u-boot/drivers/fpga/socfpga_arria10.c

951 lines
24 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2017-2019 Intel Corporation <www.intel.com>
*/
#include <image.h>
#include <log.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/arch/fpga_manager.h>
#include <asm/arch/reset_manager.h>
#include <asm/arch/system_manager.h>
#include <asm/arch/sdram.h>
#include <asm/arch/misc.h>
#include <altera.h>
#include <asm/arch/pinmux.h>
#include <common.h>
#include <dm.h>
#include <dm/ofnode.h>
#include <errno.h>
#include <fs_loader.h>
#include <wait_bit.h>
#include <watchdog.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#define CFGWDTH_32 1
#define MIN_BITSTREAM_SIZECHECK 230
#define ENCRYPTION_OFFSET 69
#define COMPRESSION_OFFSET 229
#define FPGA_TIMEOUT_MSEC 1000 /* timeout in ms */
#define FPGA_TIMEOUT_CNT 0x1000000
#define DEFAULT_DDR_LOAD_ADDRESS 0x400
DECLARE_GLOBAL_DATA_PTR;
static const struct socfpga_fpga_manager *fpga_manager_base =
(void *)SOCFPGA_FPGAMGRREGS_ADDRESS;
static void fpgamgr_set_cd_ratio(unsigned long ratio);
static uint32_t fpgamgr_get_msel(void)
{
u32 reg;
reg = readl(&fpga_manager_base->imgcfg_stat);
reg = (reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_MSEL_SET_MSD) >>
ALT_FPGAMGR_IMGCFG_STAT_F2S_MSEL0_LSB;
return reg;
}
static void fpgamgr_set_cfgwdth(int width)
{
if (width)
setbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
ALT_FPGAMGR_IMGCFG_CTL_02_CFGWIDTH_SET_MSK);
else
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
ALT_FPGAMGR_IMGCFG_CTL_02_CFGWIDTH_SET_MSK);
}
int is_fpgamgr_user_mode(void)
{
return (readl(&fpga_manager_base->imgcfg_stat) &
ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) != 0;
}
static int wait_for_user_mode(void)
{
return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat,
ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK,
1, FPGA_TIMEOUT_MSEC, false);
}
int is_fpgamgr_early_user_mode(void)
{
return (readl(&fpga_manager_base->imgcfg_stat) &
ALT_FPGAMGR_IMGCFG_STAT_F2S_EARLY_USERMODE_SET_MSK) != 0;
}
int fpgamgr_wait_early_user_mode(void)
{
u32 sync_data = 0xffffffff;
u32 i = 0;
unsigned start = get_timer(0);
unsigned long cd_ratio;
/* Getting existing CDRATIO */
cd_ratio = (readl(&fpga_manager_base->imgcfg_ctrl_02) &
ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK) >>
ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_LSB;
/* Using CDRATIO_X1 for better compatibility */
fpgamgr_set_cd_ratio(CDRATIO_x1);
while (!is_fpgamgr_early_user_mode()) {
if (get_timer(start) > FPGA_TIMEOUT_MSEC)
return -ETIMEDOUT;
fpgamgr_program_write((const long unsigned int *)&sync_data,
sizeof(sync_data));
udelay(FPGA_TIMEOUT_MSEC);
i++;
}
debug("FPGA: Additional %i sync word needed\n", i);
/* restoring original CDRATIO */
fpgamgr_set_cd_ratio(cd_ratio);
return 0;
}
/* Read f2s_nconfig_pin and f2s_nstatus_pin; loop until de-asserted */
static int wait_for_nconfig_pin_and_nstatus_pin(void)
{
unsigned long mask = ALT_FPGAMGR_IMGCFG_STAT_F2S_NCONFIG_PIN_SET_MSK |
ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK;
/*
* Poll until f2s_nconfig_pin and f2s_nstatus_pin; loop until
* de-asserted, timeout at 1000ms
*/
return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat, mask,
true, FPGA_TIMEOUT_MSEC, false);
}
static int wait_for_f2s_nstatus_pin(unsigned long value)
{
/* Poll until f2s to specific value, timeout at 1000ms */
return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat,
ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK,
value, FPGA_TIMEOUT_MSEC, false);
}
/* set CD ratio */
static void fpgamgr_set_cd_ratio(unsigned long ratio)
{
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK);
setbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
(ratio << ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_LSB) &
ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK);
}
/* get the MSEL value, verify we are set for FPP configuration mode */
static int fpgamgr_verify_msel(void)
{
u32 msel = fpgamgr_get_msel();
if (msel & ~BIT(0)) {
printf("Fail: read msel=%d\n", msel);
return -EPERM;
}
return 0;
}
/*
* Write cdratio and cdwidth based on whether the bitstream is compressed
* and/or encoded
*/
static int fpgamgr_set_cdratio_cdwidth(unsigned int cfg_width, u32 *rbf_data,
size_t rbf_size)
{
unsigned int cd_ratio;
bool encrypt, compress;
/*
* According to the bitstream specification,
* both encryption and compression status are
* in location before offset 230 of the buffer.
*/
if (rbf_size < MIN_BITSTREAM_SIZECHECK)
return -EINVAL;
encrypt = (rbf_data[ENCRYPTION_OFFSET] >> 2) & 3;
encrypt = encrypt != 0;
compress = (rbf_data[COMPRESSION_OFFSET] >> 1) & 1;
compress = !compress;
debug("FPGA: Header word %d = %08x.\n", 69, rbf_data[69]);
debug("FPGA: Header word %d = %08x.\n", 229, rbf_data[229]);
debug("FPGA: Read from rbf header: encrypt=%d compress=%d.\n", encrypt,
compress);
/*
* from the register map description of cdratio in imgcfg_ctrl_02:
* Normal Configuration : 32bit Passive Parallel
* Partial Reconfiguration : 16bit Passive Parallel
*/
/*
* cd ratio is dependent on cfg width and whether the bitstream
* is encrypted and/or compressed.
*
* | width | encr. | compr. | cd ratio |
* | 16 | 0 | 0 | 1 |
* | 16 | 0 | 1 | 4 |
* | 16 | 1 | 0 | 2 |
* | 16 | 1 | 1 | 4 |
* | 32 | 0 | 0 | 1 |
* | 32 | 0 | 1 | 8 |
* | 32 | 1 | 0 | 4 |
* | 32 | 1 | 1 | 8 |
*/
if (!compress && !encrypt) {
cd_ratio = CDRATIO_x1;
} else {
if (compress)
cd_ratio = CDRATIO_x4;
else
cd_ratio = CDRATIO_x2;
/* if 32 bit, double the cd ratio (so register
field setting is incremented) */
if (cfg_width == CFGWDTH_32)
cd_ratio += 1;
}
fpgamgr_set_cfgwdth(cfg_width);
fpgamgr_set_cd_ratio(cd_ratio);
return 0;
}
static int fpgamgr_reset(void)
{
unsigned long reg;
/* S2F_NCONFIG = 0 */
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK);
/* Wait for f2s_nstatus == 0 */
if (wait_for_f2s_nstatus_pin(0))
return -ETIME;
/* S2F_NCONFIG = 1 */
setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK);
/* Wait for f2s_nstatus == 1 */
if (wait_for_f2s_nstatus_pin(1))
return -ETIME;
/* read and confirm f2s_condone_pin = 0 and f2s_condone_oe = 1 */
reg = readl(&fpga_manager_base->imgcfg_stat);
if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) != 0)
return -EPERM;
if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_OE_SET_MSK) == 0)
return -EPERM;
return 0;
}
/* Start the FPGA programming by initialize the FPGA Manager */
int fpgamgr_program_init(u32 * rbf_data, size_t rbf_size)
{
int ret;
/* Step 1 */
if (fpgamgr_verify_msel())
return -EPERM;
/* Step 2 */
if (fpgamgr_set_cdratio_cdwidth(CFGWDTH_32, rbf_data, rbf_size))
return -EPERM;
/*
* Step 3:
* Make sure no other external devices are trying to interfere with
* programming:
*/
if (wait_for_nconfig_pin_and_nstatus_pin())
return -ETIME;
/*
* Step 4:
* Deassert the signal drives from HPS
*
* S2F_NCE = 1
* S2F_PR_REQUEST = 0
* EN_CFG_CTRL = 0
* EN_CFG_DATA = 0
* S2F_NCONFIG = 1
* S2F_NSTATUS_OE = 0
* S2F_CONDONE_OE = 0
*/
setbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK);
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
ALT_FPGAMGR_IMGCFG_CTL_01_S2F_PR_REQUEST_SET_MSK);
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK |
ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK);
setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK);
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NSTATUS_OE_SET_MSK |
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_CONDONE_OE_SET_MSK);
/*
* Step 5:
* Enable overrides
* S2F_NENABLE_CONFIG = 0
* S2F_NENABLE_NCONFIG = 0
*/
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NENABLE_CONFIG_SET_MSK);
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NCONFIG_SET_MSK);
/*
* Disable driving signals that HPS doesn't need to drive.
* S2F_NENABLE_NSTATUS = 1
* S2F_NENABLE_CONDONE = 1
*/
setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NSTATUS_SET_MSK |
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_CONDONE_SET_MSK);
/*
* Step 6:
* Drive chip select S2F_NCE = 0
*/
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK);
/* Step 7 */
if (wait_for_nconfig_pin_and_nstatus_pin())
return -ETIME;
/* Step 8 */
ret = fpgamgr_reset();
if (ret)
return ret;
/*
* Step 9:
* EN_CFG_CTRL and EN_CFG_DATA = 1
*/
setbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK |
ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK);
return 0;
}
/* Ensure the FPGA entering config done */
static int fpgamgr_program_poll_cd(void)
{
unsigned long reg, i;
for (i = 0; i < FPGA_TIMEOUT_CNT; i++) {
reg = readl(&fpga_manager_base->imgcfg_stat);
if (reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK)
return 0;
if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK) == 0) {
printf("nstatus == 0 while waiting for condone\n");
return -EPERM;
}
WATCHDOG_RESET();
}
if (i == FPGA_TIMEOUT_CNT)
return -ETIME;
return 0;
}
/* Ensure the FPGA entering user mode */
static int fpgamgr_program_poll_usermode(void)
{
unsigned long reg;
int ret = 0;
if (fpgamgr_dclkcnt_set(0xf))
return -ETIME;
ret = wait_for_user_mode();
if (ret < 0) {
printf("%s: Failed to enter user mode with ", __func__);
printf("error code %d\n", ret);
return ret;
}
/*
* Step 14:
* Stop DATA path and Dclk
* EN_CFG_CTRL and EN_CFG_DATA = 0
*/
clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK |
ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK);
/*
* Step 15:
* Disable overrides
* S2F_NENABLE_CONFIG = 1
* S2F_NENABLE_NCONFIG = 1
*/
setbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NENABLE_CONFIG_SET_MSK);
setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NCONFIG_SET_MSK);
/* Disable chip select S2F_NCE = 1 */
setbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK);
/*
* Step 16:
* Final check
*/
reg = readl(&fpga_manager_base->imgcfg_stat);
if (((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) !=
ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) ||
((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) !=
ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) ||
((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK) !=
ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK))
return -EPERM;
return 0;
}
int fpgamgr_program_finish(void)
{
/* Ensure the FPGA entering config done */
int status = fpgamgr_program_poll_cd();
if (status) {
printf("FPGA: Poll CD failed with error code %d\n", status);
return -EPERM;
}
/* Ensure the FPGA entering user mode */
status = fpgamgr_program_poll_usermode();
if (status) {
printf("FPGA: Poll usermode failed with error code %d\n",
status);
return -EPERM;
}
printf("Full Configuration Succeeded.\n");
return 0;
}
ofnode get_fpga_mgr_ofnode(ofnode from)
{
return ofnode_by_compatible(from, "altr,socfpga-a10-fpga-mgr");
}
const char *get_fpga_filename(void)
{
const char *fpga_filename = NULL;
ofnode fpgamgr_node = get_fpga_mgr_ofnode(ofnode_null());
if (ofnode_valid(fpgamgr_node))
fpga_filename = ofnode_read_string(fpgamgr_node,
"altr,bitstream");
return fpga_filename;
}
static void get_rbf_image_info(struct rbf_info *rbf, u16 *buffer)
{
/*
* Magic ID starting at:
* -> 1st dword[15:0] in periph.rbf
* -> 2nd dword[15:0] in core.rbf
* Note: dword == 32 bits
*/
u32 word_reading_max = 2;
u32 i;
for (i = 0; i < word_reading_max; i++) {
if (*(buffer + i) == FPGA_SOCFPGA_A10_RBF_UNENCRYPTED) {
rbf->security = unencrypted;
} else if (*(buffer + i) == FPGA_SOCFPGA_A10_RBF_ENCRYPTED) {
rbf->security = encrypted;
} else if (*(buffer + i + 1) ==
FPGA_SOCFPGA_A10_RBF_UNENCRYPTED) {
rbf->security = unencrypted;
} else if (*(buffer + i + 1) ==
FPGA_SOCFPGA_A10_RBF_ENCRYPTED) {
rbf->security = encrypted;
} else {
rbf->security = invalid;
continue;
}
/* PERIPH RBF(buffer + i + 1), CORE RBF(buffer + i + 2) */
if (*(buffer + i + 1) == FPGA_SOCFPGA_A10_RBF_PERIPH) {
rbf->section = periph_section;
break;
} else if (*(buffer + i + 1) == FPGA_SOCFPGA_A10_RBF_CORE) {
rbf->section = core_section;
break;
} else if (*(buffer + i + 2) == FPGA_SOCFPGA_A10_RBF_PERIPH) {
rbf->section = periph_section;
break;
} else if (*(buffer + i + 2) == FPGA_SOCFPGA_A10_RBF_CORE) {
rbf->section = core_section;
break;
}
rbf->section = unknown;
break;
WATCHDOG_RESET();
}
}
#ifdef CONFIG_FS_LOADER
static int first_loading_rbf_to_buffer(struct udevice *dev,
struct fpga_loadfs_info *fpga_loadfs,
u32 *buffer, size_t *buffer_bsize)
{
u32 *buffer_p = (u32 *)*buffer;
u32 *loadable = buffer_p;
size_t buffer_size = *buffer_bsize;
size_t fit_size;
int ret, i, count, confs_noffset, images_noffset, rbf_offset, rbf_size;
const char *fpga_node_name = NULL;
const char *uname = NULL;
/* Load image header into buffer */
ret = request_firmware_into_buf(dev,
fpga_loadfs->fpga_fsinfo->filename,
buffer_p, sizeof(struct image_header),
0);
if (ret < 0) {
debug("FPGA: Failed to read image header from flash.\n");
return -ENOENT;
}
if (image_get_magic((struct image_header *)buffer_p) != FDT_MAGIC) {
debug("FPGA: No FDT magic was found.\n");
return -EBADF;
}
fit_size = fdt_totalsize(buffer_p);
if (fit_size > buffer_size) {
debug("FPGA: FIT image is larger than available buffer.\n");
debug("Please use FIT external data or increasing buffer.\n");
return -ENOMEM;
}
/* Load entire FIT into buffer */
ret = request_firmware_into_buf(dev,
fpga_loadfs->fpga_fsinfo->filename,
buffer_p, fit_size, 0);
if (ret < 0)
return ret;
ret = fit_check_format(buffer_p, IMAGE_SIZE_INVAL);
if (ret) {
debug("FPGA: No valid FIT image was found.\n");
return ret;
}
confs_noffset = fdt_path_offset(buffer_p, FIT_CONFS_PATH);
images_noffset = fdt_path_offset(buffer_p, FIT_IMAGES_PATH);
if (confs_noffset < 0 || images_noffset < 0) {
debug("FPGA: No Configurations or images nodes were found.\n");
return -ENOENT;
}
/* Get default configuration unit name from default property */
confs_noffset = fit_conf_get_node(buffer_p, NULL);
if (confs_noffset < 0) {
debug("FPGA: No default configuration was found in config.\n");
return -ENOENT;
}
count = fit_conf_get_prop_node_count(buffer_p, confs_noffset,
FIT_FPGA_PROP);
if (count < 0) {
debug("FPGA: Invalid configuration format for FPGA node.\n");
return count;
}
debug("FPGA: FPGA node count: %d\n", count);
for (i = 0; i < count; i++) {
images_noffset = fit_conf_get_prop_node_index(buffer_p,
confs_noffset,
FIT_FPGA_PROP, i);
uname = fit_get_name(buffer_p, images_noffset, NULL);
if (uname) {
debug("FPGA: %s\n", uname);
if (strstr(uname, "fpga-periph") &&
(!is_fpgamgr_early_user_mode() ||
is_fpgamgr_user_mode() ||
is_periph_program_force())) {
fpga_node_name = uname;
printf("FPGA: Start to program ");
printf("peripheral/full bitstream ...\n");
break;
} else if (strstr(uname, "fpga-core") &&
(is_fpgamgr_early_user_mode() &&
!is_fpgamgr_user_mode())) {
fpga_node_name = uname;
printf("FPGA: Start to program core ");
printf("bitstream ...\n");
break;
}
}
WATCHDOG_RESET();
}
if (!fpga_node_name) {
debug("FPGA: No suitable bitstream was found, count: %d.\n", i);
return 1;
}
images_noffset = fit_image_get_node(buffer_p, fpga_node_name);
if (images_noffset < 0) {
debug("FPGA: No node '%s' was found in FIT.\n",
fpga_node_name);
return -ENOENT;
}
if (!fit_image_get_data_position(buffer_p, images_noffset,
&rbf_offset)) {
debug("FPGA: Data position was found.\n");
} else if (!fit_image_get_data_offset(buffer_p, images_noffset,
&rbf_offset)) {
/*
* For FIT with external data, figure out where
* the external images start. This is the base
* for the data-offset properties in each image.
*/
rbf_offset += ((fdt_totalsize(buffer_p) + 3) & ~3);
debug("FPGA: Data offset was found.\n");
} else {
debug("FPGA: No data position/offset was found.\n");
return -ENOENT;
}
ret = fit_image_get_data_size(buffer_p, images_noffset, &rbf_size);
if (ret < 0) {
debug("FPGA: No data size was found (err=%d).\n", ret);
return -ENOENT;
}
if (gd->ram_size < rbf_size) {
debug("FPGA: Using default OCRAM buffer and size.\n");
} else {
ret = fit_image_get_load(buffer_p, images_noffset,
(ulong *)loadable);
if (ret < 0) {
buffer_p = (u32 *)DEFAULT_DDR_LOAD_ADDRESS;
debug("FPGA: No loadable was found.\n");
debug("FPGA: Using default DDR load address: 0x%x .\n",
DEFAULT_DDR_LOAD_ADDRESS);
} else {
buffer_p = (u32 *)*loadable;
debug("FPGA: Found loadable address = 0x%x.\n",
*loadable);
}
buffer_size = rbf_size;
}
debug("FPGA: External data: offset = 0x%x, size = 0x%x.\n",
rbf_offset, rbf_size);
fpga_loadfs->remaining = rbf_size;
/*
* Determine buffer size vs bitstream size, and calculating number of
* chunk by chunk transfer is required due to smaller buffer size
* compare to bitstream
*/
if (rbf_size <= buffer_size) {
/* Loading whole bitstream into buffer */
buffer_size = rbf_size;
fpga_loadfs->remaining = 0;
} else {
fpga_loadfs->remaining -= buffer_size;
}
fpga_loadfs->offset = rbf_offset;
/* Loading bitstream into buffer */
ret = request_firmware_into_buf(dev,
fpga_loadfs->fpga_fsinfo->filename,
buffer_p, buffer_size,
fpga_loadfs->offset);
if (ret < 0) {
debug("FPGA: Failed to read bitstream from flash.\n");
return -ENOENT;
}
/* Getting info about bitstream types */
get_rbf_image_info(&fpga_loadfs->rbfinfo, (u16 *)buffer_p);
/* Update next reading bitstream offset */
fpga_loadfs->offset += buffer_size;
/* Update the final addr for bitstream */
*buffer = (u32)buffer_p;
/* Update the size of bitstream to be programmed into FPGA */
*buffer_bsize = buffer_size;
return 0;
}
static int subsequent_loading_rbf_to_buffer(struct udevice *dev,
struct fpga_loadfs_info *fpga_loadfs,
u32 *buffer, size_t *buffer_bsize)
{
int ret = 0;
u32 *buffer_p = (u32 *)*buffer;
/* Read the bitstream chunk by chunk. */
if (fpga_loadfs->remaining > *buffer_bsize) {
fpga_loadfs->remaining -= *buffer_bsize;
} else {
*buffer_bsize = fpga_loadfs->remaining;
fpga_loadfs->remaining = 0;
}
ret = request_firmware_into_buf(dev,
fpga_loadfs->fpga_fsinfo->filename,
buffer_p, *buffer_bsize,
fpga_loadfs->offset);
if (ret < 0) {
debug("FPGA: Failed to read bitstream from flash.\n");
return -ENOENT;
}
/* Update next reading bitstream offset */
fpga_loadfs->offset += *buffer_bsize;
return 0;
}
int socfpga_loadfs(fpga_fs_info *fpga_fsinfo, const void *buf, size_t bsize,
u32 offset)
{
struct fpga_loadfs_info fpga_loadfs;
struct udevice *dev;
int status, ret, size;
u32 buffer = (uintptr_t)buf;
size_t buffer_sizebytes = bsize;
size_t buffer_sizebytes_ori = bsize;
size_t total_sizeof_image = 0;
ofnode node;
const fdt32_t *phandle_p;
u32 phandle;
node = get_fpga_mgr_ofnode(ofnode_null());
if (ofnode_valid(node)) {
phandle_p = ofnode_get_property(node, "firmware-loader", &size);
if (!phandle_p) {
node = ofnode_path("/chosen");
if (!ofnode_valid(node)) {
debug("FPGA: /chosen node was not found.\n");
return -ENOENT;
}
phandle_p = ofnode_get_property(node, "firmware-loader",
&size);
if (!phandle_p) {
debug("FPGA: firmware-loader property was not");
debug(" found.\n");
return -ENOENT;
}
}
} else {
debug("FPGA: FPGA manager node was not found.\n");
return -ENOENT;
}
phandle = fdt32_to_cpu(*phandle_p);
ret = uclass_get_device_by_phandle_id(UCLASS_FS_FIRMWARE_LOADER,
phandle, &dev);
if (ret)
return ret;
memset(&fpga_loadfs, 0, sizeof(fpga_loadfs));
fpga_loadfs.fpga_fsinfo = fpga_fsinfo;
fpga_loadfs.offset = offset;
printf("FPGA: Checking FPGA configuration setting ...\n");
/*
* Note: Both buffer and buffer_sizebytes values can be altered by
* function below.
*/
ret = first_loading_rbf_to_buffer(dev, &fpga_loadfs, &buffer,
&buffer_sizebytes);
if (ret == 1) {
printf("FPGA: Skipping configuration ...\n");
return 0;
} else if (ret) {
return ret;
}
if (fpga_loadfs.rbfinfo.section == core_section &&
!(is_fpgamgr_early_user_mode() && !is_fpgamgr_user_mode())) {
debug("FPGA : Must be in Early Release mode to program ");
debug("core bitstream.\n");
return -EPERM;
}
/* Disable all signals from HPS peripheral controller to FPGA */
writel(0, socfpga_get_sysmgr_addr() + SYSMGR_A10_FPGAINTF_EN_GLOBAL);
/* Disable all axi bridges (hps2fpga, lwhps2fpga & fpga2hps) */
socfpga_bridges_reset();
if (fpga_loadfs.rbfinfo.section == periph_section) {
/* Initialize the FPGA Manager */
status = fpgamgr_program_init((u32 *)buffer, buffer_sizebytes);
if (status) {
debug("FPGA: Init with peripheral bitstream failed.\n");
return -EPERM;
}
}
/* Transfer bitstream to FPGA Manager */
fpgamgr_program_write((void *)buffer, buffer_sizebytes);
total_sizeof_image += buffer_sizebytes;
while (fpga_loadfs.remaining) {
ret = subsequent_loading_rbf_to_buffer(dev,
&fpga_loadfs,
&buffer,
&buffer_sizebytes_ori);
if (ret)
return ret;
/* Transfer data to FPGA Manager */
fpgamgr_program_write((void *)buffer,
buffer_sizebytes_ori);
total_sizeof_image += buffer_sizebytes_ori;
WATCHDOG_RESET();
}
if (fpga_loadfs.rbfinfo.section == periph_section) {
if (fpgamgr_wait_early_user_mode() != -ETIMEDOUT) {
config_pins(gd->fdt_blob, "shared");
puts("FPGA: Early Release Succeeded.\n");
} else {
debug("FPGA: Failed to see Early Release.\n");
return -EIO;
}
/* For monolithic bitstream */
if (is_fpgamgr_user_mode()) {
/* Ensure the FPGA entering config done */
status = fpgamgr_program_finish();
if (status)
return status;
config_pins(gd->fdt_blob, "fpga");
puts("FPGA: Enter user mode.\n");
}
} else if (fpga_loadfs.rbfinfo.section == core_section) {
/* Ensure the FPGA entering config done */
status = fpgamgr_program_finish();
if (status)
return status;
config_pins(gd->fdt_blob, "fpga");
puts("FPGA: Enter user mode.\n");
} else {
debug("FPGA: Config Error: Unsupported bitstream type.\n");
return -ENOEXEC;
}
return (int)total_sizeof_image;
}
void fpgamgr_program(const void *buf, size_t bsize, u32 offset)
{
fpga_fs_info fpga_fsinfo;
fpga_fsinfo.filename = get_fpga_filename();
if (fpga_fsinfo.filename)
socfpga_loadfs(&fpga_fsinfo, buf, bsize, offset);
}
#endif
/* This function is used to load the core bitstream from the OCRAM. */
int socfpga_load(Altera_desc *desc, const void *rbf_data, size_t rbf_size)
{
unsigned long status;
struct rbf_info rbfinfo;
memset(&rbfinfo, 0, sizeof(rbfinfo));
/* Disable all signals from hps peripheral controller to fpga */
writel(0, socfpga_get_sysmgr_addr() + SYSMGR_A10_FPGAINTF_EN_GLOBAL);
/* Disable all axi bridge (hps2fpga, lwhps2fpga & fpga2hps) */
socfpga_bridges_reset();
/* Getting info about bitstream types */
get_rbf_image_info(&rbfinfo, (u16 *)rbf_data);
if (rbfinfo.section == periph_section) {
/* Initialize the FPGA Manager */
status = fpgamgr_program_init((u32 *)rbf_data, rbf_size);
if (status)
return status;
}
if (rbfinfo.section == core_section &&
!(is_fpgamgr_early_user_mode() && !is_fpgamgr_user_mode())) {
debug("FPGA : Must be in early release mode to program ");
debug("core bitstream.\n");
return -EPERM;
}
/* Write the bitstream to FPGA Manager */
fpgamgr_program_write(rbf_data, rbf_size);
status = fpgamgr_program_finish();
if (status)
return status;
config_pins(gd->fdt_blob, "fpga");
puts("FPGA: Enter user mode.\n");
return status;
}