u-boot/test/dm/core.c

794 lines
21 KiB
C
Raw Normal View History

/*
* Tests for the core driver model code
*
* Copyright (c) 2013 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <errno.h>
#include <dm.h>
#include <fdtdec.h>
#include <malloc.h>
#include <dm/device-internal.h>
#include <dm/root.h>
#include <dm/util.h>
#include <dm/test.h>
#include <dm/uclass-internal.h>
#include <test/ut.h>
DECLARE_GLOBAL_DATA_PTR;
enum {
TEST_INTVAL1 = 0,
TEST_INTVAL2 = 3,
TEST_INTVAL3 = 6,
TEST_INTVAL_MANUAL = 101112,
TEST_INTVAL_PRE_RELOC = 7,
};
static const struct dm_test_pdata test_pdata[] = {
{ .ping_add = TEST_INTVAL1, },
{ .ping_add = TEST_INTVAL2, },
{ .ping_add = TEST_INTVAL3, },
};
static const struct dm_test_pdata test_pdata_manual = {
.ping_add = TEST_INTVAL_MANUAL,
};
static const struct dm_test_pdata test_pdata_pre_reloc = {
.ping_add = TEST_INTVAL_PRE_RELOC,
};
U_BOOT_DEVICE(dm_test_info1) = {
.name = "test_drv",
.platdata = &test_pdata[0],
};
U_BOOT_DEVICE(dm_test_info2) = {
.name = "test_drv",
.platdata = &test_pdata[1],
};
U_BOOT_DEVICE(dm_test_info3) = {
.name = "test_drv",
.platdata = &test_pdata[2],
};
static struct driver_info driver_info_manual = {
.name = "test_manual_drv",
.platdata = &test_pdata_manual,
};
static struct driver_info driver_info_pre_reloc = {
.name = "test_pre_reloc_drv",
.platdata = &test_pdata_manual,
};
void dm_leak_check_start(struct unit_test_state *uts)
{
uts->start = mallinfo();
if (!uts->start.uordblks)
puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
}
int dm_leak_check_end(struct unit_test_state *uts)
{
struct mallinfo end;
int id;
/* Don't delete the root class, since we started with that */
for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
struct uclass *uc;
uc = uclass_find(id);
if (!uc)
continue;
ut_assertok(uclass_destroy(uc));
}
end = mallinfo();
ut_asserteq(uts->start.uordblks, end.uordblks);
return 0;
}
/* Test that binding with platdata occurs correctly */
static int dm_test_autobind(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
struct udevice *dev;
/*
* We should have a single class (UCLASS_ROOT) and a single root
* device with no children.
*/
ut_assert(dms->root);
ut_asserteq(1, list_count_items(&gd->uclass_root));
ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
ut_assertok(dm_scan_platdata(false));
/* We should have our test class now at least, plus more children */
ut_assert(1 < list_count_items(&gd->uclass_root));
ut_assert(0 < list_count_items(&gd->dm_root->child_head));
/* Our 3 dm_test_infox children should be bound to the test uclass */
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
/* No devices should be probed */
list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
/* Our test driver should have been bound 3 times */
ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
return 0;
}
DM_TEST(dm_test_autobind, 0);
/* Test that binding with uclass platdata allocation occurs correctly */
static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
{
struct dm_test_perdev_uc_pdata *uc_pdata;
struct udevice *dev;
struct uclass *uc;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
ut_assert(uc);
/**
* Test if test uclass driver requires allocation for the uclass
* platform data and then check the dev->uclass_platdata pointer.
*/
ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size);
for (uclass_find_first_device(UCLASS_TEST, &dev);
dev;
uclass_find_next_device(&dev)) {
ut_assert(dev);
uc_pdata = dev_get_uclass_platdata(dev);
ut_assert(uc_pdata);
}
return 0;
}
DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA);
/* Test that binding with uclass platdata setting occurs correctly */
static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
{
struct dm_test_perdev_uc_pdata *uc_pdata;
struct udevice *dev;
/**
* In the test_postbind() method of test uclass driver, the uclass
* platform data should be set to three test int values - test it.
*/
for (uclass_find_first_device(UCLASS_TEST, &dev);
dev;
uclass_find_next_device(&dev)) {
ut_assert(dev);
uc_pdata = dev_get_uclass_platdata(dev);
ut_assert(uc_pdata);
ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
}
return 0;
}
DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA);
/* Test that autoprobe finds all the expected devices */
static int dm_test_autoprobe(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
int expected_base_add;
struct udevice *dev;
struct uclass *uc;
int i;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
ut_assert(uc);
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
/* The root device should not be activated until needed */
ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
/*
* We should be able to find the three test devices, and they should
* all be activated as they are used (lazy activation, required by
* U-Boot)
*/
for (i = 0; i < 3; i++) {
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
"Driver %d/%s already activated", i, dev->name);
/* This should activate it */
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
ut_assert(dev->flags & DM_FLAG_ACTIVATED);
/* Activating a device should activate the root device */
if (!i)
ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
}
/*
* Our 3 dm_test_info children should be passed to pre_probe and
* post_probe
*/
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
/* Also we can check the per-device data */
expected_base_add = 0;
for (i = 0; i < 3; i++) {
struct dm_test_uclass_perdev_priv *priv;
struct dm_test_pdata *pdata;
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
priv = dev_get_uclass_priv(dev);
ut_assert(priv);
ut_asserteq(expected_base_add, priv->base_add);
pdata = dev->platdata;
expected_base_add += pdata->ping_add;
}
return 0;
}
DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
/* Check that we see the correct platdata in each device */
static int dm_test_platdata(struct unit_test_state *uts)
{
const struct dm_test_pdata *pdata;
struct udevice *dev;
int i;
for (i = 0; i < 3; i++) {
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
pdata = dev->platdata;
ut_assert(pdata->ping_add == test_pdata[i].ping_add);
}
return 0;
}
DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
/* Test that we can bind, probe, remove, unbind a driver */
static int dm_test_lifecycle(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
int op_count[DM_TEST_OP_COUNT];
struct udevice *dev, *test_dev;
int pingret;
int ret;
memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
== op_count[DM_TEST_OP_BIND] + 1);
ut_assert(!dev->priv);
/* Probe the device - it should fail allocating private data */
dms->force_fail_alloc = 1;
ret = device_probe(dev);
ut_assert(ret == -ENOMEM);
ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
== op_count[DM_TEST_OP_PROBE] + 1);
ut_assert(!dev->priv);
/* Try again without the alloc failure */
dms->force_fail_alloc = 0;
ut_assertok(device_probe(dev));
ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
== op_count[DM_TEST_OP_PROBE] + 2);
ut_assert(dev->priv);
/* This should be device 3 in the uclass */
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
ut_assert(dev == test_dev);
/* Try ping */
ut_assertok(test_ping(dev, 100, &pingret));
ut_assert(pingret == 102);
/* Now remove device 3 */
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
ut_assertok(device_remove(dev));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
ut_assertok(device_unbind(dev));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
return 0;
}
DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
/* Test that we can bind/unbind and the lists update correctly */
static int dm_test_ordering(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
int pingret;
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
/* Bind two new devices (numbers 4 and 5) */
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
&dev_penultimate));
ut_assert(dev_penultimate);
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
&dev_last));
ut_assert(dev_last);
/* Now remove device 3 */
ut_assertok(device_remove(dev));
ut_assertok(device_unbind(dev));
/* The device numbering should have shifted down one */
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
ut_assert(dev_penultimate == test_dev);
ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
ut_assert(dev_last == test_dev);
/* Add back the original device 3, now in position 5 */
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
/* Try ping */
ut_assertok(test_ping(dev, 100, &pingret));
ut_assert(pingret == 102);
/* Remove 3 and 4 */
ut_assertok(device_remove(dev_penultimate));
ut_assertok(device_unbind(dev_penultimate));
ut_assertok(device_remove(dev_last));
ut_assertok(device_unbind(dev_last));
/* Our device should now be in position 3 */
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
ut_assert(dev == test_dev);
/* Now remove device 3 */
ut_assertok(device_remove(dev));
ut_assertok(device_unbind(dev));
return 0;
}
DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
/* Check that we can perform operations on a device (do a ping) */
int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
uint32_t base, struct dm_test_priv *priv)
{
int expected;
int pingret;
/* Getting the child device should allocate platdata / priv */
ut_assertok(testfdt_ping(dev, 10, &pingret));
ut_assert(dev->priv);
ut_assert(dev->platdata);
expected = 10 + base;
ut_asserteq(expected, pingret);
/* Do another ping */
ut_assertok(testfdt_ping(dev, 20, &pingret));
expected = 20 + base;
ut_asserteq(expected, pingret);
/* Now check the ping_total */
priv = dev->priv;
ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
priv->ping_total);
return 0;
}
/* Check that we can perform operations on devices */
static int dm_test_operations(struct unit_test_state *uts)
{
struct udevice *dev;
int i;
/*
* Now check that the ping adds are what we expect. This is using the
* ping-add property in each node.
*/
for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
uint32_t base;
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
/*
* Get the 'reg' property, which tells us what the ping add
* should be. We don't use the platdata because we want
* to test the code that sets that up (testfdt_drv_probe()).
*/
base = test_pdata[i].ping_add;
debug("dev=%d, base=%d\n", i, base);
ut_assert(!dm_check_operations(uts, dev, base, dev->priv));
}
return 0;
}
DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
/* Remove all drivers and check that things work */
static int dm_test_remove(struct unit_test_state *uts)
{
struct udevice *dev;
int i;
for (i = 0; i < 3; i++) {
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
"Driver %d/%s not activated", i, dev->name);
ut_assertok(device_remove(dev));
ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
"Driver %d/%s should have deactivated", i,
dev->name);
ut_assert(!dev->priv);
}
return 0;
}
DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
/* Remove and recreate everything, check for memory leaks */
static int dm_test_leak(struct unit_test_state *uts)
{
int i;
for (i = 0; i < 2; i++) {
struct udevice *dev;
int ret;
int id;
dm_leak_check_start(uts);
ut_assertok(dm_scan_platdata(false));
ut_assertok(dm_scan_fdt(gd->fdt_blob, false));
/* Scanning the uclass is enough to probe all the devices */
for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
for (ret = uclass_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_next_device(&dev))
;
ut_assertok(ret);
}
ut_assertok(dm_leak_check_end(uts));
}
return 0;
}
DM_TEST(dm_test_leak, 0);
/* Test uclass init/destroy methods */
static int dm_test_uclass(struct unit_test_state *uts)
{
struct uclass *uc;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
ut_assert(uc->priv);
ut_assertok(uclass_destroy(uc));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
return 0;
}
DM_TEST(dm_test_uclass, 0);
/**
* create_children() - Create children of a parent node
*
* @dms: Test system state
* @parent: Parent device
* @count: Number of children to create
* @key: Key value to put in first child. Subsequence children
* receive an incrementing value
* @child: If not NULL, then the child device pointers are written into
* this array.
* @return 0 if OK, -ve on error
*/
static int create_children(struct unit_test_state *uts, struct udevice *parent,
int count, int key, struct udevice *child[])
{
struct udevice *dev;
int i;
for (i = 0; i < count; i++) {
struct dm_test_pdata *pdata;
ut_assertok(device_bind_by_name(parent, false,
&driver_info_manual, &dev));
pdata = calloc(1, sizeof(*pdata));
pdata->ping_add = key + i;
dev->platdata = pdata;
if (child)
child[i] = dev;
}
return 0;
}
#define NODE_COUNT 10
static int dm_test_children(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
struct udevice *top[NODE_COUNT];
struct udevice *child[NODE_COUNT];
struct udevice *grandchild[NODE_COUNT];
struct udevice *dev;
int total;
int ret;
int i;
/* We don't care about the numbering for this test */
dms->skip_post_probe = 1;
ut_assert(NODE_COUNT > 5);
/* First create 10 top-level children */
ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
/* Now a few have their own children */
ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
/* And grandchildren */
for (i = 0; i < NODE_COUNT; i++)
ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
i == 2 ? grandchild : NULL));
/* Check total number of devices */
total = NODE_COUNT * (3 + NODE_COUNT);
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
/* Try probing one of the grandchildren */
ut_assertok(uclass_get_device(UCLASS_TEST,
NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
ut_asserteq_ptr(grandchild[0], dev);
/*
* This should have probed the child and top node also, for a total
* of 3 nodes.
*/
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
/* Probe the other grandchildren */
for (i = 1; i < NODE_COUNT; i++)
ut_assertok(device_probe(grandchild[i]));
ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
/* Probe everything */
for (ret = uclass_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_next_device(&dev))
;
ut_assertok(ret);
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
/* Remove a top-level child and check that the children are removed */
ut_assertok(device_remove(top[2]));
ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
/* Try one with grandchildren */
ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
ut_asserteq_ptr(dev, top[5]);
ut_assertok(device_remove(dev));
ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
/* Try the same with unbind */
ut_assertok(device_unbind(top[2]));
ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
/* Try one with grandchildren */
ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
ut_asserteq_ptr(dev, top[6]);
ut_assertok(device_unbind(top[5]));
ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
return 0;
}
DM_TEST(dm_test_children, 0);
/* Test that pre-relocation devices work as expected */
static int dm_test_pre_reloc(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
struct udevice *dev;
/* The normal driver should refuse to bind before relocation */
ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
&driver_info_manual, &dev));
/* But this one is marked pre-reloc */
ut_assertok(device_bind_by_name(dms->root, true,
&driver_info_pre_reloc, &dev));
return 0;
}
DM_TEST(dm_test_pre_reloc, 0);
static int dm_test_uclass_before_ready(struct unit_test_state *uts)
{
struct uclass *uc;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
gd->dm_root = NULL;
gd->dm_root_f = NULL;
memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
return 0;
}
DM_TEST(dm_test_uclass_before_ready, 0);
static int dm_test_uclass_devices_find(struct unit_test_state *uts)
{
struct udevice *dev;
int ret;
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assert(dev);
}
return 0;
}
DM_TEST(dm_test_uclass_devices_find, DM_TESTF_SCAN_PDATA);
static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
{
struct udevice *finddev;
struct udevice *testdev;
int findret, ret;
/*
* For each test device found in fdt like: "a-test", "b-test", etc.,
* use its name and try to find it by uclass_find_device_by_name().
* Then, on success check if:
* - current 'testdev' name is equal to the returned 'finddev' name
* - current 'testdev' pointer is equal to the returned 'finddev'
*
* We assume that, each uclass's device name is unique, so if not, then
* this will fail on checking condition: testdev == finddev, since the
* uclass_find_device_by_name(), returns the first device by given name.
*/
for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
testdev;
ret = uclass_find_next_device(&testdev)) {
ut_assertok(ret);
ut_assert(testdev);
findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
testdev->name,
&finddev);
ut_assertok(findret);
ut_assert(testdev);
ut_asserteq_str(testdev->name, finddev->name);
ut_asserteq_ptr(testdev, finddev);
}
return 0;
}
DM_TEST(dm_test_uclass_devices_find_by_name, DM_TESTF_SCAN_FDT);
static int dm_test_uclass_devices_get(struct unit_test_state *uts)
{
struct udevice *dev;
int ret;
for (ret = uclass_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_next_device(&dev)) {
ut_assert(!ret);
ut_assert(dev);
ut_assert(device_active(dev));
}
return 0;
}
DM_TEST(dm_test_uclass_devices_get, DM_TESTF_SCAN_PDATA);
static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
{
struct udevice *finddev;
struct udevice *testdev;
int ret, findret;
/*
* For each test device found in fdt like: "a-test", "b-test", etc.,
* use its name and try to get it by uclass_get_device_by_name().
* On success check if:
* - returned finddev' is active
* - current 'testdev' name is equal to the returned 'finddev' name
* - current 'testdev' pointer is equal to the returned 'finddev'
*
* We asserts that the 'testdev' is active on each loop entry, so we
* could be sure that the 'finddev' is activated too, but for sure
* we check it again.
*
* We assume that, each uclass's device name is unique, so if not, then
* this will fail on checking condition: testdev == finddev, since the
* uclass_get_device_by_name(), returns the first device by given name.
*/
for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
testdev;
ret = uclass_next_device(&testdev)) {
ut_assertok(ret);
ut_assert(testdev);
ut_assert(device_active(testdev));
findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
testdev->name,
&finddev);
ut_assertok(findret);
ut_assert(finddev);
ut_assert(device_active(finddev));
ut_asserteq_str(testdev->name, finddev->name);
ut_asserteq_ptr(testdev, finddev);
}
return 0;
}
DM_TEST(dm_test_uclass_devices_get_by_name, DM_TESTF_SCAN_FDT);
static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
{
struct udevice *dev;
ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
return 0;
}
DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA);