u-boot/common/hash.c

538 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2012 The Chromium OS Authors.
*
* (C) Copyright 2011
* Joe Hershberger, National Instruments, joe.hershberger@ni.com
*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*/
#ifndef USE_HOSTCC
#include <common.h>
#include <command.h>
#include <env.h>
#include <log.h>
#include <malloc.h>
#include <mapmem.h>
#include <hw_sha.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <u-boot/crc.h>
#else
#include "mkimage.h"
#include <time.h>
#endif /* !USE_HOSTCC*/
#include <hash.h>
#include <image.h>
#include <u-boot/crc.h>
#include <u-boot/sha1.h>
#include <u-boot/sha256.h>
#include <u-boot/md5.h>
#if !defined(USE_HOSTCC) && defined(CONFIG_NEEDS_MANUAL_RELOC)
DECLARE_GLOBAL_DATA_PTR;
#endif
static void reloc_update(void);
#if defined(CONFIG_SHA1) && !defined(CONFIG_SHA_PROG_HW_ACCEL)
static int hash_init_sha1(struct hash_algo *algo, void **ctxp)
{
sha1_context *ctx = malloc(sizeof(sha1_context));
sha1_starts(ctx);
*ctxp = ctx;
return 0;
}
static int hash_update_sha1(struct hash_algo *algo, void *ctx, const void *buf,
unsigned int size, int is_last)
{
sha1_update((sha1_context *)ctx, buf, size);
return 0;
}
static int hash_finish_sha1(struct hash_algo *algo, void *ctx, void *dest_buf,
int size)
{
if (size < algo->digest_size)
return -1;
sha1_finish((sha1_context *)ctx, dest_buf);
free(ctx);
return 0;
}
#endif
#if defined(CONFIG_SHA256) && !defined(CONFIG_SHA_PROG_HW_ACCEL)
static int hash_init_sha256(struct hash_algo *algo, void **ctxp)
{
sha256_context *ctx = malloc(sizeof(sha256_context));
sha256_starts(ctx);
*ctxp = ctx;
return 0;
}
static int hash_update_sha256(struct hash_algo *algo, void *ctx,
const void *buf, unsigned int size, int is_last)
{
sha256_update((sha256_context *)ctx, buf, size);
return 0;
}
static int hash_finish_sha256(struct hash_algo *algo, void *ctx, void
*dest_buf, int size)
{
if (size < algo->digest_size)
return -1;
sha256_finish((sha256_context *)ctx, dest_buf);
free(ctx);
return 0;
}
#endif
static int hash_init_crc16_ccitt(struct hash_algo *algo, void **ctxp)
{
uint16_t *ctx = malloc(sizeof(uint16_t));
*ctx = 0;
*ctxp = ctx;
return 0;
}
static int hash_update_crc16_ccitt(struct hash_algo *algo, void *ctx,
const void *buf, unsigned int size,
int is_last)
{
*((uint16_t *)ctx) = crc16_ccitt(*((uint16_t *)ctx), buf, size);
return 0;
}
static int hash_finish_crc16_ccitt(struct hash_algo *algo, void *ctx,
void *dest_buf, int size)
{
if (size < algo->digest_size)
return -1;
*((uint16_t *)dest_buf) = *((uint16_t *)ctx);
free(ctx);
return 0;
}
static int hash_init_crc32(struct hash_algo *algo, void **ctxp)
{
uint32_t *ctx = malloc(sizeof(uint32_t));
*ctx = 0;
*ctxp = ctx;
return 0;
}
static int hash_update_crc32(struct hash_algo *algo, void *ctx,
const void *buf, unsigned int size, int is_last)
{
*((uint32_t *)ctx) = crc32(*((uint32_t *)ctx), buf, size);
return 0;
}
static int hash_finish_crc32(struct hash_algo *algo, void *ctx, void *dest_buf,
int size)
{
if (size < algo->digest_size)
return -1;
*((uint32_t *)dest_buf) = *((uint32_t *)ctx);
free(ctx);
return 0;
}
/*
* These are the hash algorithms we support. If we have hardware acceleration
* is enable we will use that, otherwise a software version of the algorithm.
* Note that algorithm names must be in lower case.
*/
static struct hash_algo hash_algo[] = {
#ifdef CONFIG_SHA1
{
.name = "sha1",
.digest_size = SHA1_SUM_LEN,
.chunk_size = CHUNKSZ_SHA1,
#ifdef CONFIG_SHA_HW_ACCEL
.hash_func_ws = hw_sha1,
#else
.hash_func_ws = sha1_csum_wd,
#endif
#ifdef CONFIG_SHA_PROG_HW_ACCEL
.hash_init = hw_sha_init,
.hash_update = hw_sha_update,
.hash_finish = hw_sha_finish,
#else
.hash_init = hash_init_sha1,
.hash_update = hash_update_sha1,
.hash_finish = hash_finish_sha1,
#endif
},
#endif
#ifdef CONFIG_SHA256
{
.name = "sha256",
.digest_size = SHA256_SUM_LEN,
.chunk_size = CHUNKSZ_SHA256,
#ifdef CONFIG_SHA_HW_ACCEL
.hash_func_ws = hw_sha256,
#else
.hash_func_ws = sha256_csum_wd,
#endif
#ifdef CONFIG_SHA_PROG_HW_ACCEL
.hash_init = hw_sha_init,
.hash_update = hw_sha_update,
.hash_finish = hw_sha_finish,
#else
.hash_init = hash_init_sha256,
.hash_update = hash_update_sha256,
.hash_finish = hash_finish_sha256,
#endif
},
#endif
{
.name = "crc16-ccitt",
.digest_size = 2,
.chunk_size = CHUNKSZ,
.hash_func_ws = crc16_ccitt_wd_buf,
.hash_init = hash_init_crc16_ccitt,
.hash_update = hash_update_crc16_ccitt,
.hash_finish = hash_finish_crc16_ccitt,
},
{
.name = "crc32",
.digest_size = 4,
.chunk_size = CHUNKSZ_CRC32,
.hash_func_ws = crc32_wd_buf,
.hash_init = hash_init_crc32,
.hash_update = hash_update_crc32,
.hash_finish = hash_finish_crc32,
},
};
/* Try to minimize code size for boards that don't want much hashing */
#if defined(CONFIG_SHA256) || defined(CONFIG_CMD_SHA1SUM) || \
defined(CONFIG_CRC32_VERIFY) || defined(CONFIG_CMD_HASH)
#define multi_hash() 1
#else
#define multi_hash() 0
#endif
static void reloc_update(void)
{
#if !defined(USE_HOSTCC) && defined(CONFIG_NEEDS_MANUAL_RELOC)
int i;
static bool done;
if (!done) {
done = true;
for (i = 0; i < ARRAY_SIZE(hash_algo); i++) {
hash_algo[i].name += gd->reloc_off;
hash_algo[i].hash_func_ws += gd->reloc_off;
hash_algo[i].hash_init += gd->reloc_off;
hash_algo[i].hash_update += gd->reloc_off;
hash_algo[i].hash_finish += gd->reloc_off;
}
}
#endif
}
int hash_lookup_algo(const char *algo_name, struct hash_algo **algop)
{
int i;
reloc_update();
for (i = 0; i < ARRAY_SIZE(hash_algo); i++) {
if (!strcmp(algo_name, hash_algo[i].name)) {
*algop = &hash_algo[i];
return 0;
}
}
debug("Unknown hash algorithm '%s'\n", algo_name);
return -EPROTONOSUPPORT;
}
int hash_progressive_lookup_algo(const char *algo_name,
struct hash_algo **algop)
{
int i;
reloc_update();
for (i = 0; i < ARRAY_SIZE(hash_algo); i++) {
if (!strcmp(algo_name, hash_algo[i].name)) {
if (hash_algo[i].hash_init) {
*algop = &hash_algo[i];
return 0;
}
}
}
debug("Unknown hash algorithm '%s'\n", algo_name);
return -EPROTONOSUPPORT;
}
#ifndef USE_HOSTCC
int hash_parse_string(const char *algo_name, const char *str, uint8_t *result)
{
struct hash_algo *algo;
int ret;
int i;
ret = hash_lookup_algo(algo_name, &algo);
if (ret)
return ret;
for (i = 0; i < algo->digest_size; i++) {
char chr[3];
strncpy(chr, &str[i * 2], 2);
result[i] = simple_strtoul(chr, NULL, 16);
}
return 0;
}
int hash_block(const char *algo_name, const void *data, unsigned int len,
uint8_t *output, int *output_size)
{
struct hash_algo *algo;
int ret;
ret = hash_lookup_algo(algo_name, &algo);
if (ret)
return ret;
if (output_size && *output_size < algo->digest_size) {
debug("Output buffer size %d too small (need %d bytes)",
*output_size, algo->digest_size);
return -ENOSPC;
}
if (output_size)
*output_size = algo->digest_size;
algo->hash_func_ws(data, len, output, algo->chunk_size);
return 0;
}
#if defined(CONFIG_CMD_HASH) || defined(CONFIG_CMD_SHA1SUM) || defined(CONFIG_CMD_CRC32)
/**
* store_result: Store the resulting sum to an address or variable
*
* @algo: Hash algorithm being used
* @sum: Hash digest (algo->digest_size bytes)
* @dest: Destination, interpreted as a hex address if it starts
* with * (or allow_env_vars is 0) or otherwise as an
* environment variable.
* @allow_env_vars: non-zero to permit storing the result to an
* variable environment
*/
static void store_result(struct hash_algo *algo, const uint8_t *sum,
const char *dest, int allow_env_vars)
{
unsigned int i;
int env_var = 0;
/*
* If environment variables are allowed, then we assume that 'dest'
* is an environment variable, unless it starts with *, in which
* case we assume it is an address. If not allowed, it is always an
* address. This is to support the crc32 command.
*/
if (allow_env_vars) {
if (*dest == '*')
dest++;
else
env_var = 1;
}
if (env_var) {
char str_output[HASH_MAX_DIGEST_SIZE * 2 + 1];
char *str_ptr = str_output;
for (i = 0; i < algo->digest_size; i++) {
sprintf(str_ptr, "%02x", sum[i]);
str_ptr += 2;
}
*str_ptr = '\0';
env_set(dest, str_output);
} else {
ulong addr;
void *buf;
addr = simple_strtoul(dest, NULL, 16);
buf = map_sysmem(addr, algo->digest_size);
memcpy(buf, sum, algo->digest_size);
unmap_sysmem(buf);
}
}
/**
* parse_verify_sum: Parse a hash verification parameter
*
* @algo: Hash algorithm being used
* @verify_str: Argument to parse. If it starts with * then it is
* interpreted as a hex address containing the hash.
* If the length is exactly the right number of hex digits
* for the digest size, then we assume it is a hex digest.
* Otherwise we assume it is an environment variable, and
* look up its value (it must contain a hex digest).
* @vsum: Returns binary digest value (algo->digest_size bytes)
* @allow_env_vars: non-zero to permit storing the result to an environment
* variable. If 0 then verify_str is assumed to be an
* address, and the * prefix is not expected.
* @return 0 if ok, non-zero on error
*/
static int parse_verify_sum(struct hash_algo *algo, char *verify_str,
uint8_t *vsum, int allow_env_vars)
{
int env_var = 0;
/* See comment above in store_result() */
if (allow_env_vars) {
if (*verify_str == '*')
verify_str++;
else
env_var = 1;
}
if (!env_var) {
ulong addr;
void *buf;
addr = simple_strtoul(verify_str, NULL, 16);
buf = map_sysmem(addr, algo->digest_size);
memcpy(vsum, buf, algo->digest_size);
} else {
char *vsum_str;
int digits = algo->digest_size * 2;
/*
* As with the original code from sha1sum.c, we assume that a
* string which matches the digest size exactly is a hex
* string and not an environment variable.
*/
if (strlen(verify_str) == digits)
vsum_str = verify_str;
else {
vsum_str = env_get(verify_str);
if (vsum_str == NULL || strlen(vsum_str) != digits) {
printf("Expected %d hex digits in env var\n",
digits);
return 1;
}
}
hash_parse_string(algo->name, vsum_str, vsum);
}
return 0;
}
static void hash_show(struct hash_algo *algo, ulong addr, ulong len, uint8_t *output)
{
int i;
printf("%s for %08lx ... %08lx ==> ", algo->name, addr, addr + len - 1);
for (i = 0; i < algo->digest_size; i++)
printf("%02x", output[i]);
}
int hash_command(const char *algo_name, int flags, struct cmd_tbl *cmdtp,
int flag, int argc, char *const argv[])
{
ulong addr, len;
if ((argc < 2) || ((flags & HASH_FLAG_VERIFY) && (argc < 3)))
return CMD_RET_USAGE;
addr = simple_strtoul(*argv++, NULL, 16);
len = simple_strtoul(*argv++, NULL, 16);
if (multi_hash()) {
struct hash_algo *algo;
u8 *output;
uint8_t vsum[HASH_MAX_DIGEST_SIZE];
void *buf;
if (hash_lookup_algo(algo_name, &algo)) {
printf("Unknown hash algorithm '%s'\n", algo_name);
return CMD_RET_USAGE;
}
argc -= 2;
if (algo->digest_size > HASH_MAX_DIGEST_SIZE) {
puts("HASH_MAX_DIGEST_SIZE exceeded\n");
return 1;
}
output = memalign(ARCH_DMA_MINALIGN,
sizeof(uint32_t) * HASH_MAX_DIGEST_SIZE);
buf = map_sysmem(addr, len);
algo->hash_func_ws(buf, len, output, algo->chunk_size);
unmap_sysmem(buf);
/* Try to avoid code bloat when verify is not needed */
#if defined(CONFIG_CRC32_VERIFY) || defined(CONFIG_SHA1SUM_VERIFY) || \
defined(CONFIG_HASH_VERIFY)
if (flags & HASH_FLAG_VERIFY) {
#else
if (0) {
#endif
if (parse_verify_sum(algo, *argv, vsum,
flags & HASH_FLAG_ENV)) {
printf("ERROR: %s does not contain a valid "
"%s sum\n", *argv, algo->name);
return 1;
}
if (memcmp(output, vsum, algo->digest_size) != 0) {
int i;
hash_show(algo, addr, len, output);
printf(" != ");
for (i = 0; i < algo->digest_size; i++)
printf("%02x", vsum[i]);
puts(" ** ERROR **\n");
return 1;
}
} else {
hash_show(algo, addr, len, output);
printf("\n");
if (argc) {
store_result(algo, output, *argv,
flags & HASH_FLAG_ENV);
}
unmap_sysmem(output);
}
/* Horrible code size hack for boards that just want crc32 */
} else {
ulong crc;
ulong *ptr;
crc = crc32_wd(0, (const uchar *)addr, len, CHUNKSZ_CRC32);
printf("CRC32 for %08lx ... %08lx ==> %08lx\n",
addr, addr + len - 1, crc);
if (argc >= 3) {
ptr = (ulong *)simple_strtoul(argv[0], NULL, 16);
*ptr = crc;
}
}
return 0;
}
#endif /* CONFIG_CMD_HASH || CONFIG_CMD_SHA1SUM || CONFIG_CMD_CRC32) */
#endif /* !USE_HOSTCC */