u-boot/drivers/mtd/nand/raw/nand_base.c

5322 lines
135 KiB
C
Raw Normal View History

/*
* Overview:
* This is the generic MTD driver for NAND flash devices. It should be
* capable of working with almost all NAND chips currently available.
*
* Additional technical information is available on
* http://www.linux-mtd.infradead.org/doc/nand.html
*
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
* 2002-2006 Thomas Gleixner (tglx@linutronix.de)
*
* Credits:
* David Woodhouse for adding multichip support
*
* Aleph One Ltd. and Toby Churchill Ltd. for supporting the
* rework for 2K page size chips
*
* TODO:
* Enable cached programming for 2k page size chips
* Check, if mtd->ecctype should be set to MTD_ECC_HW
* if we have HW ECC support.
* BBT table is not serialized, has to be fixed
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <common.h>
#if CONFIG_IS_ENABLED(OF_CONTROL)
#include <fdtdec.h>
#endif
#include <log.h>
#include <malloc.h>
#include <watchdog.h>
#include <dm/devres.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/compat.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/nand_bch.h>
#ifdef CONFIG_MTD_PARTITIONS
#include <linux/mtd/partitions.h>
#endif
#include <asm/io.h>
#include <linux/errno.h>
/* Define default oob placement schemes for large and small page devices */
#ifndef CONFIG_SYS_NAND_DRIVER_ECC_LAYOUT
static struct nand_ecclayout nand_oob_8 = {
.eccbytes = 3,
.eccpos = {0, 1, 2},
.oobfree = {
{.offset = 3,
.length = 2},
{.offset = 6,
.length = 2} }
};
static struct nand_ecclayout nand_oob_16 = {
.eccbytes = 6,
.eccpos = {0, 1, 2, 3, 6, 7},
.oobfree = {
{.offset = 8,
. length = 8} }
};
static struct nand_ecclayout nand_oob_64 = {
.eccbytes = 24,
.eccpos = {
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63},
.oobfree = {
{.offset = 2,
.length = 38} }
};
static struct nand_ecclayout nand_oob_128 = {
.eccbytes = 48,
.eccpos = {
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127},
.oobfree = {
{.offset = 2,
.length = 78} }
};
#endif
static int nand_get_device(struct mtd_info *mtd, int new_state);
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops);
/*
* For devices which display every fart in the system on a separate LED. Is
* compiled away when LED support is disabled.
*/
DEFINE_LED_TRIGGER(nand_led_trigger);
static int check_offs_len(struct mtd_info *mtd,
loff_t ofs, uint64_t len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int ret = 0;
/* Start address must align on block boundary */
if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
pr_debug("%s: unaligned address\n", __func__);
ret = -EINVAL;
}
/* Length must align on block boundary */
if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
pr_debug("%s: length not block aligned\n", __func__);
ret = -EINVAL;
}
return ret;
}
/**
* nand_release_device - [GENERIC] release chip
* @mtd: MTD device structure
*
* Release chip lock and wake up anyone waiting on the device.
*/
static void nand_release_device(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
/* De-select the NAND device */
chip->select_chip(mtd, -1);
}
/**
* nand_read_byte - [DEFAULT] read one byte from the chip
* @mtd: MTD device structure
*
* Default read function for 8bit buswidth
*/
uint8_t nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
return readb(chip->IO_ADDR_R);
}
/**
* nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
* @mtd: MTD device structure
*
* Default read function for 16bit buswidth with endianness conversion.
*
*/
static uint8_t nand_read_byte16(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
}
/**
* nand_read_word - [DEFAULT] read one word from the chip
* @mtd: MTD device structure
*
* Default read function for 16bit buswidth without endianness conversion.
*/
static u16 nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
return readw(chip->IO_ADDR_R);
}
/**
* nand_select_chip - [DEFAULT] control CE line
* @mtd: MTD device structure
* @chipnr: chipnumber to select, -1 for deselect
*
* Default select function for 1 chip devices.
*/
static void nand_select_chip(struct mtd_info *mtd, int chipnr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
switch (chipnr) {
case -1:
chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
break;
case 0:
break;
default:
BUG();
}
}
/**
* nand_write_byte - [DEFAULT] write single byte to chip
* @mtd: MTD device structure
* @byte: value to write
*
* Default function to write a byte to I/O[7:0]
*/
static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
{
struct nand_chip *chip = mtd_to_nand(mtd);
chip->write_buf(mtd, &byte, 1);
}
/**
* nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
* @mtd: MTD device structure
* @byte: value to write
*
* Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
*/
static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
{
struct nand_chip *chip = mtd_to_nand(mtd);
uint16_t word = byte;
/*
* It's not entirely clear what should happen to I/O[15:8] when writing
* a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
*
* When the host supports a 16-bit bus width, only data is
* transferred at the 16-bit width. All address and command line
* transfers shall use only the lower 8-bits of the data bus. During
* command transfers, the host may place any value on the upper
* 8-bits of the data bus. During address transfers, the host shall
* set the upper 8-bits of the data bus to 00h.
*
* One user of the write_byte callback is nand_onfi_set_features. The
* four parameters are specified to be written to I/O[7:0], but this is
* neither an address nor a command transfer. Let's assume a 0 on the
* upper I/O lines is OK.
*/
chip->write_buf(mtd, (uint8_t *)&word, 2);
}
static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
{
int i;
for (i = 0; i < len; i++)
writeb(buf[i], addr);
}
static void ioread8_rep(void *addr, uint8_t *buf, int len)
{
int i;
for (i = 0; i < len; i++)
buf[i] = readb(addr);
}
static void ioread16_rep(void *addr, void *buf, int len)
{
int i;
u16 *p = (u16 *) buf;
for (i = 0; i < len; i++)
p[i] = readw(addr);
}
static void iowrite16_rep(void *addr, void *buf, int len)
{
int i;
u16 *p = (u16 *) buf;
for (i = 0; i < len; i++)
writew(p[i], addr);
}
/**
* nand_write_buf - [DEFAULT] write buffer to chip
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*
* Default write function for 8bit buswidth.
*/
void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
iowrite8_rep(chip->IO_ADDR_W, buf, len);
}
/**
* nand_read_buf - [DEFAULT] read chip data into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*
* Default read function for 8bit buswidth.
*/
void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
ioread8_rep(chip->IO_ADDR_R, buf, len);
}
/**
* nand_write_buf16 - [DEFAULT] write buffer to chip
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*
* Default write function for 16bit buswidth.
*/
void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
u16 *p = (u16 *) buf;
iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
}
/**
* nand_read_buf16 - [DEFAULT] read chip data into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*
* Default read function for 16bit buswidth.
*/
void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
u16 *p = (u16 *) buf;
ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
}
/**
* nand_block_bad - [DEFAULT] Read bad block marker from the chip
* @mtd: MTD device structure
* @ofs: offset from device start
*
* Check, if the block is bad.
*/
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
{
int page, res = 0, i = 0;
struct nand_chip *chip = mtd_to_nand(mtd);
u16 bad;
if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
ofs += mtd->erasesize - mtd->writesize;
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
do {
if (chip->options & NAND_BUSWIDTH_16) {
chip->cmdfunc(mtd, NAND_CMD_READOOB,
chip->badblockpos & 0xFE, page);
bad = cpu_to_le16(chip->read_word(mtd));
if (chip->badblockpos & 0x1)
bad >>= 8;
else
bad &= 0xFF;
} else {
chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
page);
bad = chip->read_byte(mtd);
}
if (likely(chip->badblockbits == 8))
res = bad != 0xFF;
else
res = hweight8(bad) < chip->badblockbits;
ofs += mtd->writesize;
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
i++;
} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
return res;
}
/**
* nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
* @mtd: MTD device structure
* @ofs: offset from device start
*
* This is the default implementation, which can be overridden by a hardware
* specific driver. It provides the details for writing a bad block marker to a
* block.
*/
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mtd_oob_ops ops;
uint8_t buf[2] = { 0, 0 };
int ret = 0, res, i = 0;
memset(&ops, 0, sizeof(ops));
ops.oobbuf = buf;
ops.ooboffs = chip->badblockpos;
if (chip->options & NAND_BUSWIDTH_16) {
ops.ooboffs &= ~0x01;
ops.len = ops.ooblen = 2;
} else {
ops.len = ops.ooblen = 1;
}
ops.mode = MTD_OPS_PLACE_OOB;
/* Write to first/last page(s) if necessary */
if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
ofs += mtd->erasesize - mtd->writesize;
do {
res = nand_do_write_oob(mtd, ofs, &ops);
if (!ret)
ret = res;
i++;
ofs += mtd->writesize;
} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
return ret;
}
/**
* nand_block_markbad_lowlevel - mark a block bad
* @mtd: MTD device structure
* @ofs: offset from device start
*
* This function performs the generic NAND bad block marking steps (i.e., bad
* block table(s) and/or marker(s)). We only allow the hardware driver to
* specify how to write bad block markers to OOB (chip->block_markbad).
*
* We try operations in the following order:
* (1) erase the affected block, to allow OOB marker to be written cleanly
* (2) write bad block marker to OOB area of affected block (unless flag
* NAND_BBT_NO_OOB_BBM is present)
* (3) update the BBT
* Note that we retain the first error encountered in (2) or (3), finish the
* procedures, and dump the error in the end.
*/
static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int res, ret = 0;
if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
struct erase_info einfo;
/* Attempt erase before marking OOB */
memset(&einfo, 0, sizeof(einfo));
einfo.mtd = mtd;
einfo.addr = ofs;
einfo.len = 1ULL << chip->phys_erase_shift;
nand_erase_nand(mtd, &einfo, 0);
/* Write bad block marker to OOB */
nand_get_device(mtd, FL_WRITING);
ret = chip->block_markbad(mtd, ofs);
nand_release_device(mtd);
}
/* Mark block bad in BBT */
if (chip->bbt) {
res = nand_markbad_bbt(mtd, ofs);
if (!ret)
ret = res;
}
if (!ret)
mtd->ecc_stats.badblocks++;
return ret;
}
/**
* nand_check_wp - [GENERIC] check if the chip is write protected
* @mtd: MTD device structure
*
* Check, if the device is write protected. The function expects, that the
* device is already selected.
*/
static int nand_check_wp(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
u8 status;
int ret;
/* Broken xD cards report WP despite being writable */
if (chip->options & NAND_BROKEN_XD)
return 0;
/* Check the WP bit */
ret = nand_status_op(chip, &status);
if (ret)
return ret;
return status & NAND_STATUS_WP ? 0 : 1;
}
/**
* nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
* @mtd: MTD device structure
* @ofs: offset from device start
*
* Check if the block is marked as reserved.
*/
static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (!chip->bbt)
return 0;
/* Return info from the table */
return nand_isreserved_bbt(mtd, ofs);
}
/**
* nand_block_checkbad - [GENERIC] Check if a block is marked bad
* @mtd: MTD device structure
* @ofs: offset from device start
* @allowbbt: 1, if its allowed to access the bbt area
*
* Check, if the block is bad. Either by reading the bad block table or
* calling of the scan function.
*/
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (!(chip->options & NAND_SKIP_BBTSCAN) &&
!(chip->options & NAND_BBT_SCANNED)) {
chip->options |= NAND_BBT_SCANNED;
chip->scan_bbt(mtd);
}
if (!chip->bbt)
return chip->block_bad(mtd, ofs);
/* Return info from the table */
return nand_isbad_bbt(mtd, ofs, allowbbt);
}
/**
* nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
* @mtd: MTD device structure
*
* Wait for the ready pin after a command, and warn if a timeout occurs.
*/
void nand_wait_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
u32 timeo = (CONFIG_SYS_HZ * 400) / 1000;
u32 time_start;
time_start = get_timer(0);
/* Wait until command is processed or timeout occurs */
while (get_timer(time_start) < timeo) {
if (chip->dev_ready)
if (chip->dev_ready(mtd))
break;
}
if (!chip->dev_ready(mtd))
pr_warn("timeout while waiting for chip to become ready\n");
}
EXPORT_SYMBOL_GPL(nand_wait_ready);
/**
* nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
* @mtd: MTD device structure
* @timeo: Timeout in ms
*
* Wait for status ready (i.e. command done) or timeout.
*/
static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
{
register struct nand_chip *chip = mtd_to_nand(mtd);
u32 time_start;
int ret;
timeo = (CONFIG_SYS_HZ * timeo) / 1000;
time_start = get_timer(0);
while (get_timer(time_start) < timeo) {
u8 status;
ret = nand_read_data_op(chip, &status, sizeof(status), true);
if (ret)
return;
if (status & NAND_STATUS_READY)
break;
WATCHDOG_RESET();
}
};
/**
* nand_command - [DEFAULT] Send command to NAND device
* @mtd: MTD device structure
* @command: the command to be sent
* @column: the column address for this command, -1 if none
* @page_addr: the page address for this command, -1 if none
*
* Send command to NAND device. This function is used for small page devices
* (512 Bytes per page).
*/
static void nand_command(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
register struct nand_chip *chip = mtd_to_nand(mtd);
int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
/* Write out the command to the device */
if (command == NAND_CMD_SEQIN) {
int readcmd;
if (column >= mtd->writesize) {
/* OOB area */
column -= mtd->writesize;
readcmd = NAND_CMD_READOOB;
} else if (column < 256) {
/* First 256 bytes --> READ0 */
readcmd = NAND_CMD_READ0;
} else {
column -= 256;
readcmd = NAND_CMD_READ1;
}
chip->cmd_ctrl(mtd, readcmd, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
}
chip->cmd_ctrl(mtd, command, ctrl);
/* Address cycle, when necessary */
ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (chip->options & NAND_BUSWIDTH_16 &&
mtd: nand: force NAND_CMD_READID onto 8-bit bus As per following Sections in ONFI Spec, NAND_CMD_READID should use only lower 8-bit for transfering command, address and data even on x16 NAND device. *Section: Target Initialization" "The Read ID and Read Parameter Page commands only use the lower 8-bits of the data bus. The host shall not issue commands that use a word data width on x16 devices until the host determines the device supports a 16-bit data bus width in the parameter page." *Section: Bus Width Requirements* "When the host supports a 16-bit bus width, only data is transferred at the 16-bit width. All address and command line transfers shall use only the lower 8-bits of the data bus. During command transfers, the host may place any value on the upper 8-bits of the data bus. During address transfers, the host shall set the upper 8-bits of the data bus to 00h." Thus porting following commit from linux-kernel to ensure that column address is not altered to align to x16 bus when issuing NAND_CMD_READID command. commit 3dad2344e92c6e1aeae42df1c4824f307c51bcc7 mtd: nand: force NAND_CMD_READID onto 8-bit bus Author: Brian Norris <computersforpeace@gmail.com> (preserving authorship) The NAND command helpers tend to automatically shift the column address for x16 bus devices, since most commands expect a word address, not a byte address. The Read ID command, however, expects an 8-bit address (i.e., 0x00, 0x20, or 0x40 should not be translated to 0x00, 0x10, or 0x20). This fixes the column address for a few drivers which imitate the nand_base defaults. Signed-off-by: Pekon Gupta <pekon@ti.com>
2014-05-05 19:16:17 +00:00
!nand_opcode_8bits(command))
column >>= 1;
chip->cmd_ctrl(mtd, column, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
}
if (page_addr != -1) {
chip->cmd_ctrl(mtd, page_addr, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
if (chip->options & NAND_ROW_ADDR_3)
chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
}
chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Program and erase have their own busy handlers status and sequential
* in needs no delay
*/
switch (command) {
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_STATUS:
case NAND_CMD_READID:
case NAND_CMD_SET_FEATURES:
return;
case NAND_CMD_RESET:
if (chip->dev_ready)
break;
udelay(chip->chip_delay);
chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
NAND_CTRL_CLE | NAND_CTRL_CHANGE);
chip->cmd_ctrl(mtd,
NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
nand_wait_status_ready(mtd, 250);
return;
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay
*/
if (!chip->dev_ready) {
udelay(chip->chip_delay);
return;
}
}
/*
* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine.
*/
ndelay(100);
nand_wait_ready(mtd);
}
/**
* nand_command_lp - [DEFAULT] Send command to NAND large page device
* @mtd: MTD device structure
* @command: the command to be sent
* @column: the column address for this command, -1 if none
* @page_addr: the page address for this command, -1 if none
*
* Send command to NAND device. This is the version for the new large page
* devices. We don't have the separate regions as we have in the small page
* devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
*/
static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
register struct nand_chip *chip = mtd_to_nand(mtd);
/* Emulate NAND_CMD_READOOB */
if (command == NAND_CMD_READOOB) {
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* Command latch cycle */
chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
if (column != -1 || page_addr != -1) {
int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (chip->options & NAND_BUSWIDTH_16 &&
mtd: nand: force NAND_CMD_READID onto 8-bit bus As per following Sections in ONFI Spec, NAND_CMD_READID should use only lower 8-bit for transfering command, address and data even on x16 NAND device. *Section: Target Initialization" "The Read ID and Read Parameter Page commands only use the lower 8-bits of the data bus. The host shall not issue commands that use a word data width on x16 devices until the host determines the device supports a 16-bit data bus width in the parameter page." *Section: Bus Width Requirements* "When the host supports a 16-bit bus width, only data is transferred at the 16-bit width. All address and command line transfers shall use only the lower 8-bits of the data bus. During command transfers, the host may place any value on the upper 8-bits of the data bus. During address transfers, the host shall set the upper 8-bits of the data bus to 00h." Thus porting following commit from linux-kernel to ensure that column address is not altered to align to x16 bus when issuing NAND_CMD_READID command. commit 3dad2344e92c6e1aeae42df1c4824f307c51bcc7 mtd: nand: force NAND_CMD_READID onto 8-bit bus Author: Brian Norris <computersforpeace@gmail.com> (preserving authorship) The NAND command helpers tend to automatically shift the column address for x16 bus devices, since most commands expect a word address, not a byte address. The Read ID command, however, expects an 8-bit address (i.e., 0x00, 0x20, or 0x40 should not be translated to 0x00, 0x10, or 0x20). This fixes the column address for a few drivers which imitate the nand_base defaults. Signed-off-by: Pekon Gupta <pekon@ti.com>
2014-05-05 19:16:17 +00:00
!nand_opcode_8bits(command))
column >>= 1;
chip->cmd_ctrl(mtd, column, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
chip->cmd_ctrl(mtd, column >> 8, ctrl);
}
if (page_addr != -1) {
chip->cmd_ctrl(mtd, page_addr, ctrl);
chip->cmd_ctrl(mtd, page_addr >> 8,
NAND_NCE | NAND_ALE);
if (chip->options & NAND_ROW_ADDR_3)
chip->cmd_ctrl(mtd, page_addr >> 16,
NAND_NCE | NAND_ALE);
}
}
chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Program and erase have their own busy handlers status, sequential
* in and status need no delay.
*/
switch (command) {
case NAND_CMD_CACHEDPROG:
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_RNDIN:
case NAND_CMD_STATUS:
case NAND_CMD_READID:
case NAND_CMD_SET_FEATURES:
return;
case NAND_CMD_RESET:
if (chip->dev_ready)
break;
udelay(chip->chip_delay);
chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
chip->cmd_ctrl(mtd, NAND_CMD_NONE,
NAND_NCE | NAND_CTRL_CHANGE);
/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
nand_wait_status_ready(mtd, 250);
return;
case NAND_CMD_RNDOUT:
/* No ready / busy check necessary */
chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
chip->cmd_ctrl(mtd, NAND_CMD_NONE,
NAND_NCE | NAND_CTRL_CHANGE);
return;
case NAND_CMD_READ0:
chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
chip->cmd_ctrl(mtd, NAND_CMD_NONE,
NAND_NCE | NAND_CTRL_CHANGE);
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay.
*/
if (!chip->dev_ready) {
udelay(chip->chip_delay);
return;
}
}
/*
* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine.
*/
ndelay(100);
nand_wait_ready(mtd);
}
/**
* panic_nand_get_device - [GENERIC] Get chip for selected access
* @chip: the nand chip descriptor
* @mtd: MTD device structure
* @new_state: the state which is requested
*
* Used when in panic, no locks are taken.
*/
static void panic_nand_get_device(struct nand_chip *chip,
struct mtd_info *mtd, int new_state)
{
/* Hardware controller shared among independent devices */
chip->controller->active = chip;
chip->state = new_state;
}
/**
* nand_get_device - [GENERIC] Get chip for selected access
* @mtd: MTD device structure
* @new_state: the state which is requested
*
* Get the device and lock it for exclusive access
*/
static int
nand_get_device(struct mtd_info *mtd, int new_state)
{
struct nand_chip *chip = mtd_to_nand(mtd);
chip->state = new_state;
return 0;
}
/**
* panic_nand_wait - [GENERIC] wait until the command is done
* @mtd: MTD device structure
* @chip: NAND chip structure
* @timeo: timeout
*
* Wait for command done. This is a helper function for nand_wait used when
* we are in interrupt context. May happen when in panic and trying to write
* an oops through mtdoops.
*/
static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
unsigned long timeo)
{
int i;
for (i = 0; i < timeo; i++) {
if (chip->dev_ready) {
if (chip->dev_ready(mtd))
break;
} else {
int ret;
u8 status;
ret = nand_read_data_op(chip, &status, sizeof(status),
true);
if (ret)
return;
if (status & NAND_STATUS_READY)
break;
}
mdelay(1);
}
}
/**
* nand_wait - [DEFAULT] wait until the command is done
* @mtd: MTD device structure
* @chip: NAND chip structure
*
* Wait for command done. This applies to erase and program only.
*/
static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
unsigned long timeo = 400;
u8 status;
int ret;
led_trigger_event(nand_led_trigger, LED_FULL);
/*
* Apply this short delay always to ensure that we do wait tWB in any
* case on any machine.
*/
ndelay(100);
ret = nand_status_op(chip, NULL);
if (ret)
return ret;
u32 timer = (CONFIG_SYS_HZ * timeo) / 1000;
u32 time_start;
time_start = get_timer(0);
while (get_timer(time_start) < timer) {
if (chip->dev_ready) {
if (chip->dev_ready(mtd))
break;
} else {
ret = nand_read_data_op(chip, &status,
sizeof(status), true);
if (ret)
return ret;
if (status & NAND_STATUS_READY)
break;
}
}
led_trigger_event(nand_led_trigger, LED_OFF);
ret = nand_read_data_op(chip, &status, sizeof(status), true);
if (ret)
return ret;
/* This can happen if in case of timeout or buggy dev_ready */
WARN_ON(!(status & NAND_STATUS_READY));
return status;
}
/**
* nand_reset_data_interface - Reset data interface and timings
* @chip: The NAND chip
* @chipnr: Internal die id
*
* Reset the Data interface and timings to ONFI mode 0.
*
* Returns 0 for success or negative error code otherwise.
*/
static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_data_interface *conf;
int ret;
if (!chip->setup_data_interface)
return 0;
/*
* The ONFI specification says:
* "
* To transition from NV-DDR or NV-DDR2 to the SDR data
* interface, the host shall use the Reset (FFh) command
* using SDR timing mode 0. A device in any timing mode is
* required to recognize Reset (FFh) command issued in SDR
* timing mode 0.
* "
*
* Configure the data interface in SDR mode and set the
* timings to timing mode 0.
*/
conf = nand_get_default_data_interface();
ret = chip->setup_data_interface(mtd, chipnr, conf);
if (ret)
pr_err("Failed to configure data interface to SDR timing mode 0\n");
return ret;
}
/**
* nand_setup_data_interface - Setup the best data interface and timings
* @chip: The NAND chip
* @chipnr: Internal die id
*
* Find and configure the best data interface and NAND timings supported by
* the chip and the driver.
* First tries to retrieve supported timing modes from ONFI information,
* and if the NAND chip does not support ONFI, relies on the
* ->onfi_timing_mode_default specified in the nand_ids table.
*
* Returns 0 for success or negative error code otherwise.
*/
static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
if (!chip->setup_data_interface || !chip->data_interface)
return 0;
/*
* Ensure the timing mode has been changed on the chip side
* before changing timings on the controller side.
*/
if (chip->onfi_version) {
u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
chip->onfi_timing_mode_default,
};
ret = chip->onfi_set_features(mtd, chip,
ONFI_FEATURE_ADDR_TIMING_MODE,
tmode_param);
if (ret)
goto err;
}
ret = chip->setup_data_interface(mtd, chipnr, chip->data_interface);
err:
return ret;
}
/**
* nand_init_data_interface - find the best data interface and timings
* @chip: The NAND chip
*
* Find the best data interface and NAND timings supported by the chip
* and the driver.
* First tries to retrieve supported timing modes from ONFI information,
* and if the NAND chip does not support ONFI, relies on the
* ->onfi_timing_mode_default specified in the nand_ids table. After this
* function nand_chip->data_interface is initialized with the best timing mode
* available.
*
* Returns 0 for success or negative error code otherwise.
*/
static int nand_init_data_interface(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int modes, mode, ret;
if (!chip->setup_data_interface)
return 0;
/*
* First try to identify the best timings from ONFI parameters and
* if the NAND does not support ONFI, fallback to the default ONFI
* timing mode.
*/
modes = onfi_get_async_timing_mode(chip);
if (modes == ONFI_TIMING_MODE_UNKNOWN) {
if (!chip->onfi_timing_mode_default)
return 0;
modes = GENMASK(chip->onfi_timing_mode_default, 0);
}
chip->data_interface = kzalloc(sizeof(*chip->data_interface),
GFP_KERNEL);
if (!chip->data_interface)
return -ENOMEM;
for (mode = fls(modes) - 1; mode >= 0; mode--) {
ret = onfi_init_data_interface(chip, chip->data_interface,
NAND_SDR_IFACE, mode);
if (ret)
continue;
/* Pass -1 to only */
ret = chip->setup_data_interface(mtd,
NAND_DATA_IFACE_CHECK_ONLY,
chip->data_interface);
if (!ret) {
chip->onfi_timing_mode_default = mode;
break;
}
}
return 0;
}
static void __maybe_unused nand_release_data_interface(struct nand_chip *chip)
{
kfree(chip->data_interface);
}
/**
* nand_read_page_op - Do a READ PAGE operation
* @chip: The NAND chip
* @page: page to read
* @offset_in_page: offset within the page
* @buf: buffer used to store the data
* @len: length of the buffer
*
* This function issues a READ PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_read_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, void *buf, unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page);
if (len)
chip->read_buf(mtd, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_read_page_op);
/**
* nand_read_param_page_op - Do a READ PARAMETER PAGE operation
* @chip: The NAND chip
* @page: parameter page to read
* @buf: buffer used to store the data
* @len: length of the buffer
*
* This function issues a READ PARAMETER PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int i;
u8 *p = buf;
if (len && !buf)
return -EINVAL;
chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1);
for (i = 0; i < len; i++)
p[i] = chip->read_byte(mtd);
return 0;
}
/**
* nand_change_read_column_op - Do a CHANGE READ COLUMN operation
* @chip: The NAND chip
* @offset_in_page: offset within the page
* @buf: buffer used to store the data
* @len: length of the buffer
* @force_8bit: force 8-bit bus access
*
* This function issues a CHANGE READ COLUMN operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_change_read_column_op(struct nand_chip *chip,
unsigned int offset_in_page, void *buf,
unsigned int len, bool force_8bit)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1);
if (len)
chip->read_buf(mtd, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_change_read_column_op);
/**
* nand_read_oob_op - Do a READ OOB operation
* @chip: The NAND chip
* @page: page to read
* @offset_in_oob: offset within the OOB area
* @buf: buffer used to store the data
* @len: length of the buffer
*
* This function issues a READ OOB operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_oob, void *buf, unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_oob + len > mtd->oobsize)
return -EINVAL;
chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page);
if (len)
chip->read_buf(mtd, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_read_oob_op);
/**
* nand_prog_page_begin_op - starts a PROG PAGE operation
* @chip: The NAND chip
* @page: page to write
* @offset_in_page: offset within the page
* @buf: buffer containing the data to write to the page
* @len: length of the buffer
*
* This function issues the first half of a PROG PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, const void *buf,
unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
if (buf)
chip->write_buf(mtd, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
/**
* nand_prog_page_end_op - ends a PROG PAGE operation
* @chip: The NAND chip
*
* This function issues the second half of a PROG PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_prog_page_end_op(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int status;
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
/**
* nand_prog_page_op - Do a full PROG PAGE operation
* @chip: The NAND chip
* @page: page to write
* @offset_in_page: offset within the page
* @buf: buffer containing the data to write to the page
* @len: length of the buffer
*
* This function issues a full PROG PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, const void *buf,
unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int status;
if (!len || !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
chip->write_buf(mtd, buf, len);
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(nand_prog_page_op);
/**
* nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
* @chip: The NAND chip
* @offset_in_page: offset within the page
* @buf: buffer containing the data to send to the NAND
* @len: length of the buffer
* @force_8bit: force 8-bit bus access
*
* This function issues a CHANGE WRITE COLUMN operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_change_write_column_op(struct nand_chip *chip,
unsigned int offset_in_page,
const void *buf, unsigned int len,
bool force_8bit)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1);
if (len)
chip->write_buf(mtd, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_change_write_column_op);
/**
* nand_readid_op - Do a READID operation
* @chip: The NAND chip
* @addr: address cycle to pass after the READID command
* @buf: buffer used to store the ID
* @len: length of the buffer
*
* This function sends a READID command and reads back the ID returned by the
* NAND.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int i;
u8 *id = buf;
if (len && !buf)
return -EINVAL;
chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1);
for (i = 0; i < len; i++)
id[i] = chip->read_byte(mtd);
return 0;
}
EXPORT_SYMBOL_GPL(nand_readid_op);
/**
* nand_status_op - Do a STATUS operation
* @chip: The NAND chip
* @status: out variable to store the NAND status
*
* This function sends a STATUS command and reads back the status returned by
* the NAND.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_status_op(struct nand_chip *chip, u8 *status)
{
struct mtd_info *mtd = nand_to_mtd(chip);
chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
if (status)
*status = chip->read_byte(mtd);
return 0;
}
EXPORT_SYMBOL_GPL(nand_status_op);
/**
* nand_exit_status_op - Exit a STATUS operation
* @chip: The NAND chip
*
* This function sends a READ0 command to cancel the effect of the STATUS
* command to avoid reading only the status until a new read command is sent.
*
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_exit_status_op(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
return 0;
}
EXPORT_SYMBOL_GPL(nand_exit_status_op);
/**
* nand_erase_op - Do an erase operation
* @chip: The NAND chip
* @eraseblock: block to erase
*
* This function sends an ERASE command and waits for the NAND to be ready
* before returning.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
{
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int page = eraseblock <<
(chip->phys_erase_shift - chip->page_shift);
int status;
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
status = chip->waitfunc(mtd, chip);
if (status < 0)
return status;
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(nand_erase_op);
/**
* nand_set_features_op - Do a SET FEATURES operation
* @chip: The NAND chip
* @feature: feature id
* @data: 4 bytes of data
*
* This function sends a SET FEATURES command and waits for the NAND to be
* ready before returning.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
static int nand_set_features_op(struct nand_chip *chip, u8 feature,
const void *data)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const u8 *params = data;
int i, status;
chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1);
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
chip->write_byte(mtd, params[i]);
status = chip->waitfunc(mtd, chip);
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
/**
* nand_get_features_op - Do a GET FEATURES operation
* @chip: The NAND chip
* @feature: feature id
* @data: 4 bytes of data
*
* This function sends a GET FEATURES command and waits for the NAND to be
* ready before returning.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
static int nand_get_features_op(struct nand_chip *chip, u8 feature,
void *data)
{
struct mtd_info *mtd = nand_to_mtd(chip);
u8 *params = data;
int i;
chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1);
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
params[i] = chip->read_byte(mtd);
return 0;
}
/**
* nand_reset_op - Do a reset operation
* @chip: The NAND chip
*
* This function sends a RESET command and waits for the NAND to be ready
* before returning.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_reset_op(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
return 0;
}
EXPORT_SYMBOL_GPL(nand_reset_op);
/**
* nand_read_data_op - Read data from the NAND
* @chip: The NAND chip
* @buf: buffer used to store the data
* @len: length of the buffer
* @force_8bit: force 8-bit bus access
*
* This function does a raw data read on the bus. Usually used after launching
* another NAND operation like nand_read_page_op().
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
bool force_8bit)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (!len || !buf)
return -EINVAL;
if (force_8bit) {
u8 *p = buf;
unsigned int i;
for (i = 0; i < len; i++)
p[i] = chip->read_byte(mtd);
} else {
chip->read_buf(mtd, buf, len);
}
return 0;
}
EXPORT_SYMBOL_GPL(nand_read_data_op);
/**
* nand_write_data_op - Write data from the NAND
* @chip: The NAND chip
* @buf: buffer containing the data to send on the bus
* @len: length of the buffer
* @force_8bit: force 8-bit bus access
*
* This function does a raw data write on the bus. Usually used after launching
* another NAND operation like nand_write_page_begin_op().
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_write_data_op(struct nand_chip *chip, const void *buf,
unsigned int len, bool force_8bit)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (!len || !buf)
return -EINVAL;
if (force_8bit) {
const u8 *p = buf;
unsigned int i;
for (i = 0; i < len; i++)
chip->write_byte(mtd, p[i]);
} else {
chip->write_buf(mtd, buf, len);
}
return 0;
}
EXPORT_SYMBOL_GPL(nand_write_data_op);
/**
* nand_reset - Reset and initialize a NAND device
* @chip: The NAND chip
* @chipnr: Internal die id
*
* Returns 0 for success or negative error code otherwise
*/
int nand_reset(struct nand_chip *chip, int chipnr)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
ret = nand_reset_data_interface(chip, chipnr);
if (ret)
return ret;
/*
* The CS line has to be released before we can apply the new NAND
* interface settings, hence this weird ->select_chip() dance.
*/
chip->select_chip(mtd, chipnr);
ret = nand_reset_op(chip);
chip->select_chip(mtd, -1);
if (ret)
return ret;
chip->select_chip(mtd, chipnr);
ret = nand_setup_data_interface(chip, chipnr);
chip->select_chip(mtd, -1);
if (ret)
return ret;
return 0;
}
/**
* nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
* @buf: buffer to test
* @len: buffer length
* @bitflips_threshold: maximum number of bitflips
*
* Check if a buffer contains only 0xff, which means the underlying region
* has been erased and is ready to be programmed.
* The bitflips_threshold specify the maximum number of bitflips before
* considering the region is not erased.
* Note: The logic of this function has been extracted from the memweight
* implementation, except that nand_check_erased_buf function exit before
* testing the whole buffer if the number of bitflips exceed the
* bitflips_threshold value.
*
* Returns a positive number of bitflips less than or equal to
* bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
* threshold.
*/
static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
{
const unsigned char *bitmap = buf;
int bitflips = 0;
int weight;
for (; len && ((uintptr_t)bitmap) % sizeof(long);
len--, bitmap++) {
weight = hweight8(*bitmap);
bitflips += BITS_PER_BYTE - weight;
if (unlikely(bitflips > bitflips_threshold))
return -EBADMSG;
}
for (; len >= 4; len -= 4, bitmap += 4) {
weight = hweight32(*((u32 *)bitmap));
bitflips += 32 - weight;
if (unlikely(bitflips > bitflips_threshold))
return -EBADMSG;
}
for (; len > 0; len--, bitmap++) {
weight = hweight8(*bitmap);
bitflips += BITS_PER_BYTE - weight;
if (unlikely(bitflips > bitflips_threshold))
return -EBADMSG;
}
return bitflips;
}
/**
* nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
* 0xff data
* @data: data buffer to test
* @datalen: data length
* @ecc: ECC buffer
* @ecclen: ECC length
* @extraoob: extra OOB buffer
* @extraooblen: extra OOB length
* @bitflips_threshold: maximum number of bitflips
*
* Check if a data buffer and its associated ECC and OOB data contains only
* 0xff pattern, which means the underlying region has been erased and is
* ready to be programmed.
* The bitflips_threshold specify the maximum number of bitflips before
* considering the region as not erased.
*
* Note:
* 1/ ECC algorithms are working on pre-defined block sizes which are usually
* different from the NAND page size. When fixing bitflips, ECC engines will
* report the number of errors per chunk, and the NAND core infrastructure
* expect you to return the maximum number of bitflips for the whole page.
* This is why you should always use this function on a single chunk and
* not on the whole page. After checking each chunk you should update your
* max_bitflips value accordingly.
* 2/ When checking for bitflips in erased pages you should not only check
* the payload data but also their associated ECC data, because a user might
* have programmed almost all bits to 1 but a few. In this case, we
* shouldn't consider the chunk as erased, and checking ECC bytes prevent
* this case.
* 3/ The extraoob argument is optional, and should be used if some of your OOB
* data are protected by the ECC engine.
* It could also be used if you support subpages and want to attach some
* extra OOB data to an ECC chunk.
*
* Returns a positive number of bitflips less than or equal to
* bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
* threshold. In case of success, the passed buffers are filled with 0xff.
*/
int nand_check_erased_ecc_chunk(void *data, int datalen,
void *ecc, int ecclen,
void *extraoob, int extraooblen,
int bitflips_threshold)
{
int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
data_bitflips = nand_check_erased_buf(data, datalen,
bitflips_threshold);
if (data_bitflips < 0)
return data_bitflips;
bitflips_threshold -= data_bitflips;
ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
if (ecc_bitflips < 0)
return ecc_bitflips;
bitflips_threshold -= ecc_bitflips;
extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
bitflips_threshold);
if (extraoob_bitflips < 0)
return extraoob_bitflips;
if (data_bitflips)
memset(data, 0xff, datalen);
if (ecc_bitflips)
memset(ecc, 0xff, ecclen);
if (extraoob_bitflips)
memset(extraoob, 0xff, extraooblen);
return data_bitflips + ecc_bitflips + extraoob_bitflips;
}
EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
/**
* nand_read_page_raw - [INTERN] read raw page data without ecc
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Not for syndrome calculating ECC controllers, which use a special oob layout.
*/
static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int ret;
ret = nand_read_data_op(chip, buf, mtd->writesize, false);
if (ret)
return ret;
if (oob_required) {
ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
false);
if (ret)
return ret;
}
return 0;
}
/**
* nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* We need a special oob layout and handling even when OOB isn't used.
*/
static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint8_t *oob = chip->oob_poi;
int steps, size, ret;
for (steps = chip->ecc.steps; steps > 0; steps--) {
ret = nand_read_data_op(chip, buf, eccsize, false);
if (ret)
return ret;
buf += eccsize;
if (chip->ecc.prepad) {
ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
false);
if (ret)
return ret;
oob += chip->ecc.prepad;
}
ret = nand_read_data_op(chip, oob, eccbytes, false);
if (ret)
return ret;
oob += eccbytes;
if (chip->ecc.postpad) {
ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
false);
if (ret)
return ret;
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size) {
ret = nand_read_data_op(chip, oob, size, false);
if (ret)
return ret;
}
return 0;
}
/**
* nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*/
static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->buffers->ecccalc;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
unsigned int max_bitflips = 0;
chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @data_offs: offset of requested data within the page
* @readlen: data length
* @bufpoi: buffer to store read data
* @page: page number to read
*/
static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
int page)
{
int start_step, end_step, num_steps;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *p;
int data_col_addr, i, gaps = 0;
int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
int index;
unsigned int max_bitflips = 0;
int ret;
/* Column address within the page aligned to ECC size (256bytes) */
start_step = data_offs / chip->ecc.size;
end_step = (data_offs + readlen - 1) / chip->ecc.size;
num_steps = end_step - start_step + 1;
index = start_step * chip->ecc.bytes;
/* Data size aligned to ECC ecc.size */
datafrag_len = num_steps * chip->ecc.size;
eccfrag_len = num_steps * chip->ecc.bytes;
data_col_addr = start_step * chip->ecc.size;
/* If we read not a page aligned data */
if (data_col_addr != 0)
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
p = bufpoi + data_col_addr;
ret = nand_read_data_op(chip, p, datafrag_len, false);
if (ret)
return ret;
/* Calculate ECC */
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
/*
* The performance is faster if we position offsets according to
* ecc.pos. Let's make sure that there are no gaps in ECC positions.
*/
for (i = 0; i < eccfrag_len - 1; i++) {
if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
gaps = 1;
break;
}
}
if (gaps) {
ret = nand_change_read_column_op(chip, mtd->writesize,
chip->oob_poi, mtd->oobsize,
false);
if (ret)
return ret;
} else {
/*
* Send the command to read the particular ECC bytes take care
* about buswidth alignment in read_buf.
*/
aligned_pos = eccpos[index] & ~(busw - 1);
aligned_len = eccfrag_len;
if (eccpos[index] & (busw - 1))
aligned_len++;
if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
aligned_len++;
ret = nand_change_read_column_op(chip,
mtd->writesize + aligned_pos,
&chip->oob_poi[aligned_pos],
aligned_len, false);
if (ret)
return ret;
}
for (i = 0; i < eccfrag_len; i++)
chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
p = bufpoi + data_col_addr;
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
int stat;
stat = chip->ecc.correct(mtd, p,
&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
if (stat == -EBADMSG &&
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
/* check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
&chip->buffers->ecccode[i],
chip->ecc.bytes,
NULL, 0,
chip->ecc.strength);
}
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Not for syndrome calculating ECC controllers which need a special oob layout.
*/
static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->buffers->ecccalc;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
unsigned int max_bitflips = 0;
int ret;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(mtd, NAND_ECC_READ);
ret = nand_read_data_op(chip, p, eccsize, false);
if (ret)
return ret;
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
}
ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
if (ret)
return ret;
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat == -EBADMSG &&
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
/* check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, eccsize,
&ecc_code[i], eccbytes,
NULL, 0,
chip->ecc.strength);
}
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Hardware ECC for large page chips, require OOB to be read first. For this
* ECC mode, the write_page method is re-used from ECC_HW. These methods
* read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
* multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
* the data area, by overwriting the NAND manufacturer bad block markings.
*/
static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *ecc_calc = chip->buffers->ecccalc;
unsigned int max_bitflips = 0;
int ret;
/* Read the OOB area first */
ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
if (ret)
return ret;
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(mtd, NAND_ECC_READ);
ret = nand_read_data_op(chip, p, eccsize, false);
if (ret)
return ret;
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
if (stat == -EBADMSG &&
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
/* check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, eccsize,
&ecc_code[i], eccbytes,
NULL, 0,
chip->ecc.strength);
}
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* The hw generator calculates the error syndrome automatically. Therefore we
* need a special oob layout and handling.
*/
static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int ret, i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
unsigned int max_bitflips = 0;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(mtd, NAND_ECC_READ);
ret = nand_read_data_op(chip, p, eccsize, false);
if (ret)
return ret;
if (chip->ecc.prepad) {
ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
false);
if (ret)
return ret;
oob += chip->ecc.prepad;
}
chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
ret = nand_read_data_op(chip, oob, eccbytes, false);
if (ret)
return ret;
stat = chip->ecc.correct(mtd, p, oob, NULL);
oob += eccbytes;
if (chip->ecc.postpad) {
ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
false);
if (ret)
return ret;
oob += chip->ecc.postpad;
}
if (stat == -EBADMSG &&
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
/* check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
oob - eccpadbytes,
eccpadbytes,
NULL, 0,
chip->ecc.strength);
}
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i) {
ret = nand_read_data_op(chip, oob, i, false);
if (ret)
return ret;
}
return max_bitflips;
}
/**
* nand_transfer_oob - [INTERN] Transfer oob to client buffer
* @chip: nand chip structure
* @oob: oob destination address
* @ops: oob ops structure
* @len: size of oob to transfer
*/
static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
struct mtd_oob_ops *ops, size_t len)
{
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_RAW:
memcpy(oob, chip->oob_poi + ops->ooboffs, len);
return oob + len;
case MTD_OPS_AUTO_OOB: {
struct nand_oobfree *free = chip->ecc.layout->oobfree;
uint32_t boffs = 0, roffs = ops->ooboffs;
size_t bytes = 0;
for (; free->length && len; free++, len -= bytes) {
/* Read request not from offset 0? */
if (unlikely(roffs)) {
if (roffs >= free->length) {
roffs -= free->length;
continue;
}
boffs = free->offset + roffs;
bytes = min_t(size_t, len,
(free->length - roffs));
roffs = 0;
} else {
bytes = min_t(size_t, len, free->length);
boffs = free->offset;
}
memcpy(oob, chip->oob_poi + boffs, bytes);
oob += bytes;
}
return oob;
}
default:
BUG();
}
return NULL;
}
/**
* nand_setup_read_retry - [INTERN] Set the READ RETRY mode
* @mtd: MTD device structure
* @retry_mode: the retry mode to use
*
* Some vendors supply a special command to shift the Vt threshold, to be used
* when there are too many bitflips in a page (i.e., ECC error). After setting
* a new threshold, the host should retry reading the page.
*/
static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
{
struct nand_chip *chip = mtd_to_nand(mtd);
pr_debug("setting READ RETRY mode %d\n", retry_mode);
if (retry_mode >= chip->read_retries)
return -EINVAL;
if (!chip->setup_read_retry)
return -EOPNOTSUPP;
return chip->setup_read_retry(mtd, retry_mode);
}
/**
* nand_do_read_ops - [INTERN] Read data with ECC
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob ops structure
*
* Internal function. Called with chip held.
*/
static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
int chipnr, page, realpage, col, bytes, aligned, oob_required;
struct nand_chip *chip = mtd_to_nand(mtd);
int ret = 0;
uint32_t readlen = ops->len;
uint32_t oobreadlen = ops->ooblen;
uint32_t max_oobsize = mtd_oobavail(mtd, ops);
uint8_t *bufpoi, *oob, *buf;
int use_bufpoi;
mtd: driver _read() returns max_bitflips; mtd_read() returns -EUCLEAN Linux modified the MTD driver interface in commit edbc4540 (with the same name as this commit). The effect is that calls to mtd_read will not return -EUCLEAN if the number of ECC-corrected bit errors is below a certain threshold, which defaults to the strength of the ECC. This allows -EUCLEAN to stop indicating "some bits were corrected" and begin indicating "a large number of bits were corrected, the data held in this region of flash may be lost soon". UBI makes use of this and when -EUCLEAN is returned from mtd_read it will move data to another block of flash. Without adopting this interface change UBI on U-boot attempts to move data between blocks every time a single bit is corrected using the ECC, which is a very common occurance on some devices. For some devices where bit errors are common enough, UBI can get stuck constantly moving data around because each block it attempts to use has a single bit error. This condition is hit when wear_leveling_worker attempts to move data from one PEB to another in response to an -EUCLEAN/UBI_IO_BITFLIPS error. When this happens ubi_eba_copy_leb is called to perform the data copy, and after the data is written it is read back to check its validity. If that read returns UBI_IO_BITFLIPS (in response to an MTD -EUCLEAN) then ubi_eba_copy_leb returns 1 to wear_leveling worker, which then proceeds to schedule the destination PEB for erasure. This leads to erase_worker running on the PEB, and following a successful erase wear_leveling_worker is called which begins this whole cycle all over again. The end result is that (without UBI debug output enabled) the boot appears to simply hang whilst in reality U-boot busily works away at destroying a block of the NAND flash. Debug output from this situation: UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 1027 UBI DBG: ubi_io_read: read 4096 bytes from PEB 1027:4096 UBI DBG: ubi_eba_copy_leb: copy LEB 0:0, PEB 1027 to PEB 4083 UBI DBG: ubi_eba_copy_leb: read 1040384 bytes of data UBI DBG: ubi_io_read: read 1040384 bytes from PEB 1027:8192 UBI: fixable bit-flip detected at PEB 1027 UBI DBG: ubi_io_write_vid_hdr: write VID header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:4096 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 4083 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:4096 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:8192 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:8192 UBI: fixable bit-flip detected at PEB 4083 UBI DBG: schedule_erase: schedule erasure of PEB 4083, EC 55, torture 0 UBI DBG: erase_worker: erase PEB 4083 EC 55 UBI DBG: sync_erase: erase PEB 4083, old EC 55 UBI DBG: do_sync_erase: erase PEB 4083 UBI DBG: sync_erase: erased PEB 4083, new EC 56 UBI DBG: ubi_io_write_ec_hdr: write EC header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:0 UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 ... This patch adopts the interface change as in Linux commit edbc4540 in order to avoid such situations. Given that none of the drivers under drivers/mtd return -EUCLEAN, this should only affect those using software ECC. I have tested that it works on a board which is currently out of tree, but which I hope to be able to begin upstreaming soon. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Acked-by: Stefan Roese <sr@denx.de>
2013-09-04 14:16:56 +00:00
unsigned int max_bitflips = 0;
int retry_mode = 0;
bool ecc_fail = false;
chipnr = (int)(from >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
realpage = (int)(from >> chip->page_shift);
page = realpage & chip->pagemask;
col = (int)(from & (mtd->writesize - 1));
buf = ops->datbuf;
oob = ops->oobbuf;
oob_required = oob ? 1 : 0;
while (1) {
unsigned int ecc_failures = mtd->ecc_stats.failed;
WATCHDOG_RESET();
bytes = min(mtd->writesize - col, readlen);
aligned = (bytes == mtd->writesize);
if (!aligned)
use_bufpoi = 1;
else if (chip->options & NAND_USE_BOUNCE_BUFFER)
use_bufpoi = !IS_ALIGNED((unsigned long)buf,
chip->buf_align);
else
use_bufpoi = 0;
/* Is the current page in the buffer? */
if (realpage != chip->pagebuf || oob) {
bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
if (use_bufpoi && aligned)
pr_debug("%s: using read bounce buffer for buf@%p\n",
__func__, buf);
read_retry:
if (nand_standard_page_accessors(&chip->ecc)) {
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
break;
}
mtd: driver _read() returns max_bitflips; mtd_read() returns -EUCLEAN Linux modified the MTD driver interface in commit edbc4540 (with the same name as this commit). The effect is that calls to mtd_read will not return -EUCLEAN if the number of ECC-corrected bit errors is below a certain threshold, which defaults to the strength of the ECC. This allows -EUCLEAN to stop indicating "some bits were corrected" and begin indicating "a large number of bits were corrected, the data held in this region of flash may be lost soon". UBI makes use of this and when -EUCLEAN is returned from mtd_read it will move data to another block of flash. Without adopting this interface change UBI on U-boot attempts to move data between blocks every time a single bit is corrected using the ECC, which is a very common occurance on some devices. For some devices where bit errors are common enough, UBI can get stuck constantly moving data around because each block it attempts to use has a single bit error. This condition is hit when wear_leveling_worker attempts to move data from one PEB to another in response to an -EUCLEAN/UBI_IO_BITFLIPS error. When this happens ubi_eba_copy_leb is called to perform the data copy, and after the data is written it is read back to check its validity. If that read returns UBI_IO_BITFLIPS (in response to an MTD -EUCLEAN) then ubi_eba_copy_leb returns 1 to wear_leveling worker, which then proceeds to schedule the destination PEB for erasure. This leads to erase_worker running on the PEB, and following a successful erase wear_leveling_worker is called which begins this whole cycle all over again. The end result is that (without UBI debug output enabled) the boot appears to simply hang whilst in reality U-boot busily works away at destroying a block of the NAND flash. Debug output from this situation: UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 1027 UBI DBG: ubi_io_read: read 4096 bytes from PEB 1027:4096 UBI DBG: ubi_eba_copy_leb: copy LEB 0:0, PEB 1027 to PEB 4083 UBI DBG: ubi_eba_copy_leb: read 1040384 bytes of data UBI DBG: ubi_io_read: read 1040384 bytes from PEB 1027:8192 UBI: fixable bit-flip detected at PEB 1027 UBI DBG: ubi_io_write_vid_hdr: write VID header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:4096 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 4083 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:4096 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:8192 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:8192 UBI: fixable bit-flip detected at PEB 4083 UBI DBG: schedule_erase: schedule erasure of PEB 4083, EC 55, torture 0 UBI DBG: erase_worker: erase PEB 4083 EC 55 UBI DBG: sync_erase: erase PEB 4083, old EC 55 UBI DBG: do_sync_erase: erase PEB 4083 UBI DBG: sync_erase: erased PEB 4083, new EC 56 UBI DBG: ubi_io_write_ec_hdr: write EC header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:0 UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 ... This patch adopts the interface change as in Linux commit edbc4540 in order to avoid such situations. Given that none of the drivers under drivers/mtd return -EUCLEAN, this should only affect those using software ECC. I have tested that it works on a board which is currently out of tree, but which I hope to be able to begin upstreaming soon. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Acked-by: Stefan Roese <sr@denx.de>
2013-09-04 14:16:56 +00:00
/*
* Now read the page into the buffer. Absent an error,
* the read methods return max bitflips per ecc step.
*/
if (unlikely(ops->mode == MTD_OPS_RAW))
ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
oob_required,
page);
else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
!oob)
ret = chip->ecc.read_subpage(mtd, chip,
col, bytes, bufpoi,
page);
else
ret = chip->ecc.read_page(mtd, chip, bufpoi,
oob_required, page);
if (ret < 0) {
if (use_bufpoi)
/* Invalidate page cache */
chip->pagebuf = -1;
break;
}
mtd: driver _read() returns max_bitflips; mtd_read() returns -EUCLEAN Linux modified the MTD driver interface in commit edbc4540 (with the same name as this commit). The effect is that calls to mtd_read will not return -EUCLEAN if the number of ECC-corrected bit errors is below a certain threshold, which defaults to the strength of the ECC. This allows -EUCLEAN to stop indicating "some bits were corrected" and begin indicating "a large number of bits were corrected, the data held in this region of flash may be lost soon". UBI makes use of this and when -EUCLEAN is returned from mtd_read it will move data to another block of flash. Without adopting this interface change UBI on U-boot attempts to move data between blocks every time a single bit is corrected using the ECC, which is a very common occurance on some devices. For some devices where bit errors are common enough, UBI can get stuck constantly moving data around because each block it attempts to use has a single bit error. This condition is hit when wear_leveling_worker attempts to move data from one PEB to another in response to an -EUCLEAN/UBI_IO_BITFLIPS error. When this happens ubi_eba_copy_leb is called to perform the data copy, and after the data is written it is read back to check its validity. If that read returns UBI_IO_BITFLIPS (in response to an MTD -EUCLEAN) then ubi_eba_copy_leb returns 1 to wear_leveling worker, which then proceeds to schedule the destination PEB for erasure. This leads to erase_worker running on the PEB, and following a successful erase wear_leveling_worker is called which begins this whole cycle all over again. The end result is that (without UBI debug output enabled) the boot appears to simply hang whilst in reality U-boot busily works away at destroying a block of the NAND flash. Debug output from this situation: UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 1027 UBI DBG: ubi_io_read: read 4096 bytes from PEB 1027:4096 UBI DBG: ubi_eba_copy_leb: copy LEB 0:0, PEB 1027 to PEB 4083 UBI DBG: ubi_eba_copy_leb: read 1040384 bytes of data UBI DBG: ubi_io_read: read 1040384 bytes from PEB 1027:8192 UBI: fixable bit-flip detected at PEB 1027 UBI DBG: ubi_io_write_vid_hdr: write VID header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:4096 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 4083 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:4096 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:8192 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:8192 UBI: fixable bit-flip detected at PEB 4083 UBI DBG: schedule_erase: schedule erasure of PEB 4083, EC 55, torture 0 UBI DBG: erase_worker: erase PEB 4083 EC 55 UBI DBG: sync_erase: erase PEB 4083, old EC 55 UBI DBG: do_sync_erase: erase PEB 4083 UBI DBG: sync_erase: erased PEB 4083, new EC 56 UBI DBG: ubi_io_write_ec_hdr: write EC header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:0 UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 ... This patch adopts the interface change as in Linux commit edbc4540 in order to avoid such situations. Given that none of the drivers under drivers/mtd return -EUCLEAN, this should only affect those using software ECC. I have tested that it works on a board which is currently out of tree, but which I hope to be able to begin upstreaming soon. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Acked-by: Stefan Roese <sr@denx.de>
2013-09-04 14:16:56 +00:00
max_bitflips = max_t(unsigned int, max_bitflips, ret);
/* Transfer not aligned data */
if (use_bufpoi) {
if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
!(mtd->ecc_stats.failed - ecc_failures) &&
mtd: driver _read() returns max_bitflips; mtd_read() returns -EUCLEAN Linux modified the MTD driver interface in commit edbc4540 (with the same name as this commit). The effect is that calls to mtd_read will not return -EUCLEAN if the number of ECC-corrected bit errors is below a certain threshold, which defaults to the strength of the ECC. This allows -EUCLEAN to stop indicating "some bits were corrected" and begin indicating "a large number of bits were corrected, the data held in this region of flash may be lost soon". UBI makes use of this and when -EUCLEAN is returned from mtd_read it will move data to another block of flash. Without adopting this interface change UBI on U-boot attempts to move data between blocks every time a single bit is corrected using the ECC, which is a very common occurance on some devices. For some devices where bit errors are common enough, UBI can get stuck constantly moving data around because each block it attempts to use has a single bit error. This condition is hit when wear_leveling_worker attempts to move data from one PEB to another in response to an -EUCLEAN/UBI_IO_BITFLIPS error. When this happens ubi_eba_copy_leb is called to perform the data copy, and after the data is written it is read back to check its validity. If that read returns UBI_IO_BITFLIPS (in response to an MTD -EUCLEAN) then ubi_eba_copy_leb returns 1 to wear_leveling worker, which then proceeds to schedule the destination PEB for erasure. This leads to erase_worker running on the PEB, and following a successful erase wear_leveling_worker is called which begins this whole cycle all over again. The end result is that (without UBI debug output enabled) the boot appears to simply hang whilst in reality U-boot busily works away at destroying a block of the NAND flash. Debug output from this situation: UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 1027 UBI DBG: ubi_io_read: read 4096 bytes from PEB 1027:4096 UBI DBG: ubi_eba_copy_leb: copy LEB 0:0, PEB 1027 to PEB 4083 UBI DBG: ubi_eba_copy_leb: read 1040384 bytes of data UBI DBG: ubi_io_read: read 1040384 bytes from PEB 1027:8192 UBI: fixable bit-flip detected at PEB 1027 UBI DBG: ubi_io_write_vid_hdr: write VID header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:4096 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 4083 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:4096 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:8192 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:8192 UBI: fixable bit-flip detected at PEB 4083 UBI DBG: schedule_erase: schedule erasure of PEB 4083, EC 55, torture 0 UBI DBG: erase_worker: erase PEB 4083 EC 55 UBI DBG: sync_erase: erase PEB 4083, old EC 55 UBI DBG: do_sync_erase: erase PEB 4083 UBI DBG: sync_erase: erased PEB 4083, new EC 56 UBI DBG: ubi_io_write_ec_hdr: write EC header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:0 UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 ... This patch adopts the interface change as in Linux commit edbc4540 in order to avoid such situations. Given that none of the drivers under drivers/mtd return -EUCLEAN, this should only affect those using software ECC. I have tested that it works on a board which is currently out of tree, but which I hope to be able to begin upstreaming soon. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Acked-by: Stefan Roese <sr@denx.de>
2013-09-04 14:16:56 +00:00
(ops->mode != MTD_OPS_RAW)) {
chip->pagebuf = realpage;
mtd: driver _read() returns max_bitflips; mtd_read() returns -EUCLEAN Linux modified the MTD driver interface in commit edbc4540 (with the same name as this commit). The effect is that calls to mtd_read will not return -EUCLEAN if the number of ECC-corrected bit errors is below a certain threshold, which defaults to the strength of the ECC. This allows -EUCLEAN to stop indicating "some bits were corrected" and begin indicating "a large number of bits were corrected, the data held in this region of flash may be lost soon". UBI makes use of this and when -EUCLEAN is returned from mtd_read it will move data to another block of flash. Without adopting this interface change UBI on U-boot attempts to move data between blocks every time a single bit is corrected using the ECC, which is a very common occurance on some devices. For some devices where bit errors are common enough, UBI can get stuck constantly moving data around because each block it attempts to use has a single bit error. This condition is hit when wear_leveling_worker attempts to move data from one PEB to another in response to an -EUCLEAN/UBI_IO_BITFLIPS error. When this happens ubi_eba_copy_leb is called to perform the data copy, and after the data is written it is read back to check its validity. If that read returns UBI_IO_BITFLIPS (in response to an MTD -EUCLEAN) then ubi_eba_copy_leb returns 1 to wear_leveling worker, which then proceeds to schedule the destination PEB for erasure. This leads to erase_worker running on the PEB, and following a successful erase wear_leveling_worker is called which begins this whole cycle all over again. The end result is that (without UBI debug output enabled) the boot appears to simply hang whilst in reality U-boot busily works away at destroying a block of the NAND flash. Debug output from this situation: UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 1027 UBI DBG: ubi_io_read: read 4096 bytes from PEB 1027:4096 UBI DBG: ubi_eba_copy_leb: copy LEB 0:0, PEB 1027 to PEB 4083 UBI DBG: ubi_eba_copy_leb: read 1040384 bytes of data UBI DBG: ubi_io_read: read 1040384 bytes from PEB 1027:8192 UBI: fixable bit-flip detected at PEB 1027 UBI DBG: ubi_io_write_vid_hdr: write VID header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:4096 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 4083 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:4096 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:8192 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:8192 UBI: fixable bit-flip detected at PEB 4083 UBI DBG: schedule_erase: schedule erasure of PEB 4083, EC 55, torture 0 UBI DBG: erase_worker: erase PEB 4083 EC 55 UBI DBG: sync_erase: erase PEB 4083, old EC 55 UBI DBG: do_sync_erase: erase PEB 4083 UBI DBG: sync_erase: erased PEB 4083, new EC 56 UBI DBG: ubi_io_write_ec_hdr: write EC header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:0 UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 ... This patch adopts the interface change as in Linux commit edbc4540 in order to avoid such situations. Given that none of the drivers under drivers/mtd return -EUCLEAN, this should only affect those using software ECC. I have tested that it works on a board which is currently out of tree, but which I hope to be able to begin upstreaming soon. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Acked-by: Stefan Roese <sr@denx.de>
2013-09-04 14:16:56 +00:00
chip->pagebuf_bitflips = ret;
} else {
/* Invalidate page cache */
chip->pagebuf = -1;
mtd: driver _read() returns max_bitflips; mtd_read() returns -EUCLEAN Linux modified the MTD driver interface in commit edbc4540 (with the same name as this commit). The effect is that calls to mtd_read will not return -EUCLEAN if the number of ECC-corrected bit errors is below a certain threshold, which defaults to the strength of the ECC. This allows -EUCLEAN to stop indicating "some bits were corrected" and begin indicating "a large number of bits were corrected, the data held in this region of flash may be lost soon". UBI makes use of this and when -EUCLEAN is returned from mtd_read it will move data to another block of flash. Without adopting this interface change UBI on U-boot attempts to move data between blocks every time a single bit is corrected using the ECC, which is a very common occurance on some devices. For some devices where bit errors are common enough, UBI can get stuck constantly moving data around because each block it attempts to use has a single bit error. This condition is hit when wear_leveling_worker attempts to move data from one PEB to another in response to an -EUCLEAN/UBI_IO_BITFLIPS error. When this happens ubi_eba_copy_leb is called to perform the data copy, and after the data is written it is read back to check its validity. If that read returns UBI_IO_BITFLIPS (in response to an MTD -EUCLEAN) then ubi_eba_copy_leb returns 1 to wear_leveling worker, which then proceeds to schedule the destination PEB for erasure. This leads to erase_worker running on the PEB, and following a successful erase wear_leveling_worker is called which begins this whole cycle all over again. The end result is that (without UBI debug output enabled) the boot appears to simply hang whilst in reality U-boot busily works away at destroying a block of the NAND flash. Debug output from this situation: UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 1027 UBI DBG: ubi_io_read: read 4096 bytes from PEB 1027:4096 UBI DBG: ubi_eba_copy_leb: copy LEB 0:0, PEB 1027 to PEB 4083 UBI DBG: ubi_eba_copy_leb: read 1040384 bytes of data UBI DBG: ubi_io_read: read 1040384 bytes from PEB 1027:8192 UBI: fixable bit-flip detected at PEB 1027 UBI DBG: ubi_io_write_vid_hdr: write VID header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:4096 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 4083 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:4096 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:8192 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:8192 UBI: fixable bit-flip detected at PEB 4083 UBI DBG: schedule_erase: schedule erasure of PEB 4083, EC 55, torture 0 UBI DBG: erase_worker: erase PEB 4083 EC 55 UBI DBG: sync_erase: erase PEB 4083, old EC 55 UBI DBG: do_sync_erase: erase PEB 4083 UBI DBG: sync_erase: erased PEB 4083, new EC 56 UBI DBG: ubi_io_write_ec_hdr: write EC header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:0 UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 ... This patch adopts the interface change as in Linux commit edbc4540 in order to avoid such situations. Given that none of the drivers under drivers/mtd return -EUCLEAN, this should only affect those using software ECC. I have tested that it works on a board which is currently out of tree, but which I hope to be able to begin upstreaming soon. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Acked-by: Stefan Roese <sr@denx.de>
2013-09-04 14:16:56 +00:00
}
memcpy(buf, chip->buffers->databuf + col, bytes);
}
if (unlikely(oob)) {
int toread = min(oobreadlen, max_oobsize);
if (toread) {
oob = nand_transfer_oob(chip,
oob, ops, toread);
oobreadlen -= toread;
}
}
if (chip->options & NAND_NEED_READRDY) {
/* Apply delay or wait for ready/busy pin */
if (!chip->dev_ready)
udelay(chip->chip_delay);
else
nand_wait_ready(mtd);
}
if (mtd->ecc_stats.failed - ecc_failures) {
if (retry_mode + 1 < chip->read_retries) {
retry_mode++;
ret = nand_setup_read_retry(mtd,
retry_mode);
if (ret < 0)
break;
/* Reset failures; retry */
mtd->ecc_stats.failed = ecc_failures;
goto read_retry;
} else {
/* No more retry modes; real failure */
ecc_fail = true;
}
}
buf += bytes;
} else {
memcpy(buf, chip->buffers->databuf + col, bytes);
buf += bytes;
mtd: driver _read() returns max_bitflips; mtd_read() returns -EUCLEAN Linux modified the MTD driver interface in commit edbc4540 (with the same name as this commit). The effect is that calls to mtd_read will not return -EUCLEAN if the number of ECC-corrected bit errors is below a certain threshold, which defaults to the strength of the ECC. This allows -EUCLEAN to stop indicating "some bits were corrected" and begin indicating "a large number of bits were corrected, the data held in this region of flash may be lost soon". UBI makes use of this and when -EUCLEAN is returned from mtd_read it will move data to another block of flash. Without adopting this interface change UBI on U-boot attempts to move data between blocks every time a single bit is corrected using the ECC, which is a very common occurance on some devices. For some devices where bit errors are common enough, UBI can get stuck constantly moving data around because each block it attempts to use has a single bit error. This condition is hit when wear_leveling_worker attempts to move data from one PEB to another in response to an -EUCLEAN/UBI_IO_BITFLIPS error. When this happens ubi_eba_copy_leb is called to perform the data copy, and after the data is written it is read back to check its validity. If that read returns UBI_IO_BITFLIPS (in response to an MTD -EUCLEAN) then ubi_eba_copy_leb returns 1 to wear_leveling worker, which then proceeds to schedule the destination PEB for erasure. This leads to erase_worker running on the PEB, and following a successful erase wear_leveling_worker is called which begins this whole cycle all over again. The end result is that (without UBI debug output enabled) the boot appears to simply hang whilst in reality U-boot busily works away at destroying a block of the NAND flash. Debug output from this situation: UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 1027 UBI DBG: ubi_io_read: read 4096 bytes from PEB 1027:4096 UBI DBG: ubi_eba_copy_leb: copy LEB 0:0, PEB 1027 to PEB 4083 UBI DBG: ubi_eba_copy_leb: read 1040384 bytes of data UBI DBG: ubi_io_read: read 1040384 bytes from PEB 1027:8192 UBI: fixable bit-flip detected at PEB 1027 UBI DBG: ubi_io_write_vid_hdr: write VID header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:4096 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 4083 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:4096 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:8192 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:8192 UBI: fixable bit-flip detected at PEB 4083 UBI DBG: schedule_erase: schedule erasure of PEB 4083, EC 55, torture 0 UBI DBG: erase_worker: erase PEB 4083 EC 55 UBI DBG: sync_erase: erase PEB 4083, old EC 55 UBI DBG: do_sync_erase: erase PEB 4083 UBI DBG: sync_erase: erased PEB 4083, new EC 56 UBI DBG: ubi_io_write_ec_hdr: write EC header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:0 UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 ... This patch adopts the interface change as in Linux commit edbc4540 in order to avoid such situations. Given that none of the drivers under drivers/mtd return -EUCLEAN, this should only affect those using software ECC. I have tested that it works on a board which is currently out of tree, but which I hope to be able to begin upstreaming soon. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Acked-by: Stefan Roese <sr@denx.de>
2013-09-04 14:16:56 +00:00
max_bitflips = max_t(unsigned int, max_bitflips,
chip->pagebuf_bitflips);
}
readlen -= bytes;
/* Reset to retry mode 0 */
if (retry_mode) {
ret = nand_setup_read_retry(mtd, 0);
if (ret < 0)
break;
retry_mode = 0;
}
if (!readlen)
break;
/* For subsequent reads align to page boundary */
col = 0;
/* Increment page address */
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
chip->select_chip(mtd, -1);
chip->select_chip(mtd, chipnr);
}
}
chip->select_chip(mtd, -1);
ops->retlen = ops->len - (size_t) readlen;
if (oob)
ops->oobretlen = ops->ooblen - oobreadlen;
if (ret < 0)
return ret;
if (ecc_fail)
return -EBADMSG;
mtd: driver _read() returns max_bitflips; mtd_read() returns -EUCLEAN Linux modified the MTD driver interface in commit edbc4540 (with the same name as this commit). The effect is that calls to mtd_read will not return -EUCLEAN if the number of ECC-corrected bit errors is below a certain threshold, which defaults to the strength of the ECC. This allows -EUCLEAN to stop indicating "some bits were corrected" and begin indicating "a large number of bits were corrected, the data held in this region of flash may be lost soon". UBI makes use of this and when -EUCLEAN is returned from mtd_read it will move data to another block of flash. Without adopting this interface change UBI on U-boot attempts to move data between blocks every time a single bit is corrected using the ECC, which is a very common occurance on some devices. For some devices where bit errors are common enough, UBI can get stuck constantly moving data around because each block it attempts to use has a single bit error. This condition is hit when wear_leveling_worker attempts to move data from one PEB to another in response to an -EUCLEAN/UBI_IO_BITFLIPS error. When this happens ubi_eba_copy_leb is called to perform the data copy, and after the data is written it is read back to check its validity. If that read returns UBI_IO_BITFLIPS (in response to an MTD -EUCLEAN) then ubi_eba_copy_leb returns 1 to wear_leveling worker, which then proceeds to schedule the destination PEB for erasure. This leads to erase_worker running on the PEB, and following a successful erase wear_leveling_worker is called which begins this whole cycle all over again. The end result is that (without UBI debug output enabled) the boot appears to simply hang whilst in reality U-boot busily works away at destroying a block of the NAND flash. Debug output from this situation: UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 1027 UBI DBG: ubi_io_read: read 4096 bytes from PEB 1027:4096 UBI DBG: ubi_eba_copy_leb: copy LEB 0:0, PEB 1027 to PEB 4083 UBI DBG: ubi_eba_copy_leb: read 1040384 bytes of data UBI DBG: ubi_io_read: read 1040384 bytes from PEB 1027:8192 UBI: fixable bit-flip detected at PEB 1027 UBI DBG: ubi_io_write_vid_hdr: write VID header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:4096 UBI DBG: ubi_io_read_vid_hdr: read VID header from PEB 4083 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:4096 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:8192 UBI DBG: ubi_io_read: read 4096 bytes from PEB 4083:8192 UBI: fixable bit-flip detected at PEB 4083 UBI DBG: schedule_erase: schedule erasure of PEB 4083, EC 55, torture 0 UBI DBG: erase_worker: erase PEB 4083 EC 55 UBI DBG: sync_erase: erase PEB 4083, old EC 55 UBI DBG: do_sync_erase: erase PEB 4083 UBI DBG: sync_erase: erased PEB 4083, new EC 56 UBI DBG: ubi_io_write_ec_hdr: write EC header to PEB 4083 UBI DBG: ubi_io_write: write 4096 bytes to PEB 4083:0 UBI DBG: ensure_wear_leveling: schedule scrubbing UBI DBG: wear_leveling_worker: scrub PEB 1027 to PEB 4083 ... This patch adopts the interface change as in Linux commit edbc4540 in order to avoid such situations. Given that none of the drivers under drivers/mtd return -EUCLEAN, this should only affect those using software ECC. I have tested that it works on a board which is currently out of tree, but which I hope to be able to begin upstreaming soon. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Acked-by: Stefan Roese <sr@denx.de>
2013-09-04 14:16:56 +00:00
return max_bitflips;
}
/**
* nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to read
*/
static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
}
/**
* nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
* with syndromes
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to read
*/
static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
int length = mtd->oobsize;
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsize = chip->ecc.size;
uint8_t *bufpoi = chip->oob_poi;
int i, toread, sndrnd = 0, pos, ret;
ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
if (ret)
return ret;
for (i = 0; i < chip->ecc.steps; i++) {
if (sndrnd) {
int ret;
pos = eccsize + i * (eccsize + chunk);
if (mtd->writesize > 512)
ret = nand_change_read_column_op(chip, pos,
NULL, 0,
false);
else
ret = nand_read_page_op(chip, page, pos, NULL,
0);
if (ret)
return ret;
} else
sndrnd = 1;
toread = min_t(int, length, chunk);
ret = nand_read_data_op(chip, bufpoi, toread, false);
if (ret)
return ret;
bufpoi += toread;
length -= toread;
}
if (length > 0) {
ret = nand_read_data_op(chip, bufpoi, length, false);
if (ret)
return ret;
}
return 0;
}
/**
* nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to write
*/
static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
mtd->oobsize);
}
/**
* nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
* with syndrome - only for large page flash
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to write
*/
static int nand_write_oob_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsize = chip->ecc.size, length = mtd->oobsize;
int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
const uint8_t *bufpoi = chip->oob_poi;
/*
* data-ecc-data-ecc ... ecc-oob
* or
* data-pad-ecc-pad-data-pad .... ecc-pad-oob
*/
if (!chip->ecc.prepad && !chip->ecc.postpad) {
pos = steps * (eccsize + chunk);
steps = 0;
} else
pos = eccsize;
ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
if (ret)
return ret;
for (i = 0; i < steps; i++) {
if (sndcmd) {
if (mtd->writesize <= 512) {
uint32_t fill = 0xFFFFFFFF;
len = eccsize;
while (len > 0) {
int num = min_t(int, len, 4);
ret = nand_write_data_op(chip, &fill,
num, false);
if (ret)
return ret;
len -= num;
}
} else {
pos = eccsize + i * (eccsize + chunk);
ret = nand_change_write_column_op(chip, pos,
NULL, 0,
false);
if (ret)
return ret;
}
} else
sndcmd = 1;
len = min_t(int, length, chunk);
ret = nand_write_data_op(chip, bufpoi, len, false);
if (ret)
return ret;
bufpoi += len;
length -= len;
}
if (length > 0) {
ret = nand_write_data_op(chip, bufpoi, length, false);
if (ret)
return ret;
}
return nand_prog_page_end_op(chip);
}
/**
* nand_do_read_oob - [INTERN] NAND read out-of-band
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob operations description structure
*
* NAND read out-of-band data from the spare area.
*/
static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
int page, realpage, chipnr;
struct nand_chip *chip = mtd_to_nand(mtd);
struct mtd_ecc_stats stats;
int readlen = ops->ooblen;
int len;
uint8_t *buf = ops->oobbuf;
int ret = 0;
pr_debug("%s: from = 0x%08Lx, len = %i\n",
__func__, (unsigned long long)from, readlen);
stats = mtd->ecc_stats;
len = mtd_oobavail(mtd, ops);
if (unlikely(ops->ooboffs >= len)) {
pr_debug("%s: attempt to start read outside oob\n",
__func__);
return -EINVAL;
}
/* Do not allow reads past end of device */
if (unlikely(from >= mtd->size ||
ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
(from >> chip->page_shift)) * len)) {
pr_debug("%s: attempt to read beyond end of device\n",
__func__);
return -EINVAL;
}
chipnr = (int)(from >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
/* Shift to get page */
realpage = (int)(from >> chip->page_shift);
page = realpage & chip->pagemask;
while (1) {
WATCHDOG_RESET();
if (ops->mode == MTD_OPS_RAW)
ret = chip->ecc.read_oob_raw(mtd, chip, page);
else
ret = chip->ecc.read_oob(mtd, chip, page);
if (ret < 0)
break;
len = min(len, readlen);
buf = nand_transfer_oob(chip, buf, ops, len);
if (chip->options & NAND_NEED_READRDY) {
/* Apply delay or wait for ready/busy pin */
if (!chip->dev_ready)
udelay(chip->chip_delay);
else
nand_wait_ready(mtd);
}
readlen -= len;
if (!readlen)
break;
/* Increment page address */
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
chip->select_chip(mtd, -1);
chip->select_chip(mtd, chipnr);
}
}
chip->select_chip(mtd, -1);
ops->oobretlen = ops->ooblen - readlen;
if (ret < 0)
return ret;
if (mtd->ecc_stats.failed - stats.failed)
return -EBADMSG;
return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
}
/**
* nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob operation description structure
*
* NAND read data and/or out-of-band data.
*/
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
int ret = -ENOTSUPP;
ops->retlen = 0;
/* Do not allow reads past end of device */
if (ops->datbuf && (from + ops->len) > mtd->size) {
pr_debug("%s: attempt to read beyond end of device\n",
__func__);
return -EINVAL;
}
nand_get_device(mtd, FL_READING);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_AUTO_OOB:
case MTD_OPS_RAW:
break;
default:
goto out;
}
if (!ops->datbuf)
ret = nand_do_read_oob(mtd, from, ops);
else
ret = nand_do_read_ops(mtd, from, ops);
out:
nand_release_device(mtd);
return ret;
}
/**
* nand_write_page_raw - [INTERN] raw page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*
* Not for syndrome calculating ECC controllers, which use a special oob layout.
*/
static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required, int page)
{
int ret;
ret = nand_write_data_op(chip, buf, mtd->writesize, false);
if (ret)
return ret;
if (oob_required) {
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
false);
if (ret)
return ret;
}
return 0;
}
/**
* nand_write_page_raw_syndrome - [INTERN] raw page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*
* We need a special oob layout and handling even when ECC isn't checked.
*/
static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint8_t *oob = chip->oob_poi;
int steps, size, ret;
for (steps = chip->ecc.steps; steps > 0; steps--) {
ret = nand_write_data_op(chip, buf, eccsize, false);
if (ret)
return ret;
buf += eccsize;
if (chip->ecc.prepad) {
ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
false);
if (ret)
return ret;
oob += chip->ecc.prepad;
}
ret = nand_write_data_op(chip, oob, eccbytes, false);
if (ret)
return ret;
oob += eccbytes;
if (chip->ecc.postpad) {
ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
false);
if (ret)
return ret;
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size) {
ret = nand_write_data_op(chip, oob, size, false);
if (ret)
return ret;
}
return 0;
}
/**
* nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*/
static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *ecc_calc = chip->buffers->ecccalc;
const uint8_t *p = buf;
uint32_t *eccpos = chip->ecc.layout->eccpos;
/* Software ECC calculation */
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
for (i = 0; i < chip->ecc.total; i++)
chip->oob_poi[eccpos[i]] = ecc_calc[i];
return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
}
/**
* nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*/
static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *ecc_calc = chip->buffers->ecccalc;
const uint8_t *p = buf;
uint32_t *eccpos = chip->ecc.layout->eccpos;
int ret;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
ret = nand_write_data_op(chip, p, eccsize, false);
if (ret)
return ret;
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
}
for (i = 0; i < chip->ecc.total; i++)
chip->oob_poi[eccpos[i]] = ecc_calc[i];
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
if (ret)
return ret;
return 0;
}
/**
* nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
* @mtd: mtd info structure
* @chip: nand chip info structure
* @offset: column address of subpage within the page
* @data_len: data length
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*/
static int nand_write_subpage_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, uint32_t offset,
uint32_t data_len, const uint8_t *buf,
int oob_required, int page)
{
uint8_t *oob_buf = chip->oob_poi;
uint8_t *ecc_calc = chip->buffers->ecccalc;
int ecc_size = chip->ecc.size;
int ecc_bytes = chip->ecc.bytes;
int ecc_steps = chip->ecc.steps;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint32_t start_step = offset / ecc_size;
uint32_t end_step = (offset + data_len - 1) / ecc_size;
int oob_bytes = mtd->oobsize / ecc_steps;
int step, i;
int ret;
for (step = 0; step < ecc_steps; step++) {
/* configure controller for WRITE access */
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
/* write data (untouched subpages already masked by 0xFF) */
ret = nand_write_data_op(chip, buf, ecc_size, false);
if (ret)
return ret;
/* mask ECC of un-touched subpages by padding 0xFF */
if ((step < start_step) || (step > end_step))
memset(ecc_calc, 0xff, ecc_bytes);
else
chip->ecc.calculate(mtd, buf, ecc_calc);
/* mask OOB of un-touched subpages by padding 0xFF */
/* if oob_required, preserve OOB metadata of written subpage */
if (!oob_required || (step < start_step) || (step > end_step))
memset(oob_buf, 0xff, oob_bytes);
buf += ecc_size;
ecc_calc += ecc_bytes;
oob_buf += oob_bytes;
}
/* copy calculated ECC for whole page to chip->buffer->oob */
/* this include masked-value(0xFF) for unwritten subpages */
ecc_calc = chip->buffers->ecccalc;
for (i = 0; i < chip->ecc.total; i++)
chip->oob_poi[eccpos[i]] = ecc_calc[i];
/* write OOB buffer to NAND device */
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
if (ret)
return ret;
return 0;
}
/**
* nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*
* The hw generator calculates the error syndrome automatically. Therefore we
* need a special oob layout and handling.
*/
static int nand_write_page_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
const uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
int ret;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
ret = nand_write_data_op(chip, p, eccsize, false);
if (ret)
return ret;
if (chip->ecc.prepad) {
ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
false);
if (ret)
return ret;
oob += chip->ecc.prepad;
}
chip->ecc.calculate(mtd, p, oob);
ret = nand_write_data_op(chip, oob, eccbytes, false);
if (ret)
return ret;
oob += eccbytes;
if (chip->ecc.postpad) {
ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
false);
if (ret)
return ret;
oob += chip->ecc.postpad;
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i) {
ret = nand_write_data_op(chip, oob, i, false);
if (ret)
return ret;
}
return 0;
}
/**
* nand_write_page - [REPLACEABLE] write one page
* @mtd: MTD device structure
* @chip: NAND chip descriptor
* @offset: address offset within the page
* @data_len: length of actual data to be written
* @buf: the data to write
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
* @raw: use _raw version of write_page
*/
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t offset, int data_len, const uint8_t *buf,
int oob_required, int page, int raw)
{
int status, subpage;
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
chip->ecc.write_subpage)
subpage = offset || (data_len < mtd->writesize);
else
subpage = 0;
if (nand_standard_page_accessors(&chip->ecc)) {
status = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (status)
return status;
}
if (unlikely(raw))
status = chip->ecc.write_page_raw(mtd, chip, buf,
oob_required, page);
else if (subpage)
status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
buf, oob_required, page);
else
status = chip->ecc.write_page(mtd, chip, buf, oob_required,
page);
if (status < 0)
return status;
if (nand_standard_page_accessors(&chip->ecc))
return nand_prog_page_end_op(chip);
return 0;
}
/**
* nand_fill_oob - [INTERN] Transfer client buffer to oob
* @mtd: MTD device structure
* @oob: oob data buffer
* @len: oob data write length
* @ops: oob ops structure
*/
static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd_to_nand(mtd);
/*
* Initialise to all 0xFF, to avoid the possibility of left over OOB
* data from a previous OOB read.
*/
memset(chip->oob_poi, 0xff, mtd->oobsize);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_RAW:
memcpy(chip->oob_poi + ops->ooboffs, oob, len);
return oob + len;
case MTD_OPS_AUTO_OOB: {
struct nand_oobfree *free = chip->ecc.layout->oobfree;
uint32_t boffs = 0, woffs = ops->ooboffs;
size_t bytes = 0;
for (; free->length && len; free++, len -= bytes) {
/* Write request not from offset 0? */
if (unlikely(woffs)) {
if (woffs >= free->length) {
woffs -= free->length;
continue;
}
boffs = free->offset + woffs;
bytes = min_t(size_t, len,
(free->length - woffs));
woffs = 0;
} else {
bytes = min_t(size_t, len, free->length);
boffs = free->offset;
}
memcpy(chip->oob_poi + boffs, oob, bytes);
oob += bytes;
}
return oob;
}
default:
BUG();
}
return NULL;
}
#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
/**
* nand_do_write_ops - [INTERN] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operations description structure
*
* NAND write with ECC.
*/
static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
int chipnr, realpage, page, column;
struct nand_chip *chip = mtd_to_nand(mtd);
uint32_t writelen = ops->len;
uint32_t oobwritelen = ops->ooblen;
uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
uint8_t *oob = ops->oobbuf;
uint8_t *buf = ops->datbuf;
int ret;
int oob_required = oob ? 1 : 0;
ops->retlen = 0;
if (!writelen)
return 0;
/* Reject writes, which are not page aligned */
if (NOTALIGNED(to)) {
pr_notice("%s: attempt to write non page aligned data\n",
__func__);
return -EINVAL;
}
column = to & (mtd->writesize - 1);
chipnr = (int)(to >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
ret = -EIO;
goto err_out;
}
realpage = (int)(to >> chip->page_shift);
page = realpage & chip->pagemask;
/* Invalidate the page cache, when we write to the cached page */
if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
chip->pagebuf = -1;
/* Don't allow multipage oob writes with offset */
if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
ret = -EINVAL;
goto err_out;
}
while (1) {
int bytes = mtd->writesize;
uint8_t *wbuf = buf;
int use_bufpoi;
int part_pagewr = (column || writelen < mtd->writesize);
if (part_pagewr)
use_bufpoi = 1;
else if (chip->options & NAND_USE_BOUNCE_BUFFER)
use_bufpoi = !IS_ALIGNED((unsigned long)buf,
chip->buf_align);
else
use_bufpoi = 0;
WATCHDOG_RESET();
/* Partial page write?, or need to use bounce buffer */
if (use_bufpoi) {
pr_debug("%s: using write bounce buffer for buf@%p\n",
__func__, buf);
if (part_pagewr)
bytes = min_t(int, bytes - column, writelen);
chip->pagebuf = -1;
memset(chip->buffers->databuf, 0xff, mtd->writesize);
memcpy(&chip->buffers->databuf[column], buf, bytes);
wbuf = chip->buffers->databuf;
}
if (unlikely(oob)) {
size_t len = min(oobwritelen, oobmaxlen);
oob = nand_fill_oob(mtd, oob, len, ops);
oobwritelen -= len;
} else {
/* We still need to erase leftover OOB data */
memset(chip->oob_poi, 0xff, mtd->oobsize);
}
ret = chip->write_page(mtd, chip, column, bytes, wbuf,
oob_required, page,
(ops->mode == MTD_OPS_RAW));
if (ret)
break;
writelen -= bytes;
if (!writelen)
break;
column = 0;
buf += bytes;
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
chip->select_chip(mtd, -1);
chip->select_chip(mtd, chipnr);
}
}
ops->retlen = ops->len - writelen;
if (unlikely(oob))
ops->oobretlen = ops->ooblen;
err_out:
chip->select_chip(mtd, -1);
return ret;
}
/**
* panic_nand_write - [MTD Interface] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @len: number of bytes to write
* @retlen: pointer to variable to store the number of written bytes
* @buf: the data to write
*
* NAND write with ECC. Used when performing writes in interrupt context, this
* may for example be called by mtdoops when writing an oops while in panic.
*/
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const uint8_t *buf)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mtd_oob_ops ops;
int ret;
/* Wait for the device to get ready */
panic_nand_wait(mtd, chip, 400);
/* Grab the device */
panic_nand_get_device(chip, mtd, FL_WRITING);
memset(&ops, 0, sizeof(ops));
ops.len = len;
ops.datbuf = (uint8_t *)buf;
ops.mode = MTD_OPS_PLACE_OOB;
ret = nand_do_write_ops(mtd, to, &ops);
*retlen = ops.retlen;
return ret;
}
/**
* nand_do_write_oob - [MTD Interface] NAND write out-of-band
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operation description structure
*
* NAND write out-of-band.
*/
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
int chipnr, page, status, len;
struct nand_chip *chip = mtd_to_nand(mtd);
pr_debug("%s: to = 0x%08x, len = %i\n",
__func__, (unsigned int)to, (int)ops->ooblen);
len = mtd_oobavail(mtd, ops);
/* Do not allow write past end of page */
if ((ops->ooboffs + ops->ooblen) > len) {
pr_debug("%s: attempt to write past end of page\n",
__func__);
return -EINVAL;
}
if (unlikely(ops->ooboffs >= len)) {
pr_debug("%s: attempt to start write outside oob\n",
__func__);
return -EINVAL;
}
/* Do not allow write past end of device */
if (unlikely(to >= mtd->size ||
ops->ooboffs + ops->ooblen >
((mtd->size >> chip->page_shift) -
(to >> chip->page_shift)) * len)) {
pr_debug("%s: attempt to write beyond end of device\n",
__func__);
return -EINVAL;
}
chipnr = (int)(to >> chip->chip_shift);
/*
* Reset the chip. Some chips (like the Toshiba TC5832DC found in one
* of my DiskOnChip 2000 test units) will clear the whole data page too
* if we don't do this. I have no clue why, but I seem to have 'fixed'
* it in the doc2000 driver in August 1999. dwmw2.
*/
nand_reset(chip, chipnr);
chip->select_chip(mtd, chipnr);
/* Shift to get page */
page = (int)(to >> chip->page_shift);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
chip->select_chip(mtd, -1);
return -EROFS;
}
/* Invalidate the page cache, if we write to the cached page */
if (page == chip->pagebuf)
chip->pagebuf = -1;
nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
if (ops->mode == MTD_OPS_RAW)
status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
else
status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
chip->select_chip(mtd, -1);
if (status)
return status;
ops->oobretlen = ops->ooblen;
return 0;
}
/**
* nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operation description structure
*/
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
int ret = -ENOTSUPP;
ops->retlen = 0;
/* Do not allow writes past end of device */
if (ops->datbuf && (to + ops->len) > mtd->size) {
pr_debug("%s: attempt to write beyond end of device\n",
__func__);
return -EINVAL;
}
nand_get_device(mtd, FL_WRITING);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_AUTO_OOB:
case MTD_OPS_RAW:
break;
default:
goto out;
}
if (!ops->datbuf)
ret = nand_do_write_oob(mtd, to, ops);
else
ret = nand_do_write_ops(mtd, to, ops);
out:
nand_release_device(mtd);
return ret;
}
/**
* single_erase - [GENERIC] NAND standard block erase command function
* @mtd: MTD device structure
* @page: the page address of the block which will be erased
*
* Standard erase command for NAND chips. Returns NAND status.
*/
static int single_erase(struct mtd_info *mtd, int page)
{
struct nand_chip *chip = mtd_to_nand(mtd);
unsigned int eraseblock;
/* Send commands to erase a block */
eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
return nand_erase_op(chip, eraseblock);
}
/**
* nand_erase - [MTD Interface] erase block(s)
* @mtd: MTD device structure
* @instr: erase instruction
*
* Erase one ore more blocks.
*/
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
return nand_erase_nand(mtd, instr, 0);
}
/**
* nand_erase_nand - [INTERN] erase block(s)
* @mtd: MTD device structure
* @instr: erase instruction
* @allowbbt: allow erasing the bbt area
*
* Erase one ore more blocks.
*/
int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
int allowbbt)
{
int page, status, pages_per_block, ret, chipnr;
struct nand_chip *chip = mtd_to_nand(mtd);
loff_t len;
pr_debug("%s: start = 0x%012llx, len = %llu\n",
__func__, (unsigned long long)instr->addr,
(unsigned long long)instr->len);
if (check_offs_len(mtd, instr->addr, instr->len))
return -EINVAL;
/* Grab the lock and see if the device is available */
nand_get_device(mtd, FL_ERASING);
/* Shift to get first page */
page = (int)(instr->addr >> chip->page_shift);
chipnr = (int)(instr->addr >> chip->chip_shift);
/* Calculate pages in each block */
pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
/* Select the NAND device */
chip->select_chip(mtd, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
pr_debug("%s: device is write protected!\n",
__func__);
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
/* Loop through the pages */
len = instr->len;
instr->state = MTD_ERASING;
while (len) {
WATCHDOG_RESET();
/* Check if we have a bad block, we do not erase bad blocks! */
if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) <<
chip->page_shift, allowbbt)) {
pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
__func__, page);
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
/*
* Invalidate the page cache, if we erase the block which
* contains the current cached page.
*/
if (page <= chip->pagebuf && chip->pagebuf <
(page + pages_per_block))
chip->pagebuf = -1;
status = chip->erase(mtd, page & chip->pagemask);
/* See if block erase succeeded */
if (status & NAND_STATUS_FAIL) {
pr_debug("%s: failed erase, page 0x%08x\n",
__func__, page);
instr->state = MTD_ERASE_FAILED;
instr->fail_addr =
((loff_t)page << chip->page_shift);
goto erase_exit;
}
/* Increment page address and decrement length */
len -= (1ULL << chip->phys_erase_shift);
page += pages_per_block;
/* Check, if we cross a chip boundary */
if (len && !(page & chip->pagemask)) {
chipnr++;
chip->select_chip(mtd, -1);
chip->select_chip(mtd, chipnr);
}
}
instr->state = MTD_ERASE_DONE;
erase_exit:
ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
/* Deselect and wake up anyone waiting on the device */
chip->select_chip(mtd, -1);
nand_release_device(mtd);
/* Do call back function */
if (!ret)
mtd_erase_callback(instr);
/* Return more or less happy */
return ret;
}
/**
* nand_sync - [MTD Interface] sync
* @mtd: MTD device structure
*
* Sync is actually a wait for chip ready function.
*/
static void nand_sync(struct mtd_info *mtd)
{
pr_debug("%s: called\n", __func__);
/* Grab the lock and see if the device is available */
nand_get_device(mtd, FL_SYNCING);
/* Release it and go back */
nand_release_device(mtd);
}
/**
* nand_block_isbad - [MTD Interface] Check if block at offset is bad
* @mtd: MTD device structure
* @offs: offset relative to mtd start
*/
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int chipnr = (int)(offs >> chip->chip_shift);
int ret;
/* Select the NAND device */
nand_get_device(mtd, FL_READING);
chip->select_chip(mtd, chipnr);
ret = nand_block_checkbad(mtd, offs, 0);
chip->select_chip(mtd, -1);
nand_release_device(mtd);
return ret;
}
/**
* nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
* @mtd: MTD device structure
* @ofs: offset relative to mtd start
*/
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
int ret;
ret = nand_block_isbad(mtd, ofs);
if (ret) {
/* If it was bad already, return success and do nothing */
if (ret > 0)
return 0;
return ret;
}
return nand_block_markbad_lowlevel(mtd, ofs);
}
/**
* nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
* @mtd: MTD device structure
* @chip: nand chip info structure
* @addr: feature address.
* @subfeature_param: the subfeature parameters, a four bytes array.
*/
static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
int addr, uint8_t *subfeature_param)
{
#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
if (!chip->onfi_version ||
!(le16_to_cpu(chip->onfi_params.opt_cmd)
& ONFI_OPT_CMD_SET_GET_FEATURES))
return -ENOTSUPP;
#endif
return nand_set_features_op(chip, addr, subfeature_param);
}
/**
* nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
* @mtd: MTD device structure
* @chip: nand chip info structure
* @addr: feature address.
* @subfeature_param: the subfeature parameters, a four bytes array.
*/
static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
int addr, uint8_t *subfeature_param)
{
#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
if (!chip->onfi_version ||
!(le16_to_cpu(chip->onfi_params.opt_cmd)
& ONFI_OPT_CMD_SET_GET_FEATURES))
return -ENOTSUPP;
#endif
return nand_get_features_op(chip, addr, subfeature_param);
}
/* Set default functions */
static void nand_set_defaults(struct nand_chip *chip, int busw)
{
/* check for proper chip_delay setup, set 20us if not */
if (!chip->chip_delay)
chip->chip_delay = 20;
/* check, if a user supplied command function given */
if (chip->cmdfunc == NULL)
chip->cmdfunc = nand_command;
/* check, if a user supplied wait function given */
if (chip->waitfunc == NULL)
chip->waitfunc = nand_wait;
if (!chip->select_chip)
chip->select_chip = nand_select_chip;
/* set for ONFI nand */
if (!chip->onfi_set_features)
chip->onfi_set_features = nand_onfi_set_features;
if (!chip->onfi_get_features)
chip->onfi_get_features = nand_onfi_get_features;
/* If called twice, pointers that depend on busw may need to be reset */
if (!chip->read_byte || chip->read_byte == nand_read_byte)
chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
if (!chip->read_word)
chip->read_word = nand_read_word;
if (!chip->block_bad)
chip->block_bad = nand_block_bad;
if (!chip->block_markbad)
chip->block_markbad = nand_default_block_markbad;
if (!chip->write_buf || chip->write_buf == nand_write_buf)
chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
if (!chip->write_byte || chip->write_byte == nand_write_byte)
chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
if (!chip->read_buf || chip->read_buf == nand_read_buf)
chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
if (!chip->scan_bbt)
chip->scan_bbt = nand_default_bbt;
if (!chip->controller) {
chip->controller = &chip->hwcontrol;
spin_lock_init(&chip->controller->lock);
init_waitqueue_head(&chip->controller->wq);
}
if (!chip->buf_align)
chip->buf_align = 1;
}
/* Sanitize ONFI strings so we can safely print them */
static void sanitize_string(char *s, size_t len)
{
ssize_t i;
/* Null terminate */
s[len - 1] = 0;
/* Remove non printable chars */
for (i = 0; i < len - 1; i++) {
if (s[i] < ' ' || s[i] > 127)
s[i] = '?';
}
/* Remove trailing spaces */
strim(s);
}
static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
{
int i;
while (len--) {
crc ^= *p++ << 8;
for (i = 0; i < 8; i++)
crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
}
return crc;
}
#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
/* Parse the Extended Parameter Page. */
static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
struct nand_chip *chip, struct nand_onfi_params *p)
{
struct onfi_ext_param_page *ep;
struct onfi_ext_section *s;
struct onfi_ext_ecc_info *ecc;
uint8_t *cursor;
int ret;
int len;
int i;
len = le16_to_cpu(p->ext_param_page_length) * 16;
ep = kmalloc(len, GFP_KERNEL);
if (!ep)
return -ENOMEM;
/* Send our own NAND_CMD_PARAM. */
ret = nand_read_param_page_op(chip, 0, NULL, 0);
if (ret)
goto ext_out;
/* Use the Change Read Column command to skip the ONFI param pages. */
ret = nand_change_read_column_op(chip,
sizeof(*p) * p->num_of_param_pages,
ep, len, true);
if (ret)
goto ext_out;
ret = -EINVAL;
if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
!= le16_to_cpu(ep->crc))) {
pr_debug("fail in the CRC.\n");
goto ext_out;
}
/*
* Check the signature.
* Do not strictly follow the ONFI spec, maybe changed in future.
*/
if (strncmp((char *)ep->sig, "EPPS", 4)) {
pr_debug("The signature is invalid.\n");
goto ext_out;
}
/* find the ECC section. */
cursor = (uint8_t *)(ep + 1);
for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
s = ep->sections + i;
if (s->type == ONFI_SECTION_TYPE_2)
break;
cursor += s->length * 16;
}
if (i == ONFI_EXT_SECTION_MAX) {
pr_debug("We can not find the ECC section.\n");
goto ext_out;
}
/* get the info we want. */
ecc = (struct onfi_ext_ecc_info *)cursor;
if (!ecc->codeword_size) {
pr_debug("Invalid codeword size\n");
goto ext_out;
}
chip->ecc_strength_ds = ecc->ecc_bits;
chip->ecc_step_ds = 1 << ecc->codeword_size;
ret = 0;
ext_out:
kfree(ep);
return ret;
}
static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
{
struct nand_chip *chip = mtd_to_nand(mtd);
uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
feature);
}
/*
* Configure chip properties from Micron vendor-specific ONFI table
*/
static void nand_onfi_detect_micron(struct nand_chip *chip,
struct nand_onfi_params *p)
{
struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
if (le16_to_cpu(p->vendor_revision) < 1)
return;
chip->read_retries = micron->read_retry_options;
chip->setup_read_retry = nand_setup_read_retry_micron;
}
/*
* Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
*/
static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
int *busw)
{
struct nand_onfi_params *p = &chip->onfi_params;
char id[4];
int i, ret, val;
/* Try ONFI for unknown chip or LP */
ret = nand_readid_op(chip, 0x20, id, sizeof(id));
if (ret || strncmp(id, "ONFI", 4))
return 0;
ret = nand_read_param_page_op(chip, 0, NULL, 0);
if (ret)
return 0;
for (i = 0; i < 3; i++) {
ret = nand_read_data_op(chip, p, sizeof(*p), true);
if (ret)
return 0;
if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
le16_to_cpu(p->crc)) {
break;
}
}
if (i == 3) {
pr_err("Could not find valid ONFI parameter page; aborting\n");
return 0;
}
/* Check version */
val = le16_to_cpu(p->revision);
if (val & (1 << 5))
chip->onfi_version = 23;
else if (val & (1 << 4))
chip->onfi_version = 22;
else if (val & (1 << 3))
chip->onfi_version = 21;
else if (val & (1 << 2))
chip->onfi_version = 20;
else if (val & (1 << 1))
chip->onfi_version = 10;
if (!chip->onfi_version) {
pr_info("unsupported ONFI version: %d\n", val);
return 0;
}
sanitize_string(p->manufacturer, sizeof(p->manufacturer));
sanitize_string(p->model, sizeof(p->model));
if (!mtd->name)
mtd->name = p->model;
mtd->writesize = le32_to_cpu(p->byte_per_page);
/*
* pages_per_block and blocks_per_lun may not be a power-of-2 size
* (don't ask me who thought of this...). MTD assumes that these
* dimensions will be power-of-2, so just truncate the remaining area.
*/
mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
mtd->erasesize *= mtd->writesize;
mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
/* See erasesize comment */
chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
chip->bits_per_cell = p->bits_per_cell;
if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
*busw = NAND_BUSWIDTH_16;
else
*busw = 0;
if (p->ecc_bits != 0xff) {
chip->ecc_strength_ds = p->ecc_bits;
chip->ecc_step_ds = 512;
} else if (chip->onfi_version >= 21 &&
(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
/*
* The nand_flash_detect_ext_param_page() uses the
* Change Read Column command which maybe not supported
* by the chip->cmdfunc. So try to update the chip->cmdfunc
* now. We do not replace user supplied command function.
*/
if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
chip->cmdfunc = nand_command_lp;
/* The Extended Parameter Page is supported since ONFI 2.1. */
if (nand_flash_detect_ext_param_page(mtd, chip, p))
pr_warn("Failed to detect ONFI extended param page\n");
} else {
pr_warn("Could not retrieve ONFI ECC requirements\n");
}
if (p->jedec_id == NAND_MFR_MICRON)
nand_onfi_detect_micron(chip, p);
return 1;
}
#else
static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
int *busw)
{
return 0;
}
#endif
/*
* Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
*/
static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
int *busw)
{
struct nand_jedec_params *p = &chip->jedec_params;
struct jedec_ecc_info *ecc;
char id[5];
int i, val, ret;
/* Try JEDEC for unknown chip or LP */
ret = nand_readid_op(chip, 0x40, id, sizeof(id));
if (ret || strncmp(id, "JEDEC", sizeof(id)))
return 0;
ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
if (ret)
return 0;
for (i = 0; i < 3; i++) {
ret = nand_read_data_op(chip, p, sizeof(*p), true);
if (ret)
return 0;
if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
le16_to_cpu(p->crc))
break;
}
if (i == 3) {
pr_err("Could not find valid JEDEC parameter page; aborting\n");
return 0;
}
/* Check version */
val = le16_to_cpu(p->revision);
if (val & (1 << 2))
chip->jedec_version = 10;
else if (val & (1 << 1))
chip->jedec_version = 1; /* vendor specific version */
if (!chip->jedec_version) {
pr_info("unsupported JEDEC version: %d\n", val);
return 0;
}
sanitize_string(p->manufacturer, sizeof(p->manufacturer));
sanitize_string(p->model, sizeof(p->model));
if (!mtd->name)
mtd->name = p->model;
mtd->writesize = le32_to_cpu(p->byte_per_page);
/* Please reference to the comment for nand_flash_detect_onfi. */
mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
mtd->erasesize *= mtd->writesize;
mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
/* Please reference to the comment for nand_flash_detect_onfi. */
chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
chip->bits_per_cell = p->bits_per_cell;
if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
*busw = NAND_BUSWIDTH_16;
else
*busw = 0;
/* ECC info */
ecc = &p->ecc_info[0];
if (ecc->codeword_size >= 9) {
chip->ecc_strength_ds = ecc->ecc_bits;
chip->ecc_step_ds = 1 << ecc->codeword_size;
} else {
pr_warn("Invalid codeword size\n");
}
return 1;
}
/*
* nand_id_has_period - Check if an ID string has a given wraparound period
* @id_data: the ID string
* @arrlen: the length of the @id_data array
* @period: the period of repitition
*
* Check if an ID string is repeated within a given sequence of bytes at
* specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
* period of 3). This is a helper function for nand_id_len(). Returns non-zero
* if the repetition has a period of @period; otherwise, returns zero.
*/
static int nand_id_has_period(u8 *id_data, int arrlen, int period)
{
int i, j;
for (i = 0; i < period; i++)
for (j = i + period; j < arrlen; j += period)
if (id_data[i] != id_data[j])
return 0;
return 1;
}
/*
* nand_id_len - Get the length of an ID string returned by CMD_READID
* @id_data: the ID string
* @arrlen: the length of the @id_data array
* Returns the length of the ID string, according to known wraparound/trailing
* zero patterns. If no pattern exists, returns the length of the array.
*/
static int nand_id_len(u8 *id_data, int arrlen)
{
int last_nonzero, period;
/* Find last non-zero byte */
for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
if (id_data[last_nonzero])
break;
/* All zeros */
if (last_nonzero < 0)
return 0;
/* Calculate wraparound period */
for (period = 1; period < arrlen; period++)
if (nand_id_has_period(id_data, arrlen, period))
break;
/* There's a repeated pattern */
if (period < arrlen)
return period;
/* There are trailing zeros */
if (last_nonzero < arrlen - 1)
return last_nonzero + 1;
/* No pattern detected */
return arrlen;
}
/* Extract the bits of per cell from the 3rd byte of the extended ID */
static int nand_get_bits_per_cell(u8 cellinfo)
{
int bits;
bits = cellinfo & NAND_CI_CELLTYPE_MSK;
bits >>= NAND_CI_CELLTYPE_SHIFT;
return bits + 1;
}
/*
* Many new NAND share similar device ID codes, which represent the size of the
* chip. The rest of the parameters must be decoded according to generic or
* manufacturer-specific "extended ID" decoding patterns.
*/
static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
u8 id_data[8], int *busw)
{
int extid, id_len;
/* The 3rd id byte holds MLC / multichip data */
chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
/* The 4th id byte is the important one */
extid = id_data[3];
id_len = nand_id_len(id_data, 8);
/*
* Field definitions are in the following datasheets:
* Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
* New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
* Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
*
* Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
* ID to decide what to do.
*/
if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
!nand_is_slc(chip) && id_data[5] != 0x00) {
/* Calc pagesize */
mtd->writesize = 2048 << (extid & 0x03);
extid >>= 2;
/* Calc oobsize */
switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
case 1:
mtd->oobsize = 128;
break;
case 2:
mtd->oobsize = 218;
break;
case 3:
mtd->oobsize = 400;
break;
case 4:
mtd->oobsize = 436;
break;
case 5:
mtd->oobsize = 512;
break;
case 6:
mtd->oobsize = 640;
break;
case 7:
default: /* Other cases are "reserved" (unknown) */
mtd->oobsize = 1024;
break;
}
extid >>= 2;
/* Calc blocksize */
mtd->erasesize = (128 * 1024) <<
(((extid >> 1) & 0x04) | (extid & 0x03));
*busw = 0;
} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
!nand_is_slc(chip)) {
unsigned int tmp;
/* Calc pagesize */
mtd->writesize = 2048 << (extid & 0x03);
extid >>= 2;
/* Calc oobsize */
switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
case 0:
mtd->oobsize = 128;
break;
case 1:
mtd->oobsize = 224;
break;
case 2:
mtd->oobsize = 448;
break;
case 3:
mtd->oobsize = 64;
break;
case 4:
mtd->oobsize = 32;
break;
case 5:
mtd->oobsize = 16;
break;
default:
mtd->oobsize = 640;
break;
}
extid >>= 2;
/* Calc blocksize */
tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
if (tmp < 0x03)
mtd->erasesize = (128 * 1024) << tmp;
else if (tmp == 0x03)
mtd->erasesize = 768 * 1024;
else
mtd->erasesize = (64 * 1024) << tmp;
*busw = 0;
} else {
/* Calc pagesize */
mtd->writesize = 1024 << (extid & 0x03);
extid >>= 2;
/* Calc oobsize */
mtd->oobsize = (8 << (extid & 0x01)) *
(mtd->writesize >> 9);
extid >>= 2;
/* Calc blocksize. Blocksize is multiples of 64KiB */
mtd->erasesize = (64 * 1024) << (extid & 0x03);
extid >>= 2;
/* Get buswidth information */
*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
/*
* Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
* 512B page. For Toshiba SLC, we decode the 5th/6th byte as
* follows:
* - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
* 110b -> 24nm
* - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
*/
if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
nand_is_slc(chip) &&
(id_data[5] & 0x7) == 0x6 /* 24nm */ &&
!(id_data[4] & 0x80) /* !BENAND */) {
mtd->oobsize = 32 * mtd->writesize >> 9;
}
}
}
/*
* Old devices have chip data hardcoded in the device ID table. nand_decode_id
* decodes a matching ID table entry and assigns the MTD size parameters for
* the chip.
*/
static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
struct nand_flash_dev *type, u8 id_data[8],
int *busw)
{
int maf_id = id_data[0];
mtd->erasesize = type->erasesize;
mtd->writesize = type->pagesize;
mtd->oobsize = mtd->writesize / 32;
*busw = type->options & NAND_BUSWIDTH_16;
/* All legacy ID NAND are small-page, SLC */
chip->bits_per_cell = 1;
/*
* Check for Spansion/AMD ID + repeating 5th, 6th byte since
* some Spansion chips have erasesize that conflicts with size
* listed in nand_ids table.
* Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
*/
if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
&& id_data[6] == 0x00 && id_data[7] == 0x00
&& mtd->writesize == 512) {
mtd->erasesize = 128 * 1024;
mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
}
}
/*
* Set the bad block marker/indicator (BBM/BBI) patterns according to some
* heuristic patterns using various detected parameters (e.g., manufacturer,
* page size, cell-type information).
*/
static void nand_decode_bbm_options(struct mtd_info *mtd,
struct nand_chip *chip, u8 id_data[8])
{
int maf_id = id_data[0];
/* Set the bad block position */
if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
else
chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
/*
* Bad block marker is stored in the last page of each block on Samsung
* and Hynix MLC devices; stored in first two pages of each block on
* Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
* AMD/Spansion, and Macronix. All others scan only the first page.
*/
if (!nand_is_slc(chip) &&
(maf_id == NAND_MFR_SAMSUNG ||
maf_id == NAND_MFR_HYNIX))
chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
else if ((nand_is_slc(chip) &&
(maf_id == NAND_MFR_SAMSUNG ||
maf_id == NAND_MFR_HYNIX ||
maf_id == NAND_MFR_TOSHIBA ||
maf_id == NAND_MFR_AMD ||
maf_id == NAND_MFR_MACRONIX)) ||
(mtd->writesize == 2048 &&
maf_id == NAND_MFR_MICRON))
chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
}
static inline bool is_full_id_nand(struct nand_flash_dev *type)
{
return type->id_len;
}
static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
struct nand_flash_dev *type, u8 *id_data, int *busw)
{
if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) {
mtd->writesize = type->pagesize;
mtd->erasesize = type->erasesize;
mtd->oobsize = type->oobsize;
chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
chip->chipsize = (uint64_t)type->chipsize << 20;
chip->options |= type->options;
chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
chip->ecc_step_ds = NAND_ECC_STEP(type);
chip->onfi_timing_mode_default =
type->onfi_timing_mode_default;
*busw = type->options & NAND_BUSWIDTH_16;
if (!mtd->name)
mtd->name = type->name;
return true;
}
return false;
}
/*
* Get the flash and manufacturer id and lookup if the type is supported.
*/
struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
struct nand_chip *chip,
int *maf_id, int *dev_id,
struct nand_flash_dev *type)
{
int busw, ret;
int maf_idx;
u8 id_data[8];
/*
* Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
* after power-up.
*/
ret = nand_reset(chip, 0);
if (ret)
return ERR_PTR(ret);
/* Select the device */
chip->select_chip(mtd, 0);
/* Send the command for reading device ID */
ret = nand_readid_op(chip, 0, id_data, 2);
if (ret)
return ERR_PTR(ret);
/* Read manufacturer and device IDs */
*maf_id = id_data[0];
*dev_id = id_data[1];
/*
* Try again to make sure, as some systems the bus-hold or other
* interface concerns can cause random data which looks like a
* possibly credible NAND flash to appear. If the two results do
* not match, ignore the device completely.
*/
/* Read entire ID string */
ret = nand_readid_op(chip, 0, id_data, 8);
if (ret)
return ERR_PTR(ret);
if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
*maf_id, *dev_id, id_data[0], id_data[1]);
return ERR_PTR(-ENODEV);
}
if (!type)
type = nand_flash_ids;
for (; type->name != NULL; type++) {
if (is_full_id_nand(type)) {
if (find_full_id_nand(mtd, chip, type, id_data, &busw))
goto ident_done;
} else if (*dev_id == type->dev_id) {
break;
}
}
chip->onfi_version = 0;
if (!type->name || !type->pagesize) {
/* Check if the chip is ONFI compliant */
if (nand_flash_detect_onfi(mtd, chip, &busw))
goto ident_done;
/* Check if the chip is JEDEC compliant */
if (nand_flash_detect_jedec(mtd, chip, &busw))
goto ident_done;
}
if (!type->name)
return ERR_PTR(-ENODEV);
if (!mtd->name)
mtd->name = type->name;
chip->chipsize = (uint64_t)type->chipsize << 20;
if (!type->pagesize) {
/* Decode parameters from extended ID */
nand_decode_ext_id(mtd, chip, id_data, &busw);
} else {
nand_decode_id(mtd, chip, type, id_data, &busw);
}
/* Get chip options */
chip->options |= type->options;
/*
* Check if chip is not a Samsung device. Do not clear the
* options for chips which do not have an extended id.
*/
if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
ident_done:
/* Try to identify manufacturer */
for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
if (nand_manuf_ids[maf_idx].id == *maf_id)
break;
}
if (chip->options & NAND_BUSWIDTH_AUTO) {
WARN_ON(chip->options & NAND_BUSWIDTH_16);
chip->options |= busw;
nand_set_defaults(chip, busw);
} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
/*
* Check, if buswidth is correct. Hardware drivers should set
* chip correct!
*/
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
*maf_id, *dev_id);
pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
pr_warn("bus width %d instead %d bit\n",
(chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
busw ? 16 : 8);
return ERR_PTR(-EINVAL);
}
nand_decode_bbm_options(mtd, chip, id_data);
/* Calculate the address shift from the page size */
chip->page_shift = ffs(mtd->writesize) - 1;
/* Convert chipsize to number of pages per chip -1 */
chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
chip->bbt_erase_shift = chip->phys_erase_shift =
ffs(mtd->erasesize) - 1;
if (chip->chipsize & 0xffffffff)
chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
else {
chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
chip->chip_shift += 32 - 1;
}
if (chip->chip_shift - chip->page_shift > 16)
chip->options |= NAND_ROW_ADDR_3;
chip->badblockbits = 8;
chip->erase = single_erase;
/* Do not replace user supplied command function! */
if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
chip->cmdfunc = nand_command_lp;
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
*maf_id, *dev_id);
#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
if (chip->onfi_version)
pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
chip->onfi_params.model);
else if (chip->jedec_version)
pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
chip->jedec_params.model);
else
pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
type->name);
#else
if (chip->jedec_version)
pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
chip->jedec_params.model);
else
pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
type->name);
pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
type->name);
#endif
pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
return type;
}
EXPORT_SYMBOL(nand_get_flash_type);
#if CONFIG_IS_ENABLED(OF_CONTROL)
DECLARE_GLOBAL_DATA_PTR;
static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
{
int ret, ecc_mode = -1, ecc_strength, ecc_step;
const void *blob = gd->fdt_blob;
const char *str;
ret = fdtdec_get_int(blob, node, "nand-bus-width", -1);
if (ret == 16)
chip->options |= NAND_BUSWIDTH_16;
if (fdtdec_get_bool(blob, node, "nand-on-flash-bbt"))
chip->bbt_options |= NAND_BBT_USE_FLASH;
str = fdt_getprop(blob, node, "nand-ecc-mode", NULL);
if (str) {
if (!strcmp(str, "none"))
ecc_mode = NAND_ECC_NONE;
else if (!strcmp(str, "soft"))
ecc_mode = NAND_ECC_SOFT;
else if (!strcmp(str, "hw"))
ecc_mode = NAND_ECC_HW;
else if (!strcmp(str, "hw_syndrome"))
ecc_mode = NAND_ECC_HW_SYNDROME;
else if (!strcmp(str, "hw_oob_first"))
ecc_mode = NAND_ECC_HW_OOB_FIRST;
else if (!strcmp(str, "soft_bch"))
ecc_mode = NAND_ECC_SOFT_BCH;
}
ecc_strength = fdtdec_get_int(blob, node, "nand-ecc-strength", -1);
ecc_step = fdtdec_get_int(blob, node, "nand-ecc-step-size", -1);
if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
(!(ecc_step >= 0) && ecc_strength >= 0)) {
pr_err("must set both strength and step size in DT\n");
return -EINVAL;
}
if (ecc_mode >= 0)
chip->ecc.mode = ecc_mode;
if (ecc_strength >= 0)
chip->ecc.strength = ecc_strength;
if (ecc_step > 0)
chip->ecc.size = ecc_step;
if (fdt_getprop(blob, node, "nand-ecc-maximize", NULL))
chip->ecc.options |= NAND_ECC_MAXIMIZE;
return 0;
}
#else
static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
{
return 0;
}
#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
/**
* nand_scan_ident - [NAND Interface] Scan for the NAND device
* @mtd: MTD device structure
* @maxchips: number of chips to scan for
* @table: alternative NAND ID table
*
* This is the first phase of the normal nand_scan() function. It reads the
* flash ID and sets up MTD fields accordingly.
*
*/
int nand_scan_ident(struct mtd_info *mtd, int maxchips,
struct nand_flash_dev *table)
{
int i, nand_maf_id, nand_dev_id;
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_flash_dev *type;
int ret;
if (chip->flash_node) {
ret = nand_dt_init(mtd, chip, chip->flash_node);
if (ret)
return ret;
}
/* Set the default functions */
nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
/* Read the flash type */
type = nand_get_flash_type(mtd, chip, &nand_maf_id,
&nand_dev_id, table);
if (IS_ERR(type)) {
if (!(chip->options & NAND_SCAN_SILENT_NODEV))
pr_warn("No NAND device found\n");
chip->select_chip(mtd, -1);
return PTR_ERR(type);
}
/* Initialize the ->data_interface field. */
ret = nand_init_data_interface(chip);
if (ret)
return ret;
/*
* Setup the data interface correctly on the chip and controller side.
* This explicit call to nand_setup_data_interface() is only required
* for the first die, because nand_reset() has been called before
* ->data_interface and ->default_onfi_timing_mode were set.
* For the other dies, nand_reset() will automatically switch to the
* best mode for us.
*/
ret = nand_setup_data_interface(chip, 0);
if (ret)
return ret;
chip->select_chip(mtd, -1);
/* Check for a chip array */
for (i = 1; i < maxchips; i++) {
u8 id[2];
/* See comment in nand_get_flash_type for reset */
nand_reset(chip, i);
chip->select_chip(mtd, i);
/* Send the command for reading device ID */
nand_readid_op(chip, 0, id, sizeof(id));
/* Read manufacturer and device IDs */
if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
chip->select_chip(mtd, -1);
break;
}
chip->select_chip(mtd, -1);
}
#ifdef DEBUG
if (i > 1)
pr_info("%d chips detected\n", i);
#endif
/* Store the number of chips and calc total size for mtd */
chip->numchips = i;
mtd->size = i * chip->chipsize;
return 0;
}
EXPORT_SYMBOL(nand_scan_ident);
/**
* nand_check_ecc_caps - check the sanity of preset ECC settings
* @chip: nand chip info structure
* @caps: ECC caps info structure
* @oobavail: OOB size that the ECC engine can use
*
* When ECC step size and strength are already set, check if they are supported
* by the controller and the calculated ECC bytes fit within the chip's OOB.
* On success, the calculated ECC bytes is set.
*/
int nand_check_ecc_caps(struct nand_chip *chip,
const struct nand_ecc_caps *caps, int oobavail)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_ecc_step_info *stepinfo;
int preset_step = chip->ecc.size;
int preset_strength = chip->ecc.strength;
int nsteps, ecc_bytes;
int i, j;
if (WARN_ON(oobavail < 0))
return -EINVAL;
if (!preset_step || !preset_strength)
return -ENODATA;
nsteps = mtd->writesize / preset_step;
for (i = 0; i < caps->nstepinfos; i++) {
stepinfo = &caps->stepinfos[i];
if (stepinfo->stepsize != preset_step)
continue;
for (j = 0; j < stepinfo->nstrengths; j++) {
if (stepinfo->strengths[j] != preset_strength)
continue;
ecc_bytes = caps->calc_ecc_bytes(preset_step,
preset_strength);
if (WARN_ON_ONCE(ecc_bytes < 0))
return ecc_bytes;
if (ecc_bytes * nsteps > oobavail) {
pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
preset_step, preset_strength);
return -ENOSPC;
}
chip->ecc.bytes = ecc_bytes;
return 0;
}
}
pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
preset_step, preset_strength);
return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
/**
* nand_match_ecc_req - meet the chip's requirement with least ECC bytes
* @chip: nand chip info structure
* @caps: ECC engine caps info structure
* @oobavail: OOB size that the ECC engine can use
*
* If a chip's ECC requirement is provided, try to meet it with the least
* number of ECC bytes (i.e. with the largest number of OOB-free bytes).
* On success, the chosen ECC settings are set.
*/
int nand_match_ecc_req(struct nand_chip *chip,
const struct nand_ecc_caps *caps, int oobavail)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_ecc_step_info *stepinfo;
int req_step = chip->ecc_step_ds;
int req_strength = chip->ecc_strength_ds;
int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
int best_step, best_strength, best_ecc_bytes;
int best_ecc_bytes_total = INT_MAX;
int i, j;
if (WARN_ON(oobavail < 0))
return -EINVAL;
/* No information provided by the NAND chip */
if (!req_step || !req_strength)
return -ENOTSUPP;
/* number of correctable bits the chip requires in a page */
req_corr = mtd->writesize / req_step * req_strength;
for (i = 0; i < caps->nstepinfos; i++) {
stepinfo = &caps->stepinfos[i];
step_size = stepinfo->stepsize;
for (j = 0; j < stepinfo->nstrengths; j++) {
strength = stepinfo->strengths[j];
/*
* If both step size and strength are smaller than the
* chip's requirement, it is not easy to compare the
* resulted reliability.
*/
if (step_size < req_step && strength < req_strength)
continue;
if (mtd->writesize % step_size)
continue;
nsteps = mtd->writesize / step_size;
ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
if (WARN_ON_ONCE(ecc_bytes < 0))
continue;
ecc_bytes_total = ecc_bytes * nsteps;
if (ecc_bytes_total > oobavail ||
strength * nsteps < req_corr)
continue;
/*
* We assume the best is to meet the chip's requrement
* with the least number of ECC bytes.
*/
if (ecc_bytes_total < best_ecc_bytes_total) {
best_ecc_bytes_total = ecc_bytes_total;
best_step = step_size;
best_strength = strength;
best_ecc_bytes = ecc_bytes;
}
}
}
if (best_ecc_bytes_total == INT_MAX)
return -ENOTSUPP;
chip->ecc.size = best_step;
chip->ecc.strength = best_strength;
chip->ecc.bytes = best_ecc_bytes;
return 0;
}
EXPORT_SYMBOL_GPL(nand_match_ecc_req);
/**
* nand_maximize_ecc - choose the max ECC strength available
* @chip: nand chip info structure
* @caps: ECC engine caps info structure
* @oobavail: OOB size that the ECC engine can use
*
* Choose the max ECC strength that is supported on the controller, and can fit
* within the chip's OOB. On success, the chosen ECC settings are set.
*/
int nand_maximize_ecc(struct nand_chip *chip,
const struct nand_ecc_caps *caps, int oobavail)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_ecc_step_info *stepinfo;
int step_size, strength, nsteps, ecc_bytes, corr;
int best_corr = 0;
int best_step = 0;
int best_strength, best_ecc_bytes;
int i, j;
if (WARN_ON(oobavail < 0))
return -EINVAL;
for (i = 0; i < caps->nstepinfos; i++) {
stepinfo = &caps->stepinfos[i];
step_size = stepinfo->stepsize;
/* If chip->ecc.size is already set, respect it */
if (chip->ecc.size && step_size != chip->ecc.size)
continue;
for (j = 0; j < stepinfo->nstrengths; j++) {
strength = stepinfo->strengths[j];
if (mtd->writesize % step_size)
continue;
nsteps = mtd->writesize / step_size;
ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
if (WARN_ON_ONCE(ecc_bytes < 0))
continue;
if (ecc_bytes * nsteps > oobavail)
continue;
corr = strength * nsteps;
/*
* If the number of correctable bits is the same,
* bigger step_size has more reliability.
*/
if (corr > best_corr ||
(corr == best_corr && step_size > best_step)) {
best_corr = corr;
best_step = step_size;
best_strength = strength;
best_ecc_bytes = ecc_bytes;
}
}
}
if (!best_corr)
return -ENOTSUPP;
chip->ecc.size = best_step;
chip->ecc.strength = best_strength;
chip->ecc.bytes = best_ecc_bytes;
return 0;
}
EXPORT_SYMBOL_GPL(nand_maximize_ecc);
/*
* Check if the chip configuration meet the datasheet requirements.
* If our configuration corrects A bits per B bytes and the minimum
* required correction level is X bits per Y bytes, then we must ensure
* both of the following are true:
*
* (1) A / B >= X / Y
* (2) A >= X
*
* Requirement (1) ensures we can correct for the required bitflip density.
* Requirement (2) ensures we can correct even when all bitflips are clumped
* in the same sector.
*/
static bool nand_ecc_strength_good(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int corr, ds_corr;
if (ecc->size == 0 || chip->ecc_step_ds == 0)
/* Not enough information */
return true;
/*
* We get the number of corrected bits per page to compare
* the correction density.
*/
corr = (mtd->writesize * ecc->strength) / ecc->size;
ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
}
static bool invalid_ecc_page_accessors(struct nand_chip *chip)
{
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (nand_standard_page_accessors(ecc))
return false;
/*
* NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
* controller driver implements all the page accessors because
* default helpers are not suitable when the core does not
* send the READ0/PAGEPROG commands.
*/
return (!ecc->read_page || !ecc->write_page ||
!ecc->read_page_raw || !ecc->write_page_raw ||
(NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
(NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
ecc->hwctl && ecc->calculate));
}
/**
* nand_scan_tail - [NAND Interface] Scan for the NAND device
* @mtd: MTD device structure
*
* This is the second phase of the normal nand_scan() function. It fills out
* all the uninitialized function pointers with the defaults and scans for a
* bad block table if appropriate.
*/
int nand_scan_tail(struct mtd_info *mtd)
{
int i;
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
struct nand_buffers *nbuf;
/* New bad blocks should be marked in OOB, flash-based BBT, or both */
BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
!(chip->bbt_options & NAND_BBT_USE_FLASH));
if (invalid_ecc_page_accessors(chip)) {
pr_err("Invalid ECC page accessors setup\n");
return -EINVAL;
}
if (!(chip->options & NAND_OWN_BUFFERS)) {
nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
chip->buffers = nbuf;
} else {
if (!chip->buffers)
return -ENOMEM;
}
/* Set the internal oob buffer location, just after the page data */
chip->oob_poi = chip->buffers->databuf + mtd->writesize;
/*
* If no default placement scheme is given, select an appropriate one.
*/
if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
switch (mtd->oobsize) {
#ifndef CONFIG_SYS_NAND_DRIVER_ECC_LAYOUT
case 8:
ecc->layout = &nand_oob_8;
break;
case 16:
ecc->layout = &nand_oob_16;
break;
case 64:
ecc->layout = &nand_oob_64;
break;
case 128:
ecc->layout = &nand_oob_128;
break;
#endif
default:
pr_warn("No oob scheme defined for oobsize %d\n",
mtd->oobsize);
BUG();
}
}
if (!chip->write_page)
chip->write_page = nand_write_page;
/*
* Check ECC mode, default to software if 3byte/512byte hardware ECC is
* selected and we have 256 byte pagesize fallback to software ECC
*/
switch (ecc->mode) {
case NAND_ECC_HW_OOB_FIRST:
/* Similar to NAND_ECC_HW, but a separate read_page handle */
if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
pr_warn("No ECC functions supplied; hardware ECC not possible\n");
BUG();
}
if (!ecc->read_page)
ecc->read_page = nand_read_page_hwecc_oob_first;
case NAND_ECC_HW:
/* Use standard hwecc read page function? */
if (!ecc->read_page)
ecc->read_page = nand_read_page_hwecc;
if (!ecc->write_page)
ecc->write_page = nand_write_page_hwecc;
if (!ecc->read_page_raw)
ecc->read_page_raw = nand_read_page_raw;
if (!ecc->write_page_raw)
ecc->write_page_raw = nand_write_page_raw;
if (!ecc->read_oob)
ecc->read_oob = nand_read_oob_std;
if (!ecc->write_oob)
ecc->write_oob = nand_write_oob_std;
if (!ecc->read_subpage)
ecc->read_subpage = nand_read_subpage;
if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
ecc->write_subpage = nand_write_subpage_hwecc;
case NAND_ECC_HW_SYNDROME:
if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
(!ecc->read_page ||
ecc->read_page == nand_read_page_hwecc ||
!ecc->write_page ||
ecc->write_page == nand_write_page_hwecc)) {
pr_warn("No ECC functions supplied; hardware ECC not possible\n");
BUG();
}
/* Use standard syndrome read/write page function? */
if (!ecc->read_page)
ecc->read_page = nand_read_page_syndrome;
if (!ecc->write_page)
ecc->write_page = nand_write_page_syndrome;
if (!ecc->read_page_raw)
ecc->read_page_raw = nand_read_page_raw_syndrome;
if (!ecc->write_page_raw)
ecc->write_page_raw = nand_write_page_raw_syndrome;
if (!ecc->read_oob)
ecc->read_oob = nand_read_oob_syndrome;
if (!ecc->write_oob)
ecc->write_oob = nand_write_oob_syndrome;
if (mtd->writesize >= ecc->size) {
if (!ecc->strength) {
pr_warn("Driver must set ecc.strength when using hardware ECC\n");
BUG();
}
break;
}
pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
ecc->size, mtd->writesize);
ecc->mode = NAND_ECC_SOFT;
case NAND_ECC_SOFT:
ecc->calculate = nand_calculate_ecc;
ecc->correct = nand_correct_data;
ecc->read_page = nand_read_page_swecc;
ecc->read_subpage = nand_read_subpage;
ecc->write_page = nand_write_page_swecc;
ecc->read_page_raw = nand_read_page_raw;
ecc->write_page_raw = nand_write_page_raw;
ecc->read_oob = nand_read_oob_std;
ecc->write_oob = nand_write_oob_std;
if (!ecc->size)
ecc->size = 256;
ecc->bytes = 3;
ecc->strength = 1;
break;
case NAND_ECC_SOFT_BCH:
if (!mtd_nand_has_bch()) {
pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
BUG();
}
ecc->calculate = nand_bch_calculate_ecc;
ecc->correct = nand_bch_correct_data;
ecc->read_page = nand_read_page_swecc;
ecc->read_subpage = nand_read_subpage;
ecc->write_page = nand_write_page_swecc;
ecc->read_page_raw = nand_read_page_raw;
ecc->write_page_raw = nand_write_page_raw;
ecc->read_oob = nand_read_oob_std;
ecc->write_oob = nand_write_oob_std;
/*
* Board driver should supply ecc.size and ecc.strength values
* to select how many bits are correctable. Otherwise, default
* to 4 bits for large page devices.
*/
if (!ecc->size && (mtd->oobsize >= 64)) {
ecc->size = 512;
ecc->strength = 4;
}
/* See nand_bch_init() for details. */
ecc->bytes = 0;
ecc->priv = nand_bch_init(mtd);
if (!ecc->priv) {
pr_warn("BCH ECC initialization failed!\n");
BUG();
}
break;
case NAND_ECC_NONE:
pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
ecc->read_page = nand_read_page_raw;
ecc->write_page = nand_write_page_raw;
ecc->read_oob = nand_read_oob_std;
ecc->read_page_raw = nand_read_page_raw;
ecc->write_page_raw = nand_write_page_raw;
ecc->write_oob = nand_write_oob_std;
ecc->size = mtd->writesize;
ecc->bytes = 0;
ecc->strength = 0;
break;
default:
pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
BUG();
}
/* For many systems, the standard OOB write also works for raw */
if (!ecc->read_oob_raw)
ecc->read_oob_raw = ecc->read_oob;
if (!ecc->write_oob_raw)
ecc->write_oob_raw = ecc->write_oob;
/*
* The number of bytes available for a client to place data into
* the out of band area.
*/
mtd->oobavail = 0;
if (ecc->layout) {
for (i = 0; ecc->layout->oobfree[i].length; i++)
mtd->oobavail += ecc->layout->oobfree[i].length;
}
/* ECC sanity check: warn if it's too weak */
if (!nand_ecc_strength_good(mtd))
pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
mtd->name);
/*
* Set the number of read / write steps for one page depending on ECC
* mode.
*/
ecc->steps = mtd->writesize / ecc->size;
if (ecc->steps * ecc->size != mtd->writesize) {
pr_warn("Invalid ECC parameters\n");
BUG();
}
ecc->total = ecc->steps * ecc->bytes;
/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
switch (ecc->steps) {
case 2:
mtd->subpage_sft = 1;
break;
case 4:
case 8:
case 16:
mtd->subpage_sft = 2;
break;
}
}
chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
/* Initialize state */
chip->state = FL_READY;
/* Invalidate the pagebuffer reference */
chip->pagebuf = -1;
/* Large page NAND with SOFT_ECC should support subpage reads */
switch (ecc->mode) {
case NAND_ECC_SOFT:
case NAND_ECC_SOFT_BCH:
if (chip->page_shift > 9)
chip->options |= NAND_SUBPAGE_READ;
break;
default:
break;
}
/* Fill in remaining MTD driver data */
mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
MTD_CAP_NANDFLASH;
mtd->_erase = nand_erase;
mtd->_panic_write = panic_nand_write;
mtd->_read_oob = nand_read_oob;
mtd->_write_oob = nand_write_oob;
mtd->_sync = nand_sync;
mtd->_lock = NULL;
mtd->_unlock = NULL;
mtd->_block_isreserved = nand_block_isreserved;
mtd->_block_isbad = nand_block_isbad;
mtd->_block_markbad = nand_block_markbad;
mtd->writebufsize = mtd->writesize;
/* propagate ecc info to mtd_info */
mtd->ecclayout = ecc->layout;
mtd->ecc_strength = ecc->strength;
mtd->ecc_step_size = ecc->size;
/*
* Initialize bitflip_threshold to its default prior scan_bbt() call.
* scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
* properly set.
*/
if (!mtd->bitflip_threshold)
mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
return 0;
}
EXPORT_SYMBOL(nand_scan_tail);
/**
* nand_scan - [NAND Interface] Scan for the NAND device
* @mtd: MTD device structure
* @maxchips: number of chips to scan for
*
* This fills out all the uninitialized function pointers with the defaults.
* The flash ID is read and the mtd/chip structures are filled with the
* appropriate values.
*/
int nand_scan(struct mtd_info *mtd, int maxchips)
{
int ret;
ret = nand_scan_ident(mtd, maxchips, NULL);
if (!ret)
ret = nand_scan_tail(mtd);
return ret;
}
EXPORT_SYMBOL(nand_scan);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
MODULE_DESCRIPTION("Generic NAND flash driver code");