u-boot/drivers/ata/sata_mv.c

1129 lines
28 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) Excito Elektronik i Skåne AB, 2010.
* Author: Tor Krill <tor@excito.com>
*
* Copyright (C) 2015, 2019 Stefan Roese <sr@denx.de>
*/
/*
* This driver supports the SATA controller of some Mavell SoC's.
* Here a (most likely incomplete) list of the supported SoC's:
* - Kirkwood
* - Armada 370
* - Armada XP
*
* This driver implementation is an alternative to the already available
* driver via the "ide" commands interface (drivers/block/mvsata_ide.c).
* But this driver only supports PIO mode and as this new driver also
* supports transfer via DMA, its much faster.
*
* Please note, that the newer SoC's (e.g. Armada 38x) are not supported
* by this driver. As they have an AHCI compatible SATA controller
* integrated.
*/
/*
* TODO:
* Better error recovery
* No support for using PRDs (Thus max 64KB transfers)
* No NCQ support
* No port multiplier support
*/
#include <common.h>
#include <ahci.h>
#include <blk.h>
#include <cpu_func.h>
#include <dm.h>
#include <log.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <fis.h>
#include <libata.h>
#include <malloc.h>
#include <sata.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <linux/mbus.h>
#include <asm/arch/soc.h>
#if defined(CONFIG_ARCH_KIRKWOOD)
#define SATAHC_BASE KW_SATA_BASE
#else
#define SATAHC_BASE MVEBU_AXP_SATA_BASE
#endif
#define SATA0_BASE (SATAHC_BASE + 0x2000)
#define SATA1_BASE (SATAHC_BASE + 0x4000)
/* EDMA registers */
#define EDMA_CFG 0x000
#define EDMA_CFG_NCQ (1 << 5)
#define EDMA_CFG_EQUE (1 << 9)
#define EDMA_TIMER 0x004
#define EDMA_IECR 0x008
#define EDMA_IEMR 0x00c
#define EDMA_RQBA_HI 0x010
#define EDMA_RQIPR 0x014
#define EDMA_RQIPR_IPMASK (0x1f << 5)
#define EDMA_RQIPR_IPSHIFT 5
#define EDMA_RQOPR 0x018
#define EDMA_RQOPR_OPMASK (0x1f << 5)
#define EDMA_RQOPR_OPSHIFT 5
#define EDMA_RSBA_HI 0x01c
#define EDMA_RSIPR 0x020
#define EDMA_RSIPR_IPMASK (0x1f << 3)
#define EDMA_RSIPR_IPSHIFT 3
#define EDMA_RSOPR 0x024
#define EDMA_RSOPR_OPMASK (0x1f << 3)
#define EDMA_RSOPR_OPSHIFT 3
#define EDMA_CMD 0x028
#define EDMA_CMD_ENEDMA (0x01 << 0)
#define EDMA_CMD_DISEDMA (0x01 << 1)
#define EDMA_CMD_ATARST (0x01 << 2)
#define EDMA_CMD_FREEZE (0x01 << 4)
#define EDMA_TEST_CTL 0x02c
#define EDMA_STATUS 0x030
#define EDMA_IORTO 0x034
#define EDMA_CDTR 0x040
#define EDMA_HLTCND 0x060
#define EDMA_NTSR 0x094
/* Basic DMA registers */
#define BDMA_CMD 0x224
#define BDMA_STATUS 0x228
#define BDMA_DTLB 0x22c
#define BDMA_DTHB 0x230
#define BDMA_DRL 0x234
#define BDMA_DRH 0x238
/* SATA Interface registers */
#define SIR_ICFG 0x050
#define SIR_CFG_GEN2EN (0x1 << 7)
#define SIR_PLL_CFG 0x054
#define SIR_SSTATUS 0x300
#define SSTATUS_DET_MASK (0x0f << 0)
#define SIR_SERROR 0x304
#define SIR_SCONTROL 0x308
#define SIR_SCONTROL_DETEN (0x01 << 0)
#define SIR_LTMODE 0x30c
#define SIR_LTMODE_NELBE (0x01 << 7)
#define SIR_PHYMODE3 0x310
#define SIR_PHYMODE4 0x314
#define SIR_PHYMODE1 0x32c
#define SIR_PHYMODE2 0x330
#define SIR_BIST_CTRL 0x334
#define SIR_BIST_DW1 0x338
#define SIR_BIST_DW2 0x33c
#define SIR_SERR_IRQ_MASK 0x340
#define SIR_SATA_IFCTRL 0x344
#define SIR_SATA_TESTCTRL 0x348
#define SIR_SATA_IFSTATUS 0x34c
#define SIR_VEND_UNIQ 0x35c
#define SIR_FIS_CFG 0x360
#define SIR_FIS_IRQ_CAUSE 0x364
#define SIR_FIS_IRQ_MASK 0x368
#define SIR_FIS_DWORD0 0x370
#define SIR_FIS_DWORD1 0x374
#define SIR_FIS_DWORD2 0x378
#define SIR_FIS_DWORD3 0x37c
#define SIR_FIS_DWORD4 0x380
#define SIR_FIS_DWORD5 0x384
#define SIR_FIS_DWORD6 0x388
#define SIR_PHYM9_GEN2 0x398
#define SIR_PHYM9_GEN1 0x39c
#define SIR_PHY_CFG 0x3a0
#define SIR_PHYCTL 0x3a4
#define SIR_PHYM10 0x3a8
#define SIR_PHYM12 0x3b0
/* Shadow registers */
#define PIO_DATA 0x100
#define PIO_ERR_FEATURES 0x104
#define PIO_SECTOR_COUNT 0x108
#define PIO_LBA_LOW 0x10c
#define PIO_LBA_MID 0x110
#define PIO_LBA_HI 0x114
#define PIO_DEVICE 0x118
#define PIO_CMD_STATUS 0x11c
#define PIO_STATUS_ERR (0x01 << 0)
#define PIO_STATUS_DRQ (0x01 << 3)
#define PIO_STATUS_DF (0x01 << 5)
#define PIO_STATUS_DRDY (0x01 << 6)
#define PIO_STATUS_BSY (0x01 << 7)
#define PIO_CTRL_ALTSTAT 0x120
/* SATAHC arbiter registers */
#define SATAHC_CFG 0x000
#define SATAHC_RQOP 0x004
#define SATAHC_RQIP 0x008
#define SATAHC_ICT 0x00c
#define SATAHC_ITT 0x010
#define SATAHC_ICR 0x014
#define SATAHC_ICR_PORT0 (0x01 << 0)
#define SATAHC_ICR_PORT1 (0x01 << 1)
#define SATAHC_MIC 0x020
#define SATAHC_MIM 0x024
#define SATAHC_LED_CFG 0x02c
#define REQUEST_QUEUE_SIZE 32
#define RESPONSE_QUEUE_SIZE REQUEST_QUEUE_SIZE
struct crqb {
u32 dtb_low; /* DW0 */
u32 dtb_high; /* DW1 */
u32 control_flags; /* DW2 */
u32 drb_count; /* DW3 */
u32 ata_cmd_feat; /* DW4 */
u32 ata_addr; /* DW5 */
u32 ata_addr_exp; /* DW6 */
u32 ata_sect_count; /* DW7 */
};
#define CRQB_ALIGN 0x400
#define CRQB_CNTRLFLAGS_DIR (0x01 << 0)
#define CRQB_CNTRLFLAGS_DQTAGMASK (0x1f << 1)
#define CRQB_CNTRLFLAGS_DQTAGSHIFT 1
#define CRQB_CNTRLFLAGS_PMPORTMASK (0x0f << 12)
#define CRQB_CNTRLFLAGS_PMPORTSHIFT 12
#define CRQB_CNTRLFLAGS_PRDMODE (0x01 << 16)
#define CRQB_CNTRLFLAGS_HQTAGMASK (0x1f << 17)
#define CRQB_CNTRLFLAGS_HQTAGSHIFT 17
#define CRQB_CMDFEAT_CMDMASK (0xff << 16)
#define CRQB_CMDFEAT_CMDSHIFT 16
#define CRQB_CMDFEAT_FEATMASK (0xff << 16)
#define CRQB_CMDFEAT_FEATSHIFT 24
#define CRQB_ADDR_LBA_LOWMASK (0xff << 0)
#define CRQB_ADDR_LBA_LOWSHIFT 0
#define CRQB_ADDR_LBA_MIDMASK (0xff << 8)
#define CRQB_ADDR_LBA_MIDSHIFT 8
#define CRQB_ADDR_LBA_HIGHMASK (0xff << 16)
#define CRQB_ADDR_LBA_HIGHSHIFT 16
#define CRQB_ADDR_DEVICE_MASK (0xff << 24)
#define CRQB_ADDR_DEVICE_SHIFT 24
#define CRQB_ADDR_LBA_LOW_EXP_MASK (0xff << 0)
#define CRQB_ADDR_LBA_LOW_EXP_SHIFT 0
#define CRQB_ADDR_LBA_MID_EXP_MASK (0xff << 8)
#define CRQB_ADDR_LBA_MID_EXP_SHIFT 8
#define CRQB_ADDR_LBA_HIGH_EXP_MASK (0xff << 16)
#define CRQB_ADDR_LBA_HIGH_EXP_SHIFT 16
#define CRQB_ADDR_FEATURE_EXP_MASK (0xff << 24)
#define CRQB_ADDR_FEATURE_EXP_SHIFT 24
#define CRQB_SECTCOUNT_COUNT_MASK (0xff << 0)
#define CRQB_SECTCOUNT_COUNT_SHIFT 0
#define CRQB_SECTCOUNT_COUNT_EXP_MASK (0xff << 8)
#define CRQB_SECTCOUNT_COUNT_EXP_SHIFT 8
#define MVSATA_WIN_CONTROL(w) (SATAHC_BASE + 0x30 + ((w) << 4))
#define MVSATA_WIN_BASE(w) (SATAHC_BASE + 0x34 + ((w) << 4))
struct eprd {
u32 phyaddr_low;
u32 bytecount_eot;
u32 phyaddr_hi;
u32 reserved;
};
#define EPRD_PHYADDR_MASK 0xfffffffe
#define EPRD_BYTECOUNT_MASK 0x0000ffff
#define EPRD_EOT (0x01 << 31)
struct crpb {
u32 id;
u32 flags;
u32 timestamp;
};
#define CRPB_ALIGN 0x100
#define READ_CMD 0
#define WRITE_CMD 1
/*
* Since we don't use PRDs yet max transfer size
* is 64KB
*/
#define MV_ATA_MAX_SECTORS (65535 / ATA_SECT_SIZE)
/* Keep track if hw is initialized or not */
static u32 hw_init;
struct mv_priv {
char name[12];
u32 link;
u32 regbase;
u32 queue_depth;
u16 pio;
u16 mwdma;
u16 udma;
int dev_nr;
void *crqb_alloc;
struct crqb *request;
void *crpb_alloc;
struct crpb *response;
};
static int ata_wait_register(u32 *addr, u32 mask, u32 val, u32 timeout_msec)
{
ulong start;
start = get_timer(0);
do {
if ((in_le32(addr) & mask) == val)
return 0;
} while (get_timer(start) < timeout_msec);
return -ETIMEDOUT;
}
/* Cut from sata_mv in linux kernel */
static int mv_stop_edma_engine(struct udevice *dev, int port)
{
struct mv_priv *priv = dev_get_plat(dev);
int i;
/* Disable eDMA. The disable bit auto clears. */
out_le32(priv->regbase + EDMA_CMD, EDMA_CMD_DISEDMA);
/* Wait for the chip to confirm eDMA is off. */
for (i = 10000; i > 0; i--) {
u32 reg = in_le32(priv->regbase + EDMA_CMD);
if (!(reg & EDMA_CMD_ENEDMA)) {
debug("EDMA stop on port %d succesful\n", port);
return 0;
}
udelay(10);
}
debug("EDMA stop on port %d failed\n", port);
return -1;
}
static int mv_start_edma_engine(struct udevice *dev, int port)
{
struct mv_priv *priv = dev_get_plat(dev);
u32 tmp;
/* Check preconditions */
tmp = in_le32(priv->regbase + SIR_SSTATUS);
if ((tmp & SSTATUS_DET_MASK) != 0x03) {
printf("Device error on port: %d\n", port);
return -1;
}
tmp = in_le32(priv->regbase + PIO_CMD_STATUS);
if (tmp & (ATA_BUSY | ATA_DRQ)) {
printf("Device not ready on port: %d\n", port);
return -1;
}
/* Clear interrupt cause */
out_le32(priv->regbase + EDMA_IECR, 0x0);
tmp = in_le32(SATAHC_BASE + SATAHC_ICR);
tmp &= ~(port == 0 ? SATAHC_ICR_PORT0 : SATAHC_ICR_PORT1);
out_le32(SATAHC_BASE + SATAHC_ICR, tmp);
/* Configure edma operation */
tmp = in_le32(priv->regbase + EDMA_CFG);
tmp &= ~EDMA_CFG_NCQ; /* No NCQ */
tmp &= ~EDMA_CFG_EQUE; /* Dont queue operations */
out_le32(priv->regbase + EDMA_CFG, tmp);
out_le32(priv->regbase + SIR_FIS_IRQ_CAUSE, 0x0);
/* Configure fis, set all to no-wait for now */
out_le32(priv->regbase + SIR_FIS_CFG, 0x0);
/* Setup request queue */
out_le32(priv->regbase + EDMA_RQBA_HI, 0x0);
out_le32(priv->regbase + EDMA_RQIPR, priv->request);
out_le32(priv->regbase + EDMA_RQOPR, 0x0);
/* Setup response queue */
out_le32(priv->regbase + EDMA_RSBA_HI, 0x0);
out_le32(priv->regbase + EDMA_RSOPR, priv->response);
out_le32(priv->regbase + EDMA_RSIPR, 0x0);
/* Start edma */
out_le32(priv->regbase + EDMA_CMD, EDMA_CMD_ENEDMA);
return 0;
}
static int mv_reset_channel(struct udevice *dev, int port)
{
struct mv_priv *priv = dev_get_plat(dev);
/* Make sure edma is stopped */
mv_stop_edma_engine(dev, port);
out_le32(priv->regbase + EDMA_CMD, EDMA_CMD_ATARST);
udelay(25); /* allow reset propagation */
out_le32(priv->regbase + EDMA_CMD, 0);
mdelay(10);
return 0;
}
static void mv_reset_port(struct udevice *dev, int port)
{
struct mv_priv *priv = dev_get_plat(dev);
mv_reset_channel(dev, port);
out_le32(priv->regbase + EDMA_CMD, 0x0);
out_le32(priv->regbase + EDMA_CFG, 0x101f);
out_le32(priv->regbase + EDMA_IECR, 0x0);
out_le32(priv->regbase + EDMA_IEMR, 0x0);
out_le32(priv->regbase + EDMA_RQBA_HI, 0x0);
out_le32(priv->regbase + EDMA_RQIPR, 0x0);
out_le32(priv->regbase + EDMA_RQOPR, 0x0);
out_le32(priv->regbase + EDMA_RSBA_HI, 0x0);
out_le32(priv->regbase + EDMA_RSIPR, 0x0);
out_le32(priv->regbase + EDMA_RSOPR, 0x0);
out_le32(priv->regbase + EDMA_IORTO, 0xfa);
}
static void mv_reset_one_hc(void)
{
out_le32(SATAHC_BASE + SATAHC_ICT, 0x00);
out_le32(SATAHC_BASE + SATAHC_ITT, 0x00);
out_le32(SATAHC_BASE + SATAHC_ICR, 0x00);
}
static int probe_port(struct udevice *dev, int port)
{
struct mv_priv *priv = dev_get_plat(dev);
int tries, tries2, set15 = 0;
u32 tmp;
debug("Probe port: %d\n", port);
for (tries = 0; tries < 2; tries++) {
/* Clear SError */
out_le32(priv->regbase + SIR_SERROR, 0x0);
/* trigger com-init */
tmp = in_le32(priv->regbase + SIR_SCONTROL);
tmp = (tmp & 0x0f0) | 0x300 | SIR_SCONTROL_DETEN;
out_le32(priv->regbase + SIR_SCONTROL, tmp);
mdelay(1);
tmp = in_le32(priv->regbase + SIR_SCONTROL);
tries2 = 5;
do {
tmp = (tmp & 0x0f0) | 0x300;
out_le32(priv->regbase + SIR_SCONTROL, tmp);
mdelay(10);
tmp = in_le32(priv->regbase + SIR_SCONTROL);
} while ((tmp & 0xf0f) != 0x300 && tries2--);
mdelay(10);
for (tries2 = 0; tries2 < 200; tries2++) {
tmp = in_le32(priv->regbase + SIR_SSTATUS);
if ((tmp & SSTATUS_DET_MASK) == 0x03) {
debug("Found device on port\n");
return 0;
}
mdelay(1);
}
if ((tmp & SSTATUS_DET_MASK) == 0) {
debug("No device attached on port %d\n", port);
return -ENODEV;
}
if (!set15) {
/* Try on 1.5Gb/S */
debug("Try 1.5Gb link\n");
set15 = 1;
out_le32(priv->regbase + SIR_SCONTROL, 0x304);
tmp = in_le32(priv->regbase + SIR_ICFG);
tmp &= ~SIR_CFG_GEN2EN;
out_le32(priv->regbase + SIR_ICFG, tmp);
mv_reset_channel(dev, port);
}
}
debug("Failed to probe port\n");
return -1;
}
/* Get request queue in pointer */
static int get_reqip(struct udevice *dev, int port)
{
struct mv_priv *priv = dev_get_plat(dev);
u32 tmp;
tmp = in_le32(priv->regbase + EDMA_RQIPR) & EDMA_RQIPR_IPMASK;
tmp = tmp >> EDMA_RQIPR_IPSHIFT;
return tmp;
}
static void set_reqip(struct udevice *dev, int port, int reqin)
{
struct mv_priv *priv = dev_get_plat(dev);
u32 tmp;
tmp = in_le32(priv->regbase + EDMA_RQIPR) & ~EDMA_RQIPR_IPMASK;
tmp |= ((reqin << EDMA_RQIPR_IPSHIFT) & EDMA_RQIPR_IPMASK);
out_le32(priv->regbase + EDMA_RQIPR, tmp);
}
/* Get next available slot, ignoring possible overwrite */
static int get_next_reqip(struct udevice *dev, int port)
{
int slot = get_reqip(dev, port);
slot = (slot + 1) % REQUEST_QUEUE_SIZE;
return slot;
}
/* Get response queue in pointer */
static int get_rspip(struct udevice *dev, int port)
{
struct mv_priv *priv = dev_get_plat(dev);
u32 tmp;
tmp = in_le32(priv->regbase + EDMA_RSIPR) & EDMA_RSIPR_IPMASK;
tmp = tmp >> EDMA_RSIPR_IPSHIFT;
return tmp;
}
/* Get response queue out pointer */
static int get_rspop(struct udevice *dev, int port)
{
struct mv_priv *priv = dev_get_plat(dev);
u32 tmp;
tmp = in_le32(priv->regbase + EDMA_RSOPR) & EDMA_RSOPR_OPMASK;
tmp = tmp >> EDMA_RSOPR_OPSHIFT;
return tmp;
}
/* Get next response queue pointer */
static int get_next_rspop(struct udevice *dev, int port)
{
return (get_rspop(dev, port) + 1) % RESPONSE_QUEUE_SIZE;
}
/* Set response queue pointer */
static void set_rspop(struct udevice *dev, int port, int reqin)
{
struct mv_priv *priv = dev_get_plat(dev);
u32 tmp;
tmp = in_le32(priv->regbase + EDMA_RSOPR) & ~EDMA_RSOPR_OPMASK;
tmp |= ((reqin << EDMA_RSOPR_OPSHIFT) & EDMA_RSOPR_OPMASK);
out_le32(priv->regbase + EDMA_RSOPR, tmp);
}
static int wait_dma_completion(struct udevice *dev, int port, int index,
u32 timeout_msec)
{
u32 tmp, res;
tmp = port == 0 ? SATAHC_ICR_PORT0 : SATAHC_ICR_PORT1;
res = ata_wait_register((u32 *)(SATAHC_BASE + SATAHC_ICR), tmp,
tmp, timeout_msec);
if (res)
printf("Failed to wait for completion on port %d\n", port);
return res;
}
static void process_responses(struct udevice *dev, int port)
{
#ifdef DEBUG
struct mv_priv *priv = dev_get_plat(dev);
#endif
u32 tmp;
u32 outind = get_rspop(dev, port);
/* Ack interrupts */
tmp = in_le32(SATAHC_BASE + SATAHC_ICR);
if (port == 0)
tmp &= ~(BIT(0) | BIT(8));
else
tmp &= ~(BIT(1) | BIT(9));
tmp &= ~(BIT(4));
out_le32(SATAHC_BASE + SATAHC_ICR, tmp);
while (get_rspip(dev, port) != outind) {
#ifdef DEBUG
debug("Response index %d flags %08x on port %d\n", outind,
priv->response[outind].flags, port);
#endif
outind = get_next_rspop(dev, port);
set_rspop(dev, port, outind);
}
}
static int mv_ata_exec_ata_cmd(struct udevice *dev, int port,
struct sata_fis_h2d *cfis,
u8 *buffer, u32 len, u32 iswrite)
{
struct mv_priv *priv = dev_get_plat(dev);
struct crqb *req;
int slot;
u32 start;
if (len >= 64 * 1024) {
printf("We only support <64K transfers for now\n");
return -1;
}
/* Initialize request */
slot = get_reqip(dev, port);
memset(&priv->request[slot], 0, sizeof(struct crqb));
req = &priv->request[slot];
req->dtb_low = (u32)buffer;
/* Dont use PRDs */
req->control_flags = CRQB_CNTRLFLAGS_PRDMODE;
req->control_flags |= iswrite ? 0 : CRQB_CNTRLFLAGS_DIR;
req->control_flags |=
((cfis->pm_port_c << CRQB_CNTRLFLAGS_PMPORTSHIFT)
& CRQB_CNTRLFLAGS_PMPORTMASK);
req->drb_count = len;
req->ata_cmd_feat = (cfis->command << CRQB_CMDFEAT_CMDSHIFT) &
CRQB_CMDFEAT_CMDMASK;
req->ata_cmd_feat |= (cfis->features << CRQB_CMDFEAT_FEATSHIFT) &
CRQB_CMDFEAT_FEATMASK;
req->ata_addr = (cfis->lba_low << CRQB_ADDR_LBA_LOWSHIFT) &
CRQB_ADDR_LBA_LOWMASK;
req->ata_addr |= (cfis->lba_mid << CRQB_ADDR_LBA_MIDSHIFT) &
CRQB_ADDR_LBA_MIDMASK;
req->ata_addr |= (cfis->lba_high << CRQB_ADDR_LBA_HIGHSHIFT) &
CRQB_ADDR_LBA_HIGHMASK;
req->ata_addr |= (cfis->device << CRQB_ADDR_DEVICE_SHIFT) &
CRQB_ADDR_DEVICE_MASK;
req->ata_addr_exp = (cfis->lba_low_exp << CRQB_ADDR_LBA_LOW_EXP_SHIFT) &
CRQB_ADDR_LBA_LOW_EXP_MASK;
req->ata_addr_exp |=
(cfis->lba_mid_exp << CRQB_ADDR_LBA_MID_EXP_SHIFT) &
CRQB_ADDR_LBA_MID_EXP_MASK;
req->ata_addr_exp |=
(cfis->lba_high_exp << CRQB_ADDR_LBA_HIGH_EXP_SHIFT) &
CRQB_ADDR_LBA_HIGH_EXP_MASK;
req->ata_addr_exp |=
(cfis->features_exp << CRQB_ADDR_FEATURE_EXP_SHIFT) &
CRQB_ADDR_FEATURE_EXP_MASK;
req->ata_sect_count =
(cfis->sector_count << CRQB_SECTCOUNT_COUNT_SHIFT) &
CRQB_SECTCOUNT_COUNT_MASK;
req->ata_sect_count |=
(cfis->sector_count_exp << CRQB_SECTCOUNT_COUNT_EXP_SHIFT) &
CRQB_SECTCOUNT_COUNT_EXP_MASK;
/* Flush data */
start = (u32)req & ~(ARCH_DMA_MINALIGN - 1);
flush_dcache_range(start,
start + ALIGN(sizeof(*req), ARCH_DMA_MINALIGN));
/* Trigger operation */
slot = get_next_reqip(dev, port);
set_reqip(dev, port, slot);
/* Wait for completion */
if (wait_dma_completion(dev, port, slot, 10000)) {
printf("ATA operation timed out\n");
return -1;
}
process_responses(dev, port);
/* Invalidate data on read */
if (buffer && len) {
start = (u32)buffer & ~(ARCH_DMA_MINALIGN - 1);
invalidate_dcache_range(start,
start + ALIGN(len, ARCH_DMA_MINALIGN));
}
return len;
}
static u32 mv_sata_rw_cmd_ext(struct udevice *dev, int port, lbaint_t start,
u32 blkcnt,
u8 *buffer, int is_write)
{
struct sata_fis_h2d cfis;
u32 res;
u64 block;
block = (u64)start;
memset(&cfis, 0, sizeof(struct sata_fis_h2d));
cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
cfis.command = (is_write) ? ATA_CMD_WRITE_EXT : ATA_CMD_READ_EXT;
cfis.lba_high_exp = (block >> 40) & 0xff;
cfis.lba_mid_exp = (block >> 32) & 0xff;
cfis.lba_low_exp = (block >> 24) & 0xff;
cfis.lba_high = (block >> 16) & 0xff;
cfis.lba_mid = (block >> 8) & 0xff;
cfis.lba_low = block & 0xff;
cfis.device = ATA_LBA;
cfis.sector_count_exp = (blkcnt >> 8) & 0xff;
cfis.sector_count = blkcnt & 0xff;
res = mv_ata_exec_ata_cmd(dev, port, &cfis, buffer,
ATA_SECT_SIZE * blkcnt, is_write);
return res >= 0 ? blkcnt : res;
}
static u32 mv_sata_rw_cmd(struct udevice *dev, int port, lbaint_t start,
u32 blkcnt, u8 *buffer, int is_write)
{
struct sata_fis_h2d cfis;
lbaint_t block;
u32 res;
block = start;
memset(&cfis, 0, sizeof(struct sata_fis_h2d));
cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
cfis.command = (is_write) ? ATA_CMD_WRITE : ATA_CMD_READ;
cfis.device = ATA_LBA;
cfis.device |= (block >> 24) & 0xf;
cfis.lba_high = (block >> 16) & 0xff;
cfis.lba_mid = (block >> 8) & 0xff;
cfis.lba_low = block & 0xff;
cfis.sector_count = (u8)(blkcnt & 0xff);
res = mv_ata_exec_ata_cmd(dev, port, &cfis, buffer,
ATA_SECT_SIZE * blkcnt, is_write);
return res >= 0 ? blkcnt : res;
}
static u32 ata_low_level_rw(struct udevice *dev, int port, lbaint_t blknr,
lbaint_t blkcnt, void *buffer, int is_write)
{
struct blk_desc *desc = dev_get_uclass_plat(dev);
lbaint_t start, blks;
u8 *addr;
int max_blks;
debug("%s: " LBAFU " " LBAFU "\n", __func__, blknr, blkcnt);
start = blknr;
blks = blkcnt;
addr = (u8 *)buffer;
max_blks = MV_ATA_MAX_SECTORS;
do {
if (blks > max_blks) {
if (desc->lba48) {
mv_sata_rw_cmd_ext(dev, port, start, max_blks,
addr, is_write);
} else {
mv_sata_rw_cmd(dev, port, start, max_blks,
addr, is_write);
}
start += max_blks;
blks -= max_blks;
addr += ATA_SECT_SIZE * max_blks;
} else {
if (desc->lba48) {
mv_sata_rw_cmd_ext(dev, port, start, blks, addr,
is_write);
} else {
mv_sata_rw_cmd(dev, port, start, blks, addr,
is_write);
}
start += blks;
blks = 0;
addr += ATA_SECT_SIZE * blks;
}
} while (blks != 0);
return blkcnt;
}
static int mv_ata_exec_ata_cmd_nondma(struct udevice *dev, int port,
struct sata_fis_h2d *cfis, u8 *buffer,
u32 len, u32 iswrite)
{
struct mv_priv *priv = dev_get_plat(dev);
int i;
u16 *tp;
debug("%s\n", __func__);
out_le32(priv->regbase + PIO_SECTOR_COUNT, cfis->sector_count);
out_le32(priv->regbase + PIO_LBA_HI, cfis->lba_high);
out_le32(priv->regbase + PIO_LBA_MID, cfis->lba_mid);
out_le32(priv->regbase + PIO_LBA_LOW, cfis->lba_low);
out_le32(priv->regbase + PIO_ERR_FEATURES, cfis->features);
out_le32(priv->regbase + PIO_DEVICE, cfis->device);
out_le32(priv->regbase + PIO_CMD_STATUS, cfis->command);
if (ata_wait_register((u32 *)(priv->regbase + PIO_CMD_STATUS),
ATA_BUSY, 0x0, 10000)) {
debug("Failed to wait for completion\n");
return -1;
}
if (len > 0) {
tp = (u16 *)buffer;
for (i = 0; i < len / 2; i++) {
if (iswrite)
out_le16(priv->regbase + PIO_DATA, *tp++);
else
*tp++ = in_le16(priv->regbase + PIO_DATA);
}
}
return len;
}
static int mv_sata_identify(struct udevice *dev, int port, u16 *id)
{
struct sata_fis_h2d h2d;
arm: mvebu: sata_mv failed to identify HDDs during cold start During cold start, with some HDDs, mv_sata_identify() does not populate the ID words on the 1st ATA ID command. In fact, the first ATA ID command will only power up the drive, and then the ATA ID command processing is lost in the process. Tests with: - Seagate ST9250320AS 250GB HDD and Seagate ST4000DM004-2CV104 4TB HDD. - Zyxel NSA310S (Kirkwood 88F6702), Marvell Dreamplug (Kirkwood 88F6281), Seagate GoFlex Home (Kirkwood 88F6281), Pogoplug V4 (Kirkwood 88F6192). Observation: - The Seagate ST9250320AS 250GB took about 3 seconds to spin up. - The Seagate ST4000DM004-2CV104 4TB took about 8 seconds to spin up. - mv_sata_identify() did not populate the ID words after the call to mv_ata_exec_ata_cmd_nondma(). - Attempt to insert a long delay of 30 seconds, ie. mdelay(30_000), after the call to ata_wait_register() inside mv_ata_exec_ata_cmd_nondma() did not help with the 4TB drive. The ID words were still empty after that 30s delay. Patch Description: - Added a second ATA ID command in mv_sata_identify(), which will be executed if the 1st ATA ID command did not return with valid ID words. - Use the HDD drive capacity in the ID words as a successful indicator of ATA ID command. - In the scenario where a box is rebooted, the 1st ATA ID command is always successful, so there is no extra time wasted. - In the scenario where a box is cold started, the 1st ATA command is the power up command. The 2nd ATA ID command alleviates the uncertainty of how long we have to wait for the ID words to be populated by the SATA controller. Reviewed-by: Stefan Roese <sr@denx.de> Signed-off-by: Tony Dinh <mibodhi@gmail.com>
2021-08-01 03:29:35 +00:00
int len;
memset(&h2d, 0, sizeof(struct sata_fis_h2d));
h2d.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
h2d.command = ATA_CMD_ID_ATA;
/* Give device time to get operational */
mdelay(10);
arm: mvebu: sata_mv failed to identify HDDs during cold start During cold start, with some HDDs, mv_sata_identify() does not populate the ID words on the 1st ATA ID command. In fact, the first ATA ID command will only power up the drive, and then the ATA ID command processing is lost in the process. Tests with: - Seagate ST9250320AS 250GB HDD and Seagate ST4000DM004-2CV104 4TB HDD. - Zyxel NSA310S (Kirkwood 88F6702), Marvell Dreamplug (Kirkwood 88F6281), Seagate GoFlex Home (Kirkwood 88F6281), Pogoplug V4 (Kirkwood 88F6192). Observation: - The Seagate ST9250320AS 250GB took about 3 seconds to spin up. - The Seagate ST4000DM004-2CV104 4TB took about 8 seconds to spin up. - mv_sata_identify() did not populate the ID words after the call to mv_ata_exec_ata_cmd_nondma(). - Attempt to insert a long delay of 30 seconds, ie. mdelay(30_000), after the call to ata_wait_register() inside mv_ata_exec_ata_cmd_nondma() did not help with the 4TB drive. The ID words were still empty after that 30s delay. Patch Description: - Added a second ATA ID command in mv_sata_identify(), which will be executed if the 1st ATA ID command did not return with valid ID words. - Use the HDD drive capacity in the ID words as a successful indicator of ATA ID command. - In the scenario where a box is rebooted, the 1st ATA ID command is always successful, so there is no extra time wasted. - In the scenario where a box is cold started, the 1st ATA command is the power up command. The 2nd ATA ID command alleviates the uncertainty of how long we have to wait for the ID words to be populated by the SATA controller. Reviewed-by: Stefan Roese <sr@denx.de> Signed-off-by: Tony Dinh <mibodhi@gmail.com>
2021-08-01 03:29:35 +00:00
/* During cold start, with some HDDs, the first ATA ID command does
* not populate the ID words. In fact, the first ATA ID
* command will only power up the drive, and then the ATA ID command
* processing is lost in the process.
*/
len = mv_ata_exec_ata_cmd_nondma(dev, port, &h2d, (u8 *)id,
ATA_ID_WORDS * 2, READ_CMD);
/* If drive capacity has been filled in, then it was successfully
* identified (the drive has been powered up before, i.e.
* this function is invoked during a reboot)
*/
if (ata_id_n_sectors(id) != 0)
return len;
/* Issue the 2nd ATA ID command to make sure the ID words are
* populated properly.
*/
mdelay(10);
len = mv_ata_exec_ata_cmd_nondma(dev, port, &h2d, (u8 *)id,
ATA_ID_WORDS * 2, READ_CMD);
if (ata_id_n_sectors(id) != 0)
return len;
printf("Err: Failed to identify SATA device %d\n", port);
return -ENODEV;
}
static void mv_sata_xfer_mode(struct udevice *dev, int port, u16 *id)
{
struct mv_priv *priv = dev_get_plat(dev);
priv->pio = id[ATA_ID_PIO_MODES];
priv->mwdma = id[ATA_ID_MWDMA_MODES];
priv->udma = id[ATA_ID_UDMA_MODES];
debug("pio %04x, mwdma %04x, udma %04x\n", priv->pio, priv->mwdma,
priv->udma);
}
static void mv_sata_set_features(struct udevice *dev, int port)
{
struct mv_priv *priv = dev_get_plat(dev);
struct sata_fis_h2d cfis;
u8 udma_cap;
memset(&cfis, 0, sizeof(struct sata_fis_h2d));
cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
cfis.command = ATA_CMD_SET_FEATURES;
cfis.features = SETFEATURES_XFER;
/* First check the device capablity */
udma_cap = (u8) (priv->udma & 0xff);
if (udma_cap == ATA_UDMA6)
cfis.sector_count = XFER_UDMA_6;
if (udma_cap == ATA_UDMA5)
cfis.sector_count = XFER_UDMA_5;
if (udma_cap == ATA_UDMA4)
cfis.sector_count = XFER_UDMA_4;
if (udma_cap == ATA_UDMA3)
cfis.sector_count = XFER_UDMA_3;
mv_ata_exec_ata_cmd_nondma(dev, port, &cfis, NULL, 0, READ_CMD);
}
/*
* Initialize SATA memory windows
*/
static void mvsata_ide_conf_mbus_windows(void)
{
const struct mbus_dram_target_info *dram;
int i;
dram = mvebu_mbus_dram_info();
/* Disable windows, Set Size/Base to 0 */
for (i = 0; i < 4; i++) {
writel(0, MVSATA_WIN_CONTROL(i));
writel(0, MVSATA_WIN_BASE(i));
}
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) |
(dram->mbus_dram_target_id << 4) | 1,
MVSATA_WIN_CONTROL(i));
writel(cs->base & 0xffff0000, MVSATA_WIN_BASE(i));
}
}
static int sata_mv_init_sata(struct udevice *dev, int port)
{
struct mv_priv *priv = dev_get_plat(dev);
debug("Initialize sata dev: %d\n", port);
if (port < 0 || port >= CONFIG_SYS_SATA_MAX_DEVICE) {
printf("Invalid sata device %d\n", port);
return -1;
}
/* Allocate and align request buffer */
priv->crqb_alloc = malloc(sizeof(struct crqb) * REQUEST_QUEUE_SIZE +
CRQB_ALIGN);
if (!priv->crqb_alloc) {
printf("Unable to allocate memory for request queue\n");
return -ENOMEM;
}
memset(priv->crqb_alloc, 0,
sizeof(struct crqb) * REQUEST_QUEUE_SIZE + CRQB_ALIGN);
priv->request = (struct crqb *)(((u32) priv->crqb_alloc + CRQB_ALIGN) &
~(CRQB_ALIGN - 1));
/* Allocate and align response buffer */
priv->crpb_alloc = malloc(sizeof(struct crpb) * REQUEST_QUEUE_SIZE +
CRPB_ALIGN);
if (!priv->crpb_alloc) {
printf("Unable to allocate memory for response queue\n");
return -ENOMEM;
}
memset(priv->crpb_alloc, 0,
sizeof(struct crpb) * REQUEST_QUEUE_SIZE + CRPB_ALIGN);
priv->response = (struct crpb *)(((u32) priv->crpb_alloc + CRPB_ALIGN) &
~(CRPB_ALIGN - 1));
sprintf(priv->name, "SATA%d", port);
priv->regbase = port == 0 ? SATA0_BASE : SATA1_BASE;
if (!hw_init) {
debug("Initialize sata hw\n");
hw_init = 1;
mv_reset_one_hc();
mvsata_ide_conf_mbus_windows();
}
mv_reset_port(dev, port);
if (probe_port(dev, port)) {
priv->link = 0;
return -ENODEV;
}
priv->link = 1;
return 0;
}
static int sata_mv_scan_sata(struct udevice *dev, int port)
{
struct blk_desc *desc = dev_get_uclass_plat(dev);
struct mv_priv *priv = dev_get_plat(dev);
unsigned char serial[ATA_ID_SERNO_LEN + 1];
unsigned char firmware[ATA_ID_FW_REV_LEN + 1];
unsigned char product[ATA_ID_PROD_LEN + 1];
u64 n_sectors;
u16 *id;
if (!priv->link)
return -ENODEV;
id = (u16 *)malloc(ATA_ID_WORDS * 2);
if (!id) {
printf("Failed to malloc id data\n");
return -ENOMEM;
}
mv_sata_identify(dev, port, id);
ata_swap_buf_le16(id, ATA_ID_WORDS);
#ifdef DEBUG
ata_dump_id(id);
#endif
/* Serial number */
ata_id_c_string(id, serial, ATA_ID_SERNO, sizeof(serial));
memcpy(desc->product, serial, sizeof(serial));
/* Firmware version */
ata_id_c_string(id, firmware, ATA_ID_FW_REV, sizeof(firmware));
memcpy(desc->revision, firmware, sizeof(firmware));
/* Product model */
ata_id_c_string(id, product, ATA_ID_PROD, sizeof(product));
memcpy(desc->vendor, product, sizeof(product));
/* Total sectors */
n_sectors = ata_id_n_sectors(id);
desc->lba = n_sectors;
/* Check if support LBA48 */
if (ata_id_has_lba48(id)) {
desc->lba48 = 1;
debug("Device support LBA48\n");
}
/* Get the NCQ queue depth from device */
priv->queue_depth = ata_id_queue_depth(id);
/* Get the xfer mode from device */
mv_sata_xfer_mode(dev, port, id);
/* Set the xfer mode to highest speed */
mv_sata_set_features(dev, port);
/* Start up */
mv_start_edma_engine(dev, port);
return 0;
}
static ulong sata_mv_read(struct udevice *blk, lbaint_t blknr,
lbaint_t blkcnt, void *buffer)
{
struct mv_priv *priv = dev_get_plat(blk);
return ata_low_level_rw(blk, priv->dev_nr, blknr, blkcnt,
buffer, READ_CMD);
}
static ulong sata_mv_write(struct udevice *blk, lbaint_t blknr,
lbaint_t blkcnt, const void *buffer)
{
struct mv_priv *priv = dev_get_plat(blk);
return ata_low_level_rw(blk, priv->dev_nr, blknr, blkcnt,
(void *)buffer, WRITE_CMD);
}
static const struct blk_ops sata_mv_blk_ops = {
.read = sata_mv_read,
.write = sata_mv_write,
};
U_BOOT_DRIVER(sata_mv_driver) = {
.name = "sata_mv_blk",
.id = UCLASS_BLK,
.ops = &sata_mv_blk_ops,
.plat_auto = sizeof(struct mv_priv),
};
static int sata_mv_probe(struct udevice *dev)
{
const void *blob = gd->fdt_blob;
int node = dev_of_offset(dev);
struct mv_priv *priv;
struct udevice *blk;
int nr_ports;
int ret;
int i;
/* Get number of ports of this SATA controller */
nr_ports = min(fdtdec_get_int(blob, node, "nr-ports", -1),
CONFIG_SYS_SATA_MAX_DEVICE);
for (i = 0; i < nr_ports; i++) {
ret = blk_create_devicef(dev, "sata_mv_blk", "blk",
IF_TYPE_SATA, -1, 512, 0, &blk);
if (ret) {
debug("Can't create device\n");
return ret;
}
priv = dev_get_plat(blk);
priv->dev_nr = i;
/* Init SATA port */
ret = sata_mv_init_sata(blk, i);
if (ret) {
debug("%s: Failed to init bus\n", __func__);
return ret;
}
/* Scan SATA port */
ret = sata_mv_scan_sata(blk, i);
if (ret) {
debug("%s: Failed to scan bus\n", __func__);
return ret;
}
}
return 0;
}
static int sata_mv_scan(struct udevice *dev)
{
/* Nothing to do here */
return 0;
}
static const struct udevice_id sata_mv_ids[] = {
{ .compatible = "marvell,armada-370-sata" },
{ .compatible = "marvell,orion-sata" },
{ }
};
struct ahci_ops sata_mv_ahci_ops = {
.scan = sata_mv_scan,
};
U_BOOT_DRIVER(sata_mv_ahci) = {
.name = "sata_mv_ahci",
.id = UCLASS_AHCI,
.of_match = sata_mv_ids,
.ops = &sata_mv_ahci_ops,
.probe = sata_mv_probe,
};