u-boot/drivers/firmware/scmi/scmi_agent-uclass.c

427 lines
10 KiB
C
Raw Normal View History

firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2020 Linaro Limited.
*/
#define LOG_CATEGORY UCLASS_SCMI_AGENT
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <scmi_agent.h>
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
#include <scmi_agent-uclass.h>
#include <scmi_protocols.h>
#include <dm/device_compat.h>
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
#include <dm/device-internal.h>
#include <linux/compat.h>
/**
* struct error_code - Helper structure for SCMI error code conversion
* @scmi: SCMI error code
* @errno: Related standard error number
*/
struct error_code {
int scmi;
int errno;
};
static const struct error_code scmi_linux_errmap[] = {
{ .scmi = SCMI_NOT_SUPPORTED, .errno = -EOPNOTSUPP, },
{ .scmi = SCMI_INVALID_PARAMETERS, .errno = -EINVAL, },
{ .scmi = SCMI_DENIED, .errno = -EACCES, },
{ .scmi = SCMI_NOT_FOUND, .errno = -ENOENT, },
{ .scmi = SCMI_OUT_OF_RANGE, .errno = -ERANGE, },
{ .scmi = SCMI_BUSY, .errno = -EBUSY, },
{ .scmi = SCMI_COMMS_ERROR, .errno = -ECOMM, },
{ .scmi = SCMI_GENERIC_ERROR, .errno = -EIO, },
{ .scmi = SCMI_HARDWARE_ERROR, .errno = -EREMOTEIO, },
{ .scmi = SCMI_PROTOCOL_ERROR, .errno = -EPROTO, },
};
struct udevice *scmi_get_protocol(struct udevice *dev,
enum scmi_std_protocol id)
{
struct scmi_agent_priv *priv;
struct udevice *proto;
priv = dev_get_uclass_plat(dev);
if (!priv) {
dev_err(dev, "No priv data found\n");
return NULL;
}
switch (id) {
case SCMI_PROTOCOL_ID_BASE:
proto = priv->base_dev;
break;
case SCMI_PROTOCOL_ID_CLOCK:
proto = priv->clock_dev;
break;
case SCMI_PROTOCOL_ID_RESET_DOMAIN:
proto = priv->resetdom_dev;
break;
case SCMI_PROTOCOL_ID_VOLTAGE_DOMAIN:
proto = priv->voltagedom_dev;
break;
default:
dev_err(dev, "Protocol not supported\n");
proto = NULL;
break;
}
if (proto && device_probe(proto))
dev_err(dev, "Probe failed\n");
return proto;
}
/**
* scmi_add_protocol - add protocol to agent
* @dev: SCMI agent device
* @proto_id: SCMI protocol ID
* @proto: SCMI protocol device
*
* Associate the protocol instance, @proto, to the agent, @dev,
* for later use.
*
* Return: 0 on success, error code on failure
*/
static int scmi_add_protocol(struct udevice *dev,
enum scmi_std_protocol proto_id,
struct udevice *proto)
{
struct scmi_agent_priv *priv;
priv = dev_get_uclass_plat(dev);
if (!priv) {
dev_err(dev, "No priv data found\n");
return -ENODEV;
}
switch (proto_id) {
case SCMI_PROTOCOL_ID_BASE:
priv->base_dev = proto;
break;
case SCMI_PROTOCOL_ID_CLOCK:
priv->clock_dev = proto;
break;
case SCMI_PROTOCOL_ID_RESET_DOMAIN:
priv->resetdom_dev = proto;
break;
case SCMI_PROTOCOL_ID_VOLTAGE_DOMAIN:
priv->voltagedom_dev = proto;
break;
default:
dev_err(dev, "Protocol not supported\n");
return -EPROTO;
}
return 0;
}
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
int scmi_to_linux_errno(s32 scmi_code)
{
int n;
if (!scmi_code)
return 0;
for (n = 0; n < ARRAY_SIZE(scmi_linux_errmap); n++)
if (scmi_code == scmi_linux_errmap[n].scmi)
return scmi_linux_errmap[n].errno;
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
return -EPROTO;
}
static struct udevice *find_scmi_protocol_device(struct udevice *dev)
{
struct udevice *parent = NULL, *protocol;
for (protocol = dev; protocol; protocol = parent) {
parent = dev_get_parent(protocol);
if (!parent ||
device_get_uclass_id(parent) == UCLASS_SCMI_AGENT)
break;
}
if (!parent) {
dev_err(dev, "Invalid SCMI device, agent not found\n");
return NULL;
}
return protocol;
}
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
static const struct scmi_agent_ops *transport_dev_ops(struct udevice *dev)
{
return (const struct scmi_agent_ops *)dev->driver->ops;
}
/**
* scmi_of_get_channel() - Get SCMI channel handle
*
* @dev: SCMI agent device
* @channel: Output reference to the SCMI channel upon success
*
* On return, @channel will be set.
* Return 0 on success and a negative errno on failure
*/
static int scmi_of_get_channel(struct udevice *dev, struct udevice *protocol,
struct scmi_channel **channel)
{
const struct scmi_agent_ops *ops;
ops = transport_dev_ops(dev);
if (ops->of_get_channel)
return ops->of_get_channel(dev, protocol, channel);
else
return -EPROTONOSUPPORT;
}
int devm_scmi_of_get_channel(struct udevice *dev)
{
struct udevice *protocol;
struct scmi_agent_proto_priv *priv;
int ret;
protocol = find_scmi_protocol_device(dev);
if (!protocol)
return -ENODEV;
priv = dev_get_parent_priv(protocol);
ret = scmi_of_get_channel(protocol->parent, protocol, &priv->channel);
if (ret == -EPROTONOSUPPORT) {
/* Drivers without a get_channel operator don't need a channel ref */
priv->channel = NULL;
return 0;
}
return ret;
}
/**
* scmi_process_msg() - Send and process an SCMI message
*
* Send a message to an SCMI server.
* Caller sets scmi_msg::out_msg_sz to the output message buffer size.
*
* @dev: SCMI agent device
* @channel: Communication channel for the device
* @msg: Message structure reference
*
* On return, scmi_msg::out_msg_sz stores the response payload size.
* Return: 0 on success and a negative errno on failure
*/
static int scmi_process_msg(struct udevice *dev, struct scmi_channel *channel,
struct scmi_msg *msg)
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
{
const struct scmi_agent_ops *ops;
ops = transport_dev_ops(dev);
if (ops->process_msg)
return ops->process_msg(dev, channel, msg);
else
return -EPROTONOSUPPORT;
}
int devm_scmi_process_msg(struct udevice *dev, struct scmi_msg *msg)
{
struct udevice *protocol;
struct scmi_agent_proto_priv *priv;
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
protocol = find_scmi_protocol_device(dev);
if (!protocol)
return -ENODEV;
priv = dev_get_parent_priv(protocol);
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
return scmi_process_msg(protocol->parent, priv->channel, msg);
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
}
/**
* scmi_fill_base_info - get base information about SCMI server
* @agent: SCMI agent device
* @dev: SCMI protocol device
*
* By using Base protocol commands, collect the base information
* about SCMI server.
*
* Return: 0 on success, error code on failure
*/
static int scmi_fill_base_info(struct udevice *agent, struct udevice *dev)
{
struct scmi_agent_priv *priv = dev_get_uclass_plat(agent);
int ret;
ret = scmi_base_protocol_version(dev, &priv->version);
if (ret) {
dev_err(dev, "protocol_version() failed (%d)\n", ret);
return ret;
}
/* check for required version */
if (priv->version < SCMI_BASE_PROTOCOL_VERSION) {
dev_err(dev, "base protocol version (%d) lower than expected\n",
priv->version);
return -EPROTO;
}
ret = scmi_base_protocol_attrs(dev, &priv->num_agents,
&priv->num_protocols);
if (ret) {
dev_err(dev, "protocol_attrs() failed (%d)\n", ret);
return ret;
}
ret = scmi_base_discover_vendor(dev, &priv->vendor);
if (ret) {
dev_err(dev, "base_discover_vendor() failed (%d)\n", ret);
return ret;
}
ret = scmi_base_discover_sub_vendor(dev, &priv->sub_vendor);
if (ret) {
if (ret != -EOPNOTSUPP) {
dev_err(dev, "base_discover_sub_vendor() failed (%d)\n",
ret);
return ret;
}
priv->sub_vendor = "NA";
}
ret = scmi_base_discover_impl_version(dev, &priv->impl_version);
if (ret) {
dev_err(dev, "base_discover_impl_version() failed (%d)\n",
ret);
return ret;
}
ret = scmi_base_discover_agent(dev, 0xffffffff,
&priv->agent_id, &priv->agent_name);
if (ret) {
if (ret != -EOPNOTSUPP) {
dev_err(dev,
"base_discover_agent() failed for myself (%d)\n",
ret);
return ret;
}
priv->agent_id = 0xffffffff;
priv->agent_name = "NA";
}
ret = scmi_base_discover_list_protocols(dev, &priv->protocols);
if (ret != priv->num_protocols) {
dev_err(dev, "base_discover_list_protocols() failed (%d)\n",
ret);
return -EPROTO;
}
return 0;
}
/*
* SCMI agent devices binds devices of various uclasses depending on
* the FDT description. scmi_bind_protocol() is a generic bind sequence
* called by the uclass at bind stage, that is uclass post_bind.
*/
static int scmi_bind_protocols(struct udevice *dev)
{
int ret = 0;
ofnode node;
const char *name;
struct driver *drv;
struct udevice *agent, *proto;
if (!uclass_get_device(UCLASS_SCMI_AGENT, 1, &agent)) {
/* This is a second SCMI agent */
dev_err(dev, "Cannot have more than one SCMI agent\n");
return -EEXIST;
}
/* initialize the device from device tree */
drv = DM_DRIVER_GET(scmi_base_drv);
name = "scmi-base.0";
ret = device_bind(dev, drv, name, NULL, ofnode_null(), &proto);
if (ret) {
dev_err(dev, "failed to bind base protocol\n");
return ret;
}
ret = scmi_add_protocol(dev, SCMI_PROTOCOL_ID_BASE, proto);
if (ret) {
dev_err(dev, "failed to add protocol: %s, ret: %d\n",
proto->name, ret);
return ret;
}
ret = device_probe(proto);
if (ret) {
dev_err(dev, "failed to probe base protocol\n");
return ret;
}
ret = scmi_fill_base_info(dev, proto);
if (ret) {
dev_err(dev, "failed to get base information\n");
return ret;
}
dev_for_each_subnode(node, dev) {
u32 protocol_id;
if (!ofnode_is_enabled(node))
continue;
if (ofnode_read_u32(node, "reg", &protocol_id))
continue;
drv = NULL;
name = ofnode_get_name(node);
switch (protocol_id) {
case SCMI_PROTOCOL_ID_CLOCK:
if (CONFIG_IS_ENABLED(CLK_SCMI))
drv = DM_DRIVER_GET(scmi_clock);
break;
case SCMI_PROTOCOL_ID_RESET_DOMAIN:
if (IS_ENABLED(CONFIG_RESET_SCMI))
drv = DM_DRIVER_GET(scmi_reset_domain);
break;
case SCMI_PROTOCOL_ID_VOLTAGE_DOMAIN:
if (IS_ENABLED(CONFIG_DM_REGULATOR_SCMI)) {
node = ofnode_find_subnode(node, "regulators");
if (!ofnode_valid(node)) {
dev_err(dev, "no regulators node\n");
return -ENXIO;
}
drv = DM_DRIVER_GET(scmi_voltage_domain);
}
break;
default:
break;
}
if (!drv) {
dev_dbg(dev, "Ignore unsupported SCMI protocol %#x\n",
protocol_id);
continue;
}
ret = device_bind(dev, drv, name, NULL, node, &proto);
if (ret) {
dev_err(dev, "failed to bind %s protocol\n", drv->name);
break;
}
ret = scmi_add_protocol(dev, protocol_id, proto);
if (ret) {
dev_err(dev, "failed to add protocol: %s, ret: %d\n",
proto->name, ret);
break;
}
}
return ret;
}
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
UCLASS_DRIVER(scmi_agent) = {
.id = UCLASS_SCMI_AGENT,
.name = "scmi_agent",
.post_bind = scmi_bind_protocols,
.per_device_plat_auto = sizeof(struct scmi_agent_priv),
.per_child_auto = sizeof(struct scmi_agent_proto_priv),
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
};