios_linker_add_pointer(entry);
if (ret)
goto out;
break;
case BIOS_LINKER_LOADER_COMMAND_ADD_CHECKSUM:
ret = bios_linker_add_checksum(entry);
if (ret)
goto out;
break;
default:
break;
}
}
out:
if (ret) {
struct fw_cfg_file_iter iter;
for (file = qemu_fwcfg_file_iter_init(&iter);
!qemu_fwcfg_file_iter_end(&iter);
file = qemu_fwcfg_file_iter_next(&iter)) {
if (file->addr) {
free((void *)file->addr);
file->addr = 0;
}
}
}
free(table_loader);
return addr;
}
ulong acpi_get_rsdp_addr(void)
{
struct fw_file *file;
file = qemu_fwcfg_find_file("etc/acpi/rsdp");
return file->addr;
}
#endif
/* Read configuration item using fw_cfg PIO interface */
static void qemu_fwcfg_read_entry_pio(uint16_t entry,
uint32_t size, void *address)
{
debug("qemu_fwcfg_read_entry_pio: entry 0x%x, size %u address %p\n",
entry, size, address);
return fwcfg_arch_ops->arch_read_pio(entry, size, address);
}
/* Read configuration item using fw_cfg DMA interface */
static void qemu_fwcfg_read_entry_dma(uint16_t entry,
uint32_t size, void *address)
{
struct fw_cfg_dma_access dma;
dma.length = cpu_to_be32(size);
dma.address = cpu_to_be64((uintptr_t)address);
dma.control = cpu_to_be32(FW_CFG_DMA_READ);
/*
* writting FW_CFG_INVALID will cause read operation to resume at
* last offset, otherwise read will start at offset 0
*/
if (entry != FW_CFG_INVALID)
dma.control |= cpu_to_be32(FW_CFG_DMA_SELECT | (entry << 16));
barrier();
debug("qemu_fwcfg_read_entry_dma: entry 0x%x, size %u address %p, control 0x%x\n",
entry, size, address, be32_to_cpu(dma.control));
fwcfg_arch_ops->arch_read_dma(&dma);
}
bool qemu_fwcfg_present(void)
{
return fwcfg_present;
}
bool qemu_fwcfg_dma_present(void)
{
return fwcfg_dma_present;
}
void qemu_fwcfg_read_entry(uint16_t entry, uint32_t length, void *address)
{
if (fwcfg_dma_present)
qemu_fwcfg_read_entry_dma(entry, length, address);
else
qemu_fwcfg_read_entry_pio(entry, length, address);
}
int qemu_fwcfg_online_cpus(void)
{
uint16_t nb_cpus;
if (!fwcfg_present)
return -ENODEV;
qemu_fwcfg_read_entry(FW_CFG_NB_CPUS, 2, &nb_cpus);
return le16_to_cpu(nb_cpus);
}
int qemu_fwcfg_read_firmware_list(void)
{
int i;
uint32_t count;
struct fw_file *file;
struct list_head *entry;
/* don't read it twice */
if (!list_empty(&fw_list))
return 0;
qemu_fwcfg_read_entry(FW_CFG_FILE_DIR, 4, &count);
if (!count)
return 0;
count = be32_to_cpu(count);
for (i = 0; i < count; i++) {
file = malloc(sizeof(*file));
if (!file) {
printf("error: allocating resource\n");
goto err;
}
qemu_fwcfg_read_entry(FW_CFG_INVALID,
sizeof(struct fw_cfg_file), &file->cfg);
file->addr = 0;
list_add_tail(&file->list, &fw_list);
}
return 0;
err:
list_for_each(entry, &fw_list) {
file = list_entry(entry, struct fw_file, list);
free(file);
}
return -ENOMEM;
}
struct fw_file *qemu_fwcfg_find_file(const char *name)
{
struct list_head *entry;
struct fw_file *file;
list_for_each(entry, &fw_list) {
file = list_entry(entry, struct fw_file, list);
if (!strcmp(file->cfg.name, name))
return file;
}
return NULL;
}
struct fw_file *qemu_fwcfg_file_iter_init(struct fw_cfg_file_iter *iter)
{
iter->entry = fw_list.next;
return list_entry((struct list_head *)iter->entry,
struct fw_file, list);
}
struct fw_file *qemu_fwcfg_file_iter_next(struct fw_cfg_file_iter *iter)
{
iter->entry = ((struct list_head *)iter->entry)->next;
return list_entry((struct list_head *)iter->entry,
struct fw_file, list);
}
bool qemu_fwcfg_file_iter_end(struct fw_cfg_file_iter *iter)
{
return iter->entry == &fw_list;
}
void qemu_fwcfg_init(struct fw_cfg_arch_ops *ops)
{
uint32_t qemu;
uint32_t dma_enabled;
fwcfg_present = false;
fwcfg_dma_present = false;
fwcfg_arch_ops = NULL;
if (!ops || !ops->arch_read_pio || !ops->arch_read_dma)
return;
fwcfg_arch_ops = ops;
qemu_fwcfg_read_entry_pio(FW_CFG_SIGNATURE, 4, &qemu);
if (be32_to_cpu(qemu) == QEMU_FW_CFG_SIGNATURE)
fwcfg_present = true;
if (fwcfg_present) {
qemu_fwcfg_read_entry_pio(FW_CFG_ID, 1, &dma_enabled);
if (dma_enabled & FW_CFG_DMA_ENABLED)
fwcfg_dma_present = true;
}
}