u-boot/drivers/mtd/nand/spi/core.c

1261 lines
28 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2017 Micron Technology, Inc.
*
* Authors:
* Peter Pan <peterpandong@micron.com>
* Boris Brezillon <boris.brezillon@bootlin.com>
*/
#define pr_fmt(fmt) "spi-nand: " fmt
#ifndef __UBOOT__
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mtd/spinand.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#else
#include <common.h>
#include <errno.h>
#include <spi.h>
#include <spi-mem.h>
#include <dm/device_compat.h>
#include <dm/devres.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/mtd/spinand.h>
#endif
/* SPI NAND index visible in MTD names */
static int spi_nand_idx;
static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
const struct nand_page_io_req *req,
u16 *column)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int shift;
if (nand->memorg.planes_per_lun < 2)
return;
/* The plane number is passed in MSB just above the column address */
shift = fls(nand->memorg.pagesize);
*column |= req->pos.plane << shift;
}
static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
{
struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
spinand->scratchbuf);
int ret;
ret = spi_mem_exec_op(spinand->slave, &op);
if (ret)
return ret;
*val = *spinand->scratchbuf;
return 0;
}
static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
{
struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
spinand->scratchbuf);
*spinand->scratchbuf = val;
return spi_mem_exec_op(spinand->slave, &op);
}
static int spinand_read_status(struct spinand_device *spinand, u8 *status)
{
return spinand_read_reg_op(spinand, REG_STATUS, status);
}
static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
{
struct nand_device *nand = spinand_to_nand(spinand);
if (WARN_ON(spinand->cur_target < 0 ||
spinand->cur_target >= nand->memorg.ntargets))
return -EINVAL;
*cfg = spinand->cfg_cache[spinand->cur_target];
return 0;
}
static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
{
struct nand_device *nand = spinand_to_nand(spinand);
int ret;
if (WARN_ON(spinand->cur_target < 0 ||
spinand->cur_target >= nand->memorg.ntargets))
return -EINVAL;
if (spinand->cfg_cache[spinand->cur_target] == cfg)
return 0;
ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
if (ret)
return ret;
spinand->cfg_cache[spinand->cur_target] = cfg;
return 0;
}
/**
* spinand_upd_cfg() - Update the configuration register
* @spinand: the spinand device
* @mask: the mask encoding the bits to update in the config reg
* @val: the new value to apply
*
* Update the configuration register.
*
* Return: 0 on success, a negative error code otherwise.
*/
int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
{
int ret;
u8 cfg;
ret = spinand_get_cfg(spinand, &cfg);
if (ret)
return ret;
cfg &= ~mask;
cfg |= val;
return spinand_set_cfg(spinand, cfg);
}
/**
* spinand_select_target() - Select a specific NAND target/die
* @spinand: the spinand device
* @target: the target/die to select
*
* Select a new target/die. If chip only has one die, this function is a NOOP.
*
* Return: 0 on success, a negative error code otherwise.
*/
int spinand_select_target(struct spinand_device *spinand, unsigned int target)
{
struct nand_device *nand = spinand_to_nand(spinand);
int ret;
if (WARN_ON(target >= nand->memorg.ntargets))
return -EINVAL;
if (spinand->cur_target == target)
return 0;
if (nand->memorg.ntargets == 1) {
spinand->cur_target = target;
return 0;
}
ret = spinand->select_target(spinand, target);
if (ret)
return ret;
spinand->cur_target = target;
return 0;
}
static int spinand_init_cfg_cache(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
struct udevice *dev = spinand->slave->dev;
unsigned int target;
int ret;
spinand->cfg_cache = devm_kzalloc(dev,
sizeof(*spinand->cfg_cache) *
nand->memorg.ntargets,
GFP_KERNEL);
if (!spinand->cfg_cache)
return -ENOMEM;
for (target = 0; target < nand->memorg.ntargets; target++) {
ret = spinand_select_target(spinand, target);
if (ret)
return ret;
/*
* We use spinand_read_reg_op() instead of spinand_get_cfg()
* here to bypass the config cache.
*/
ret = spinand_read_reg_op(spinand, REG_CFG,
&spinand->cfg_cache[target]);
if (ret)
return ret;
}
return 0;
}
static int spinand_init_quad_enable(struct spinand_device *spinand)
{
bool enable = false;
if (!(spinand->flags & SPINAND_HAS_QE_BIT))
return 0;
if (spinand->op_templates.read_cache->data.buswidth == 4 ||
spinand->op_templates.write_cache->data.buswidth == 4 ||
spinand->op_templates.update_cache->data.buswidth == 4)
enable = true;
return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
enable ? CFG_QUAD_ENABLE : 0);
}
static int spinand_ecc_enable(struct spinand_device *spinand,
bool enable)
{
return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
enable ? CFG_ECC_ENABLE : 0);
}
static int spinand_write_enable_op(struct spinand_device *spinand)
{
struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
return spi_mem_exec_op(spinand->slave, &op);
}
static int spinand_load_page_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int row = nanddev_pos_to_row(nand, &req->pos);
struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
return spi_mem_exec_op(spinand->slave, &op);
}
static int spinand_read_from_cache_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct spi_mem_op op = *spinand->op_templates.read_cache;
struct nand_device *nand = spinand_to_nand(spinand);
struct mtd_info *mtd = nanddev_to_mtd(nand);
struct nand_page_io_req adjreq = *req;
unsigned int nbytes = 0;
void *buf = NULL;
u16 column = 0;
int ret;
if (req->datalen) {
adjreq.datalen = nanddev_page_size(nand);
adjreq.dataoffs = 0;
adjreq.databuf.in = spinand->databuf;
buf = spinand->databuf;
nbytes = adjreq.datalen;
}
if (req->ooblen) {
adjreq.ooblen = nanddev_per_page_oobsize(nand);
adjreq.ooboffs = 0;
adjreq.oobbuf.in = spinand->oobbuf;
nbytes += nanddev_per_page_oobsize(nand);
if (!buf) {
buf = spinand->oobbuf;
column = nanddev_page_size(nand);
}
}
spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
op.addr.val = column;
/*
* Some controllers are limited in term of max RX data size. In this
* case, just repeat the READ_CACHE operation after updating the
* column.
*/
while (nbytes) {
op.data.buf.in = buf;
op.data.nbytes = nbytes;
ret = spi_mem_adjust_op_size(spinand->slave, &op);
if (ret)
return ret;
ret = spi_mem_exec_op(spinand->slave, &op);
if (ret)
return ret;
buf += op.data.nbytes;
nbytes -= op.data.nbytes;
op.addr.val += op.data.nbytes;
}
if (req->datalen)
memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
req->datalen);
if (req->ooblen) {
if (req->mode == MTD_OPS_AUTO_OOB)
mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
spinand->oobbuf,
req->ooboffs,
req->ooblen);
else
memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
req->ooblen);
}
return 0;
}
static int spinand_write_to_cache_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct spi_mem_op op = *spinand->op_templates.write_cache;
struct nand_device *nand = spinand_to_nand(spinand);
struct mtd_info *mtd = nanddev_to_mtd(nand);
struct nand_page_io_req adjreq = *req;
unsigned int nbytes = 0;
void *buf = NULL;
u16 column = 0;
int ret;
memset(spinand->databuf, 0xff,
nanddev_page_size(nand) +
nanddev_per_page_oobsize(nand));
if (req->datalen) {
memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
req->datalen);
adjreq.dataoffs = 0;
adjreq.datalen = nanddev_page_size(nand);
adjreq.databuf.out = spinand->databuf;
nbytes = adjreq.datalen;
buf = spinand->databuf;
}
if (req->ooblen) {
if (req->mode == MTD_OPS_AUTO_OOB)
mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
spinand->oobbuf,
req->ooboffs,
req->ooblen);
else
memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
req->ooblen);
adjreq.ooblen = nanddev_per_page_oobsize(nand);
adjreq.ooboffs = 0;
nbytes += nanddev_per_page_oobsize(nand);
if (!buf) {
buf = spinand->oobbuf;
column = nanddev_page_size(nand);
}
}
spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
op = *spinand->op_templates.write_cache;
op.addr.val = column;
/*
* Some controllers are limited in term of max TX data size. In this
* case, split the operation into one LOAD CACHE and one or more
* LOAD RANDOM CACHE.
*/
while (nbytes) {
op.data.buf.out = buf;
op.data.nbytes = nbytes;
ret = spi_mem_adjust_op_size(spinand->slave, &op);
if (ret)
return ret;
ret = spi_mem_exec_op(spinand->slave, &op);
if (ret)
return ret;
buf += op.data.nbytes;
nbytes -= op.data.nbytes;
op.addr.val += op.data.nbytes;
/*
* We need to use the RANDOM LOAD CACHE operation if there's
* more than one iteration, because the LOAD operation resets
* the cache to 0xff.
*/
if (nbytes) {
column = op.addr.val;
op = *spinand->op_templates.update_cache;
op.addr.val = column;
}
}
return 0;
}
static int spinand_program_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int row = nanddev_pos_to_row(nand, &req->pos);
struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
return spi_mem_exec_op(spinand->slave, &op);
}
static int spinand_erase_op(struct spinand_device *spinand,
const struct nand_pos *pos)
{
struct nand_device *nand = &spinand->base;
unsigned int row = nanddev_pos_to_row(nand, pos);
struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
return spi_mem_exec_op(spinand->slave, &op);
}
static int spinand_wait(struct spinand_device *spinand, u8 *s)
{
unsigned long start, stop;
u8 status;
int ret;
start = get_timer(0);
stop = 400;
do {
ret = spinand_read_status(spinand, &status);
if (ret)
return ret;
if (!(status & STATUS_BUSY))
goto out;
} while (get_timer(start) < stop);
/*
* Extra read, just in case the STATUS_READY bit has changed
* since our last check
*/
ret = spinand_read_status(spinand, &status);
if (ret)
return ret;
out:
if (s)
*s = status;
return status & STATUS_BUSY ? -ETIMEDOUT : 0;
}
static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
{
struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
SPINAND_MAX_ID_LEN);
int ret;
ret = spi_mem_exec_op(spinand->slave, &op);
if (!ret)
memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
return ret;
}
static int spinand_reset_op(struct spinand_device *spinand)
{
struct spi_mem_op op = SPINAND_RESET_OP;
int ret;
ret = spi_mem_exec_op(spinand->slave, &op);
if (ret)
return ret;
return spinand_wait(spinand, NULL);
}
static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
{
return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
}
static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
{
struct nand_device *nand = spinand_to_nand(spinand);
if (spinand->eccinfo.get_status)
return spinand->eccinfo.get_status(spinand, status);
switch (status & STATUS_ECC_MASK) {
case STATUS_ECC_NO_BITFLIPS:
return 0;
case STATUS_ECC_HAS_BITFLIPS:
/*
* We have no way to know exactly how many bitflips have been
* fixed, so let's return the maximum possible value so that
* wear-leveling layers move the data immediately.
*/
return nand->eccreq.strength;
case STATUS_ECC_UNCOR_ERROR:
return -EBADMSG;
default:
break;
}
return -EINVAL;
}
static int spinand_read_page(struct spinand_device *spinand,
const struct nand_page_io_req *req,
bool ecc_enabled)
{
u8 status;
int ret;
ret = spinand_load_page_op(spinand, req);
if (ret)
return ret;
ret = spinand_wait(spinand, &status);
if (ret < 0)
return ret;
ret = spinand_read_from_cache_op(spinand, req);
if (ret)
return ret;
if (!ecc_enabled)
return 0;
return spinand_check_ecc_status(spinand, status);
}
static int spinand_write_page(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
u8 status;
int ret;
ret = spinand_write_enable_op(spinand);
if (ret)
return ret;
ret = spinand_write_to_cache_op(spinand, req);
if (ret)
return ret;
ret = spinand_program_op(spinand, req);
if (ret)
return ret;
ret = spinand_wait(spinand, &status);
if (!ret && (status & STATUS_PROG_FAILED))
ret = -EIO;
return ret;
}
static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
struct nand_device *nand = mtd_to_nanddev(mtd);
unsigned int max_bitflips = 0;
struct nand_io_iter iter;
bool enable_ecc = false;
bool ecc_failed = false;
int ret = 0;
if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
enable_ecc = true;
#ifndef __UBOOT__
mutex_lock(&spinand->lock);
#endif
nanddev_io_for_each_page(nand, from, ops, &iter) {
ret = spinand_select_target(spinand, iter.req.pos.target);
if (ret)
break;
ret = spinand_ecc_enable(spinand, enable_ecc);
if (ret)
break;
ret = spinand_read_page(spinand, &iter.req, enable_ecc);
if (ret < 0 && ret != -EBADMSG)
break;
if (ret == -EBADMSG) {
ecc_failed = true;
mtd->ecc_stats.failed++;
ret = 0;
} else {
mtd->ecc_stats.corrected += ret;
max_bitflips = max_t(unsigned int, max_bitflips, ret);
}
ops->retlen += iter.req.datalen;
ops->oobretlen += iter.req.ooblen;
}
#ifndef __UBOOT__
mutex_unlock(&spinand->lock);
#endif
if (ecc_failed && !ret)
ret = -EBADMSG;
return ret ? ret : max_bitflips;
}
static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
struct nand_device *nand = mtd_to_nanddev(mtd);
struct nand_io_iter iter;
bool enable_ecc = false;
int ret = 0;
if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
enable_ecc = true;
#ifndef __UBOOT__
mutex_lock(&spinand->lock);
#endif
nanddev_io_for_each_page(nand, to, ops, &iter) {
ret = spinand_select_target(spinand, iter.req.pos.target);
if (ret)
break;
ret = spinand_ecc_enable(spinand, enable_ecc);
if (ret)
break;
ret = spinand_write_page(spinand, &iter.req);
if (ret)
break;
ops->retlen += iter.req.datalen;
ops->oobretlen += iter.req.ooblen;
}
#ifndef __UBOOT__
mutex_unlock(&spinand->lock);
#endif
return ret;
}
static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
u8 marker[2] = { };
struct nand_page_io_req req = {
.pos = *pos,
.ooblen = sizeof(marker),
.ooboffs = 0,
.oobbuf.in = marker,
.mode = MTD_OPS_RAW,
};
int ret;
ret = spinand_select_target(spinand, pos->target);
if (ret)
return ret;
ret = spinand_read_page(spinand, &req, false);
if (ret)
return ret;
if (marker[0] != 0xff || marker[1] != 0xff)
return true;
return false;
}
static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
#ifndef __UBOOT__
struct spinand_device *spinand = nand_to_spinand(nand);
#endif
struct nand_pos pos;
int ret;
nanddev_offs_to_pos(nand, offs, &pos);
#ifndef __UBOOT__
mutex_lock(&spinand->lock);
#endif
ret = nanddev_isbad(nand, &pos);
#ifndef __UBOOT__
mutex_unlock(&spinand->lock);
#endif
return ret;
}
static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
u8 marker[2] = { };
struct nand_page_io_req req = {
.pos = *pos,
.ooboffs = 0,
.ooblen = sizeof(marker),
.oobbuf.out = marker,
};
int ret;
/* Erase block before marking it bad. */
ret = spinand_select_target(spinand, pos->target);
if (ret)
return ret;
ret = spinand_write_enable_op(spinand);
if (ret)
return ret;
ret = spinand_erase_op(spinand, pos);
if (ret)
return ret;
return spinand_write_page(spinand, &req);
}
static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
#ifndef __UBOOT__
struct spinand_device *spinand = nand_to_spinand(nand);
#endif
struct nand_pos pos;
int ret;
nanddev_offs_to_pos(nand, offs, &pos);
#ifndef __UBOOT__
mutex_lock(&spinand->lock);
#endif
ret = nanddev_markbad(nand, &pos);
#ifndef __UBOOT__
mutex_unlock(&spinand->lock);
#endif
return ret;
}
static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
u8 status;
int ret;
ret = spinand_select_target(spinand, pos->target);
if (ret)
return ret;
ret = spinand_write_enable_op(spinand);
if (ret)
return ret;
ret = spinand_erase_op(spinand, pos);
if (ret)
return ret;
ret = spinand_wait(spinand, &status);
if (!ret && (status & STATUS_ERASE_FAILED))
ret = -EIO;
return ret;
}
static int spinand_mtd_erase(struct mtd_info *mtd,
struct erase_info *einfo)
{
#ifndef __UBOOT__
struct spinand_device *spinand = mtd_to_spinand(mtd);
#endif
int ret;
#ifndef __UBOOT__
mutex_lock(&spinand->lock);
#endif
ret = nanddev_mtd_erase(mtd, einfo);
#ifndef __UBOOT__
mutex_unlock(&spinand->lock);
#endif
return ret;
}
static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
{
#ifndef __UBOOT__
struct spinand_device *spinand = mtd_to_spinand(mtd);
#endif
struct nand_device *nand = mtd_to_nanddev(mtd);
struct nand_pos pos;
int ret;
nanddev_offs_to_pos(nand, offs, &pos);
#ifndef __UBOOT__
mutex_lock(&spinand->lock);
#endif
ret = nanddev_isreserved(nand, &pos);
#ifndef __UBOOT__
mutex_unlock(&spinand->lock);
#endif
return ret;
}
const struct spi_mem_op *
spinand_find_supported_op(struct spinand_device *spinand,
const struct spi_mem_op *ops,
unsigned int nops)
{
unsigned int i;
for (i = 0; i < nops; i++) {
if (spi_mem_supports_op(spinand->slave, &ops[i]))
return &ops[i];
}
return NULL;
}
static const struct nand_ops spinand_ops = {
.erase = spinand_erase,
.markbad = spinand_markbad,
.isbad = spinand_isbad,
};
static const struct spinand_manufacturer *spinand_manufacturers[] = {
&gigadevice_spinand_manufacturer,
&macronix_spinand_manufacturer,
&micron_spinand_manufacturer,
&toshiba_spinand_manufacturer,
&winbond_spinand_manufacturer,
};
static int spinand_manufacturer_detect(struct spinand_device *spinand)
{
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
ret = spinand_manufacturers[i]->ops->detect(spinand);
if (ret > 0) {
spinand->manufacturer = spinand_manufacturers[i];
return 0;
} else if (ret < 0) {
return ret;
}
}
return -ENOTSUPP;
}
static int spinand_manufacturer_init(struct spinand_device *spinand)
{
if (spinand->manufacturer->ops->init)
return spinand->manufacturer->ops->init(spinand);
return 0;
}
static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
{
/* Release manufacturer private data */
if (spinand->manufacturer->ops->cleanup)
return spinand->manufacturer->ops->cleanup(spinand);
}
static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device *spinand,
const struct spinand_op_variants *variants)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int i;
for (i = 0; i < variants->nops; i++) {
struct spi_mem_op op = variants->ops[i];
unsigned int nbytes;
int ret;
nbytes = nanddev_per_page_oobsize(nand) +
nanddev_page_size(nand);
while (nbytes) {
op.data.nbytes = nbytes;
ret = spi_mem_adjust_op_size(spinand->slave, &op);
if (ret)
break;
if (!spi_mem_supports_op(spinand->slave, &op))
break;
nbytes -= op.data.nbytes;
}
if (!nbytes)
return &variants->ops[i];
}
return NULL;
}
/**
* spinand_match_and_init() - Try to find a match between a device ID and an
* entry in a spinand_info table
* @spinand: SPI NAND object
* @table: SPI NAND device description table
* @table_size: size of the device description table
*
* Should be used by SPI NAND manufacturer drivers when they want to find a
* match between a device ID retrieved through the READ_ID command and an
* entry in the SPI NAND description table. If a match is found, the spinand
* object will be initialized with information provided by the matching
* spinand_info entry.
*
* Return: 0 on success, a negative error code otherwise.
*/
int spinand_match_and_init(struct spinand_device *spinand,
const struct spinand_info *table,
unsigned int table_size, u8 devid)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int i;
for (i = 0; i < table_size; i++) {
const struct spinand_info *info = &table[i];
const struct spi_mem_op *op;
if (devid != info->devid)
continue;
nand->memorg = table[i].memorg;
nand->eccreq = table[i].eccreq;
spinand->eccinfo = table[i].eccinfo;
spinand->flags = table[i].flags;
spinand->select_target = table[i].select_target;
op = spinand_select_op_variant(spinand,
info->op_variants.read_cache);
if (!op)
return -ENOTSUPP;
spinand->op_templates.read_cache = op;
op = spinand_select_op_variant(spinand,
info->op_variants.write_cache);
if (!op)
return -ENOTSUPP;
spinand->op_templates.write_cache = op;
op = spinand_select_op_variant(spinand,
info->op_variants.update_cache);
spinand->op_templates.update_cache = op;
return 0;
}
return -ENOTSUPP;
}
static int spinand_detect(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
int ret;
ret = spinand_reset_op(spinand);
if (ret)
return ret;
ret = spinand_read_id_op(spinand, spinand->id.data);
if (ret)
return ret;
spinand->id.len = SPINAND_MAX_ID_LEN;
ret = spinand_manufacturer_detect(spinand);
if (ret) {
dev_err(spinand->slave->dev, "unknown raw ID %*phN\n",
SPINAND_MAX_ID_LEN, spinand->id.data);
return ret;
}
if (nand->memorg.ntargets > 1 && !spinand->select_target) {
dev_err(spinand->slave->dev,
"SPI NANDs with more than one die must implement ->select_target()\n");
return -EINVAL;
}
dev_info(spinand->slave->dev,
"%s SPI NAND was found.\n", spinand->manufacturer->name);
dev_info(spinand->slave->dev,
"%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
return 0;
}
static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
return -ERANGE;
}
static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section)
return -ERANGE;
/* Reserve 2 bytes for the BBM. */
region->offset = 2;
region->length = 62;
return 0;
}
static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
.ecc = spinand_noecc_ooblayout_ecc,
.rfree = spinand_noecc_ooblayout_free,
};
static int spinand_init(struct spinand_device *spinand)
{
struct mtd_info *mtd = spinand_to_mtd(spinand);
struct nand_device *nand = mtd_to_nanddev(mtd);
int ret, i;
/*
* We need a scratch buffer because the spi_mem interface requires that
* buf passed in spi_mem_op->data.buf be DMA-able.
*/
spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
if (!spinand->scratchbuf)
return -ENOMEM;
ret = spinand_detect(spinand);
if (ret)
goto err_free_bufs;
/*
* Use kzalloc() instead of devm_kzalloc() here, because some drivers
* may use this buffer for DMA access.
* Memory allocated by devm_ does not guarantee DMA-safe alignment.
*/
spinand->databuf = kzalloc(nanddev_page_size(nand) +
nanddev_per_page_oobsize(nand),
GFP_KERNEL);
if (!spinand->databuf) {
ret = -ENOMEM;
goto err_free_bufs;
}
spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
ret = spinand_init_cfg_cache(spinand);
if (ret)
goto err_free_bufs;
ret = spinand_init_quad_enable(spinand);
if (ret)
goto err_free_bufs;
ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
if (ret)
goto err_free_bufs;
ret = spinand_manufacturer_init(spinand);
if (ret) {
dev_err(spinand->slave->dev,
"Failed to initialize the SPI NAND chip (err = %d)\n",
ret);
goto err_free_bufs;
}
/* After power up, all blocks are locked, so unlock them here. */
for (i = 0; i < nand->memorg.ntargets; i++) {
ret = spinand_select_target(spinand, i);
if (ret)
goto err_free_bufs;
ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
if (ret)
goto err_free_bufs;
}
ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
if (ret)
goto err_manuf_cleanup;
/*
* Right now, we don't support ECC, so let the whole oob
* area is available for user.
*/
mtd->_read_oob = spinand_mtd_read;
mtd->_write_oob = spinand_mtd_write;
mtd->_block_isbad = spinand_mtd_block_isbad;
mtd->_block_markbad = spinand_mtd_block_markbad;
mtd->_block_isreserved = spinand_mtd_block_isreserved;
mtd->_erase = spinand_mtd_erase;
if (spinand->eccinfo.ooblayout)
mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
else
mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
ret = mtd_ooblayout_count_freebytes(mtd);
if (ret < 0)
goto err_cleanup_nanddev;
mtd->oobavail = ret;
return 0;
err_cleanup_nanddev:
nanddev_cleanup(nand);
err_manuf_cleanup:
spinand_manufacturer_cleanup(spinand);
err_free_bufs:
kfree(spinand->databuf);
kfree(spinand->scratchbuf);
return ret;
}
static void spinand_cleanup(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
nanddev_cleanup(nand);
spinand_manufacturer_cleanup(spinand);
kfree(spinand->databuf);
kfree(spinand->scratchbuf);
}
static int spinand_probe(struct udevice *dev)
{
struct spinand_device *spinand = dev_get_priv(dev);
struct spi_slave *slave = dev_get_parent_priv(dev);
struct mtd_info *mtd = dev_get_uclass_priv(dev);
struct nand_device *nand = spinand_to_nand(spinand);
int ret;
#ifndef __UBOOT__
spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
GFP_KERNEL);
if (!spinand)
return -ENOMEM;
spinand->spimem = mem;
spi_mem_set_drvdata(mem, spinand);
spinand_set_of_node(spinand, mem->spi->dev.of_node);
mutex_init(&spinand->lock);
mtd = spinand_to_mtd(spinand);
mtd->dev.parent = &mem->spi->dev;
#else
nand->mtd = mtd;
mtd->priv = nand;
mtd->dev = dev;
mtd->name = malloc(20);
if (!mtd->name)
return -ENOMEM;
sprintf(mtd->name, "spi-nand%d", spi_nand_idx++);
spinand->slave = slave;
spinand_set_of_node(spinand, dev->node.np);
#endif
ret = spinand_init(spinand);
if (ret)
return ret;
#ifndef __UBOOT__
ret = mtd_device_register(mtd, NULL, 0);
#else
ret = add_mtd_device(mtd);
#endif
if (ret)
goto err_spinand_cleanup;
return 0;
err_spinand_cleanup:
spinand_cleanup(spinand);
return ret;
}
#ifndef __UBOOT__
static int spinand_remove(struct udevice *slave)
{
struct spinand_device *spinand;
struct mtd_info *mtd;
int ret;
spinand = spi_mem_get_drvdata(slave);
mtd = spinand_to_mtd(spinand);
free(mtd->name);
ret = mtd_device_unregister(mtd);
if (ret)
return ret;
spinand_cleanup(spinand);
return 0;
}
static const struct spi_device_id spinand_ids[] = {
{ .name = "spi-nand" },
{ /* sentinel */ },
};
#ifdef CONFIG_OF
static const struct of_device_id spinand_of_ids[] = {
{ .compatible = "spi-nand" },
{ /* sentinel */ },
};
#endif
static struct spi_mem_driver spinand_drv = {
.spidrv = {
.id_table = spinand_ids,
.driver = {
.name = "spi-nand",
.of_match_table = of_match_ptr(spinand_of_ids),
},
},
.probe = spinand_probe,
.remove = spinand_remove,
};
module_spi_mem_driver(spinand_drv);
MODULE_DESCRIPTION("SPI NAND framework");
MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
MODULE_LICENSE("GPL v2");
#endif /* __UBOOT__ */
static const struct udevice_id spinand_ids[] = {
{ .compatible = "spi-nand" },
{ /* sentinel */ },
};
U_BOOT_DRIVER(spinand) = {
.name = "spi_nand",
.id = UCLASS_MTD,
.of_match = spinand_ids,
.priv_auto_alloc_size = sizeof(struct spinand_device),
.probe = spinand_probe,
};