u-boot/board/freescale/lx2160a/lx2160a.c

862 lines
21 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2018-2021 NXP
*/
#include <common.h>
#include <clock_legacy.h>
#include <display_options.h>
#include <dm.h>
#include <init.h>
#include <asm/global_data.h>
#include <dm/platform_data/serial_pl01x.h>
#include <i2c.h>
#include <malloc.h>
#include <errno.h>
#include <netdev.h>
#include <fsl_ddr.h>
#include <asm/io.h>
#include <fdt_support.h>
#include <linux/bitops.h>
#include <linux/libfdt.h>
#include <linux/delay.h>
#include <fsl-mc/fsl_mc.h>
#include <env_internal.h>
#include <efi_loader.h>
#include <asm/arch/mmu.h>
#include <hwconfig.h>
#include <asm/arch/clock.h>
#include <asm/arch/config.h>
#include <asm/arch/fsl_serdes.h>
#include <asm/arch/soc.h>
#include "../common/i2c_mux.h"
#include "../common/qixis.h"
#include "../common/vid.h"
#include <fsl_immap.h>
#include <asm/arch-fsl-layerscape/fsl_icid.h>
#include "lx2160a.h"
#ifdef CONFIG_EMC2305
#include "../common/emc2305.h"
#endif
#if defined(CONFIG_TARGET_LX2160AQDS) || defined(CONFIG_TARGET_LX2162AQDS)
#define CFG_MUX_I2C_SDHC(reg, value) ((reg & 0x3f) | value)
#define SET_CFG_MUX1_SDHC1_SDHC(reg) (reg & 0x3f)
#define SET_CFG_MUX2_SDHC1_SPI(reg, value) ((reg & 0xcf) | value)
#define SET_CFG_MUX3_SDHC1_SPI(reg, value) ((reg & 0xf8) | value)
#define SET_CFG_MUX_SDHC2_DSPI(reg, value) ((reg & 0xf8) | value)
#define SET_CFG_MUX1_SDHC1_DSPI(reg, value) ((reg & 0x3f) | value)
#define SDHC1_BASE_PMUX_DSPI 2
#define SDHC2_BASE_PMUX_DSPI 2
#define IIC5_PMUX_SPI3 3
#endif /* CONFIG_TARGET_LX2160AQDS or CONFIG_TARGET_LX2162AQDS */
DECLARE_GLOBAL_DATA_PTR;
int board_early_init_f(void)
{
#if defined(CONFIG_SYS_I2C_EARLY_INIT) && defined(CONFIG_SPL_BUILD)
i2c_early_init_f();
#endif
#ifdef CONFIG_EMC2305
select_i2c_ch_pca9547(I2C_MUX_CH_EMC2305, 0);
emc2305_init(I2C_EMC2305_ADDR);
set_fan_speed(I2C_EMC2305_PWM, I2C_EMC2305_ADDR);
select_i2c_ch_pca9547(I2C_MUX_CH_DEFAULT, 0);
#endif
fsl_lsch3_early_init_f();
return 0;
}
#ifdef CONFIG_OF_BOARD_FIXUP
int board_fix_fdt(void *fdt)
{
char *reg_names, *reg_name;
int names_len, old_name_len, new_name_len, remaining_names_len;
struct str_map {
char *old_str;
char *new_str;
} reg_names_map[] = {
{ "ccsr", "dbi" },
{ "pf_ctrl", "ctrl" }
};
int off = -1, i = 0;
if (IS_SVR_REV(get_svr(), 1, 0))
return 0;
fdt_for_each_node_by_compatible(off, fdt, -1, "fsl,lx2160a-pcie") {
fdt_setprop(fdt, off, "compatible", "fsl,ls-pcie",
strlen("fsl,ls-pcie") + 1);
reg_names = (char *)fdt_getprop(fdt, off, "reg-names",
&names_len);
if (!reg_names)
continue;
reg_name = reg_names;
remaining_names_len = names_len - (reg_name - reg_names);
i = 0;
while ((i < ARRAY_SIZE(reg_names_map)) && remaining_names_len) {
old_name_len = strlen(reg_names_map[i].old_str);
new_name_len = strlen(reg_names_map[i].new_str);
if (memcmp(reg_name, reg_names_map[i].old_str,
old_name_len) == 0) {
/* first only leave required bytes for new_str
* and copy rest of the string after it
*/
memcpy(reg_name + new_name_len,
reg_name + old_name_len,
remaining_names_len - old_name_len);
/* Now copy new_str */
memcpy(reg_name, reg_names_map[i].new_str,
new_name_len);
names_len -= old_name_len;
names_len += new_name_len;
i++;
}
reg_name = memchr(reg_name, '\0', remaining_names_len);
if (!reg_name)
break;
reg_name += 1;
remaining_names_len = names_len -
(reg_name - reg_names);
}
fdt_setprop(fdt, off, "reg-names", reg_names, names_len);
}
/* Fixup u-boot's DTS in case this is a revC board and
* we're using DM_ETH.
*/
if (IS_ENABLED(CONFIG_TARGET_LX2160ARDB) && IS_ENABLED(CONFIG_DM_ETH))
fdt_fixup_board_phy_revc(fdt);
return 0;
}
#endif
#if defined(CONFIG_TARGET_LX2160AQDS) || defined(CONFIG_TARGET_LX2162AQDS)
void esdhc_dspi_status_fixup(void *blob)
{
const char esdhc0_path[] = "/soc/esdhc@2140000";
const char esdhc1_path[] = "/soc/esdhc@2150000";
const char dspi0_path[] = "/soc/spi@2100000";
const char dspi1_path[] = "/soc/spi@2110000";
const char dspi2_path[] = "/soc/spi@2120000";
struct ccsr_gur __iomem *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR);
u32 sdhc1_base_pmux;
u32 sdhc2_base_pmux;
u32 iic5_pmux;
/* Check RCW field sdhc1_base_pmux to enable/disable
* esdhc0/dspi0 DT node
*/
sdhc1_base_pmux = gur_in32(&gur->rcwsr[FSL_CHASSIS3_RCWSR12_REGSR - 1])
& FSL_CHASSIS3_SDHC1_BASE_PMUX_MASK;
sdhc1_base_pmux >>= FSL_CHASSIS3_SDHC1_BASE_PMUX_SHIFT;
if (sdhc1_base_pmux == SDHC1_BASE_PMUX_DSPI) {
do_fixup_by_path(blob, dspi0_path, "status", "okay",
sizeof("okay"), 1);
do_fixup_by_path(blob, esdhc0_path, "status", "disabled",
sizeof("disabled"), 1);
} else {
do_fixup_by_path(blob, esdhc0_path, "status", "okay",
sizeof("okay"), 1);
do_fixup_by_path(blob, dspi0_path, "status", "disabled",
sizeof("disabled"), 1);
}
/* Check RCW field sdhc2_base_pmux to enable/disable
* esdhc1/dspi1 DT node
*/
sdhc2_base_pmux = gur_in32(&gur->rcwsr[FSL_CHASSIS3_RCWSR13_REGSR - 1])
& FSL_CHASSIS3_SDHC2_BASE_PMUX_MASK;
sdhc2_base_pmux >>= FSL_CHASSIS3_SDHC2_BASE_PMUX_SHIFT;
if (sdhc2_base_pmux == SDHC2_BASE_PMUX_DSPI) {
do_fixup_by_path(blob, dspi1_path, "status", "okay",
sizeof("okay"), 1);
do_fixup_by_path(blob, esdhc1_path, "status", "disabled",
sizeof("disabled"), 1);
} else {
do_fixup_by_path(blob, esdhc1_path, "status", "okay",
sizeof("okay"), 1);
do_fixup_by_path(blob, dspi1_path, "status", "disabled",
sizeof("disabled"), 1);
}
/* Check RCW field IIC5 to enable dspi2 DT node */
iic5_pmux = gur_in32(&gur->rcwsr[FSL_CHASSIS3_RCWSR12_REGSR - 1])
& FSL_CHASSIS3_IIC5_PMUX_MASK;
iic5_pmux >>= FSL_CHASSIS3_IIC5_PMUX_SHIFT;
if (iic5_pmux == IIC5_PMUX_SPI3)
do_fixup_by_path(blob, dspi2_path, "status", "okay",
sizeof("okay"), 1);
else
do_fixup_by_path(blob, dspi2_path, "status", "disabled",
sizeof("disabled"), 1);
}
#endif
int esdhc_status_fixup(void *blob, const char *compat)
{
#if defined(CONFIG_TARGET_LX2160AQDS) || defined(CONFIG_TARGET_LX2162AQDS)
/* Enable esdhc and dspi DT nodes based on RCW fields */
esdhc_dspi_status_fixup(blob);
#else
/* Enable both esdhc DT nodes for LX2160ARDB */
do_fixup_by_compat(blob, compat, "status", "okay",
sizeof("okay"), 1);
#endif
return 0;
}
#if defined(CONFIG_VID)
int i2c_multiplexer_select_vid_channel(u8 channel)
{
return select_i2c_ch_pca9547(channel, 0);
}
int init_func_vid(void)
{
int set_vid;
if (IS_SVR_REV(get_svr(), 1, 0))
set_vid = adjust_vdd(800);
else
set_vid = adjust_vdd(0);
if (set_vid < 0)
printf("core voltage not adjusted\n");
return 0;
}
#endif
int checkboard(void)
{
enum boot_src src = get_boot_src();
char buf[64];
u8 sw;
#if defined(CONFIG_TARGET_LX2160AQDS) || defined(CONFIG_TARGET_LX2162AQDS)
int clock;
static const char *const freq[] = {"100", "125", "156.25",
"161.13", "322.26", "", "", "",
"", "", "", "", "", "", "",
"100 separate SSCG"};
#endif
cpu_name(buf);
#if defined(CONFIG_TARGET_LX2160AQDS) || defined(CONFIG_TARGET_LX2162AQDS)
printf("Board: %s-QDS, ", buf);
#else
printf("Board: %s-RDB, ", buf);
#endif
sw = QIXIS_READ(arch);
printf("Board version: %c, boot from ", (sw & 0xf) - 1 + 'A');
if (src == BOOT_SOURCE_SD_MMC) {
puts("SD\n");
} else if (src == BOOT_SOURCE_SD_MMC2) {
puts("eMMC\n");
} else {
sw = QIXIS_READ(brdcfg[0]);
sw = (sw >> QIXIS_XMAP_SHIFT) & QIXIS_XMAP_MASK;
switch (sw) {
case 0:
case 4:
puts("FlexSPI DEV#0\n");
break;
case 1:
puts("FlexSPI DEV#1\n");
break;
case 2:
case 3:
puts("FlexSPI EMU\n");
break;
default:
printf("invalid setting, xmap: %d\n", sw);
break;
}
}
#if defined(CONFIG_TARGET_LX2160ARDB)
printf("FPGA: v%d.%d\n", QIXIS_READ(scver), QIXIS_READ(tagdata));
puts("SERDES1 Reference: Clock1 = 161.13MHz Clock2 = 161.13MHz\n");
puts("SERDES2 Reference: Clock1 = 100MHz Clock2 = 100MHz\n");
puts("SERDES3 Reference: Clock1 = 100MHz Clock2 = 100MHz\n");
#else
printf("FPGA: v%d (%s), build %d",
(int)QIXIS_READ(scver), qixis_read_tag(buf),
(int)qixis_read_minor());
/* the timestamp string contains "\n" at the end */
printf(" on %s", qixis_read_time(buf));
puts("SERDES1 Reference : ");
sw = QIXIS_READ(brdcfg[2]);
clock = sw >> 4;
printf("Clock1 = %sMHz ", freq[clock]);
#if defined(CONFIG_TARGET_LX2160AQDS)
clock = sw & 0x0f;
printf("Clock2 = %sMHz", freq[clock]);
#endif
sw = QIXIS_READ(brdcfg[3]);
puts("\nSERDES2 Reference : ");
clock = sw >> 4;
printf("Clock1 = %sMHz ", freq[clock]);
clock = sw & 0x0f;
printf("Clock2 = %sMHz\n", freq[clock]);
#if defined(CONFIG_TARGET_LX2160AQDS)
sw = QIXIS_READ(brdcfg[12]);
puts("SERDES3 Reference : ");
clock = sw >> 4;
printf("Clock1 = %sMHz Clock2 = %sMHz\n", freq[clock], freq[clock]);
#endif
#endif
return 0;
}
#if defined(CONFIG_TARGET_LX2160AQDS) || defined(CONFIG_TARGET_LX2162AQDS)
static void esdhc_adapter_card_ident(void)
{
u8 card_id, val;
val = QIXIS_READ(sdhc1);
card_id = val & QIXIS_SDID_MASK;
switch (card_id) {
case QIXIS_ESDHC_ADAPTER_TYPE_SD:
/* Power cycle to card */
val &= ~QIXIS_SDHC1_S1V3;
QIXIS_WRITE(sdhc1, val);
mdelay(1);
val |= QIXIS_SDHC1_S1V3;
QIXIS_WRITE(sdhc1, val);
/* Route to SDHC1_VS */
val = QIXIS_READ(brdcfg[11]);
val |= QIXIS_SDHC1_VS;
QIXIS_WRITE(brdcfg[11], val);
break;
default:
break;
}
}
int config_board_mux(void)
{
u8 reg11, reg5, reg13;
struct ccsr_gur __iomem *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR);
u32 sdhc1_base_pmux;
u32 sdhc2_base_pmux;
u32 iic5_pmux;
/* Routes {I2C2_SCL, I2C2_SDA} to SDHC1 as {SDHC1_CD_B, SDHC1_WP}.
* Routes {I2C3_SCL, I2C3_SDA} to CAN transceiver as {CAN1_TX,CAN1_RX}.
* Routes {I2C4_SCL, I2C4_SDA} to CAN transceiver as {CAN2_TX,CAN2_RX}.
* Qixis and remote systems are isolated from the I2C1 bus.
* Processor connections are still available.
* SPI2 CS2_B controls EN25S64 SPI memory device.
* SPI3 CS2_B controls EN25S64 SPI memory device.
* EC2 connects to PHY #2 using RGMII protocol.
* CLK_OUT connects to FPGA for clock measurement.
*/
reg5 = QIXIS_READ(brdcfg[5]);
reg5 = CFG_MUX_I2C_SDHC(reg5, 0x40);
QIXIS_WRITE(brdcfg[5], reg5);
/* Check RCW field sdhc1_base_pmux
* esdhc0 : sdhc1_base_pmux = 0
* dspi0 : sdhc1_base_pmux = 2
*/
sdhc1_base_pmux = gur_in32(&gur->rcwsr[FSL_CHASSIS3_RCWSR12_REGSR - 1])
& FSL_CHASSIS3_SDHC1_BASE_PMUX_MASK;
sdhc1_base_pmux >>= FSL_CHASSIS3_SDHC1_BASE_PMUX_SHIFT;
if (sdhc1_base_pmux == SDHC1_BASE_PMUX_DSPI) {
reg11 = QIXIS_READ(brdcfg[11]);
reg11 = SET_CFG_MUX1_SDHC1_DSPI(reg11, 0x40);
QIXIS_WRITE(brdcfg[11], reg11);
} else {
/* - Routes {SDHC1_CMD, SDHC1_CLK } to SDHC1 adapter slot.
* {SDHC1_DAT3, SDHC1_DAT2} to SDHC1 adapter slot.
* {SDHC1_DAT1, SDHC1_DAT0} to SDHC1 adapter slot.
*/
reg11 = QIXIS_READ(brdcfg[11]);
reg11 = SET_CFG_MUX1_SDHC1_SDHC(reg11);
QIXIS_WRITE(brdcfg[11], reg11);
}
/* Check RCW field sdhc2_base_pmux
* esdhc1 : sdhc2_base_pmux = 0 (default)
* dspi1 : sdhc2_base_pmux = 2
*/
sdhc2_base_pmux = gur_in32(&gur->rcwsr[FSL_CHASSIS3_RCWSR13_REGSR - 1])
& FSL_CHASSIS3_SDHC2_BASE_PMUX_MASK;
sdhc2_base_pmux >>= FSL_CHASSIS3_SDHC2_BASE_PMUX_SHIFT;
if (sdhc2_base_pmux == SDHC2_BASE_PMUX_DSPI) {
reg13 = QIXIS_READ(brdcfg[13]);
reg13 = SET_CFG_MUX_SDHC2_DSPI(reg13, 0x01);
QIXIS_WRITE(brdcfg[13], reg13);
} else {
reg13 = QIXIS_READ(brdcfg[13]);
reg13 = SET_CFG_MUX_SDHC2_DSPI(reg13, 0x00);
QIXIS_WRITE(brdcfg[13], reg13);
}
/* Check RCW field IIC5 to enable dspi2 DT nodei
* dspi2: IIC5 = 3
*/
iic5_pmux = gur_in32(&gur->rcwsr[FSL_CHASSIS3_RCWSR12_REGSR - 1])
& FSL_CHASSIS3_IIC5_PMUX_MASK;
iic5_pmux >>= FSL_CHASSIS3_IIC5_PMUX_SHIFT;
if (iic5_pmux == IIC5_PMUX_SPI3) {
/* - Routes {SDHC1_DAT4} to SPI3 devices as {SPI3_M_CS0_B}. */
reg11 = QIXIS_READ(brdcfg[11]);
reg11 = SET_CFG_MUX2_SDHC1_SPI(reg11, 0x10);
QIXIS_WRITE(brdcfg[11], reg11);
/* - Routes {SDHC1_DAT5, SDHC1_DAT6} nowhere.
* {SDHC1_DAT7, SDHC1_DS } to {nothing, SPI3_M0_CLK }.
* {I2C5_SCL, I2C5_SDA } to {SPI3_M0_MOSI, SPI3_M0_MISO}.
*/
reg11 = QIXIS_READ(brdcfg[11]);
reg11 = SET_CFG_MUX3_SDHC1_SPI(reg11, 0x01);
QIXIS_WRITE(brdcfg[11], reg11);
} else {
/*
* If {SDHC1_DAT4} has been configured to route to SDHC1_VS,
* do not change it.
* Otherwise route {SDHC1_DAT4} to SDHC1 adapter slot.
*/
reg11 = QIXIS_READ(brdcfg[11]);
if ((reg11 & 0x30) != 0x30) {
reg11 = SET_CFG_MUX2_SDHC1_SPI(reg11, 0x00);
QIXIS_WRITE(brdcfg[11], reg11);
}
/* - Routes {SDHC1_DAT5, SDHC1_DAT6} to SDHC1 adapter slot.
* {SDHC1_DAT7, SDHC1_DS } to SDHC1 adapter slot.
* {I2C5_SCL, I2C5_SDA } to SDHC1 adapter slot.
*/
reg11 = QIXIS_READ(brdcfg[11]);
reg11 = SET_CFG_MUX3_SDHC1_SPI(reg11, 0x00);
QIXIS_WRITE(brdcfg[11], reg11);
}
return 0;
}
int board_early_init_r(void)
{
esdhc_adapter_card_ident();
return 0;
}
#elif defined(CONFIG_TARGET_LX2160ARDB)
int config_board_mux(void)
{
u8 brdcfg;
brdcfg = QIXIS_READ(brdcfg[4]);
/* The BRDCFG4 register controls general board configuration.
*|-------------------------------------------|
*|Field | Function |
*|-------------------------------------------|
*|5 | CAN I/O Enable (net CFG_CAN_EN_B):|
*|CAN_EN | 0= CAN transceivers are disabled. |
*| | 1= CAN transceivers are enabled. |
*|-------------------------------------------|
*/
brdcfg |= BIT_MASK(5);
QIXIS_WRITE(brdcfg[4], brdcfg);
return 0;
}
#else
int config_board_mux(void)
{
return 0;
}
#endif
#if IS_ENABLED(CONFIG_TARGET_LX2160ARDB)
u8 get_board_rev(void)
{
u8 board_rev = (QIXIS_READ(arch) & 0xf) - 1 + 'A';
return board_rev;
}
#endif
unsigned long get_board_sys_clk(void)
{
#if defined(CONFIG_TARGET_LX2160AQDS) || defined(CONFIG_TARGET_LX2162AQDS)
u8 sysclk_conf = QIXIS_READ(brdcfg[1]);
switch (sysclk_conf & 0x03) {
case QIXIS_SYSCLK_100:
return 100000000;
case QIXIS_SYSCLK_125:
return 125000000;
case QIXIS_SYSCLK_133:
return 133333333;
}
return 100000000;
#else
return 100000000;
#endif
}
unsigned long get_board_ddr_clk(void)
{
#if defined(CONFIG_TARGET_LX2160AQDS) || defined(CONFIG_TARGET_LX2162AQDS)
u8 ddrclk_conf = QIXIS_READ(brdcfg[1]);
switch ((ddrclk_conf & 0x30) >> 4) {
case QIXIS_DDRCLK_100:
return 100000000;
case QIXIS_DDRCLK_125:
return 125000000;
case QIXIS_DDRCLK_133:
return 133333333;
}
return 100000000;
#else
return 100000000;
#endif
}
int board_init(void)
{
#if defined(CONFIG_FSL_MC_ENET) && defined(CONFIG_TARGET_LX2160ARDB)
u32 __iomem *irq_ccsr = (u32 __iomem *)ISC_BASE;
#endif
select_i2c_ch_pca9547(I2C_MUX_CH_DEFAULT, 0);
#if defined(CONFIG_FSL_MC_ENET) && defined(CONFIG_TARGET_LX2160ARDB)
/* invert AQR107 IRQ pins polarity */
out_le32(irq_ccsr + IRQCR_OFFSET / 4, AQR107_IRQ_MASK);
#endif
#if !defined(CONFIG_SYS_EARLY_PCI_INIT)
pci_init();
#endif
return 0;
}
void detail_board_ddr_info(void)
{
int i;
u64 ddr_size = 0;
puts("\nDDR ");
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++)
ddr_size += gd->bd->bi_dram[i].size;
print_size(ddr_size, "");
print_ddr_info(0);
}
#ifdef CONFIG_MISC_INIT_R
int misc_init_r(void)
{
config_board_mux();
return 0;
}
#endif
#ifdef CONFIG_VID
u16 soc_get_fuse_vid(int vid_index)
{
static const u16 vdd[32] = {
8250,
7875,
7750,
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
8000,
8125,
8250,
0, /* reserved */
8500,
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved */
};
return vdd[vid_index];
};
#endif
#ifdef CONFIG_FSL_MC_ENET
void fdt_fixup_board_enet(void *fdt)
{
int offset;
offset = fdt_path_offset(fdt, "/soc/fsl-mc");
if (offset < 0)
offset = fdt_path_offset(fdt, "/fsl-mc");
if (offset < 0) {
printf("%s: fsl-mc node not found in device tree (error %d)\n",
__func__, offset);
return;
}
if (get_mc_boot_status() == 0 &&
(is_lazy_dpl_addr_valid() || get_dpl_apply_status() == 0)) {
fdt_status_okay(fdt, offset);
if (IS_ENABLED(CONFIG_TARGET_LX2160ARDB))
fdt_fixup_board_phy_revc(fdt);
} else {
fdt_status_fail(fdt, offset);
}
}
void board_quiesce_devices(void)
{
fsl_mc_ldpaa_exit(gd->bd);
}
#endif
#if IS_ENABLED(CONFIG_TARGET_LX2160ARDB)
int fdt_fixup_add_thermal(void *blob, int mux_node, int channel, int reg)
{
int err;
int noff;
int offset;
char channel_node_name[50];
char thermal_node_name[50];
u32 phandle;
snprintf(channel_node_name, sizeof(channel_node_name),
"i2c@%x", channel);
debug("channel_node_name = %s\n", channel_node_name);
snprintf(thermal_node_name, sizeof(thermal_node_name),
"temperature-sensor@%x", reg);
debug("thermal_node_name = %s\n", thermal_node_name);
err = fdt_increase_size(blob, 200);
if (err) {
printf("fdt_increase_size: err=%s\n", fdt_strerror(err));
return err;
}
noff = fdt_subnode_offset(blob, mux_node, (const char *)
channel_node_name);
if (noff < 0) {
/* channel node not found - create it */
noff = fdt_add_subnode(blob, mux_node, channel_node_name);
if (noff < 0) {
printf("fdt_add_subnode: err=%s\n", fdt_strerror(err));
return err;
}
fdt_setprop_u32 (blob, noff, "#address-cells", 1);
fdt_setprop_u32 (blob, noff, "#size-cells", 0);
fdt_setprop_u32 (blob, noff, "reg", channel);
}
/* Create thermal node*/
offset = fdt_add_subnode(blob, noff, thermal_node_name);
fdt_setprop(blob, offset, "compatible", "nxp,sa56004",
strlen("nxp,sa56004") + 1);
fdt_setprop_u32 (blob, offset, "reg", reg);
/* fixup phandle*/
noff = fdt_node_offset_by_compatible(blob, -1, "regulator-fixed");
if (noff < 0) {
printf("%s : failed to get phandle\n", __func__);
return noff;
}
phandle = fdt_get_phandle(blob, noff);
fdt_setprop_u32 (blob, offset, "vcc-supply", phandle);
return 0;
}
void fdt_fixup_delete_thermal(void *blob, int mux_node, int channel, int reg)
{
int node;
int value;
int err;
int subnode;
fdt_for_each_subnode(subnode, blob, mux_node) {
value = fdtdec_get_uint(blob, subnode, "reg", -1);
if (value == channel) {
/* delete thermal node */
fdt_for_each_subnode(node, blob, subnode) {
value = fdtdec_get_uint(blob, node, "reg", -1);
err = fdt_node_check_compatible(blob, node,
"nxp,sa56004");
if (!err && value == reg) {
fdt_del_node(blob, node);
break;
}
}
}
}
}
void fdt_fixup_i2c_thermal_node(void *blob)
{
int i2coffset;
int mux_node;
int reg;
int err;
i2coffset = fdt_node_offset_by_compat_reg(blob, "fsl,vf610-i2c",
0x2000000);
if (i2coffset != -FDT_ERR_NOTFOUND) {
fdt_for_each_subnode(mux_node, blob, i2coffset) {
reg = fdtdec_get_uint(blob, mux_node, "reg", -1);
err = fdt_node_check_compatible(blob, mux_node,
"nxp,pca9547");
if (!err && reg == 0x77) {
fdt_fixup_delete_thermal(blob, mux_node,
0x3, 0x4d);
err = fdt_fixup_add_thermal(blob, mux_node,
0x3, 0x48);
if (err)
printf("%s: Add thermal node failed\n",
__func__);
}
}
} else {
printf("%s: i2c node not found\n", __func__);
}
}
#endif
#ifdef CONFIG_OF_BOARD_SETUP
int ft_board_setup(void *blob, struct bd_info *bd)
{
int i;
u16 mc_memory_bank = 0;
u64 *base;
u64 *size;
u64 mc_memory_base = 0;
u64 mc_memory_size = 0;
u16 total_memory_banks;
int err;
err = fdt_increase_size(blob, 512);
if (err) {
printf("%s fdt_increase_size: err=%s\n", __func__,
fdt_strerror(err));
return err;
}
ft_cpu_setup(blob, bd);
fdt_fixup_mc_ddr(&mc_memory_base, &mc_memory_size);
if (mc_memory_base != 0)
mc_memory_bank++;
total_memory_banks = CONFIG_NR_DRAM_BANKS + mc_memory_bank;
base = calloc(total_memory_banks, sizeof(u64));
size = calloc(total_memory_banks, sizeof(u64));
/* fixup DT for the three GPP DDR banks */
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
base[i] = gd->bd->bi_dram[i].start;
size[i] = gd->bd->bi_dram[i].size;
}
#ifdef CONFIG_RESV_RAM
/* reduce size if reserved memory is within this bank */
if (gd->arch.resv_ram >= base[0] &&
gd->arch.resv_ram < base[0] + size[0])
size[0] = gd->arch.resv_ram - base[0];
else if (gd->arch.resv_ram >= base[1] &&
gd->arch.resv_ram < base[1] + size[1])
size[1] = gd->arch.resv_ram - base[1];
else if (gd->arch.resv_ram >= base[2] &&
gd->arch.resv_ram < base[2] + size[2])
size[2] = gd->arch.resv_ram - base[2];
#endif
if (mc_memory_base != 0) {
for (i = 0; i <= total_memory_banks; i++) {
if (base[i] == 0 && size[i] == 0) {
base[i] = mc_memory_base;
size[i] = mc_memory_size;
break;
}
}
}
fdt_fixup_memory_banks(blob, base, size, total_memory_banks);
#ifdef CONFIG_USB_HOST
fsl_fdt_fixup_dr_usb(blob, bd);
#endif
#ifdef CONFIG_FSL_MC_ENET
fdt_fsl_mc_fixup_iommu_map_entry(blob);
fdt_fixup_board_enet(blob);
#endif
fdt_fixup_icid(blob);
#if IS_ENABLED(CONFIG_TARGET_LX2160ARDB)
if (get_board_rev() == 'C')
fdt_fixup_i2c_thermal_node(blob);
#endif
return 0;
}
#endif
void qixis_dump_switch(void)
{
int i, nr_of_cfgsw;
QIXIS_WRITE(cms[0], 0x00);
nr_of_cfgsw = QIXIS_READ(cms[1]);
puts("DIP switch settings dump:\n");
for (i = 1; i <= nr_of_cfgsw; i++) {
QIXIS_WRITE(cms[0], i);
printf("SW%d = (0x%02x)\n", i, QIXIS_READ(cms[1]));
}
}