u-boot/drivers/block/sata_sil3114.c

844 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (C) Excito Elektronik i Skåne AB, All rights reserved.
* Author: Tor Krill <tor@excito.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
* This is a driver for Silicon Image sil3114 sata chip modelled on
* the ata_piix driver
*/
#include <common.h>
#include <pci.h>
#include <command.h>
#include <config.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <ide.h>
#include <sata.h>
#include <libata.h>
#include "sata_sil3114.h"
/* Convert sectorsize to wordsize */
#define ATA_SECTOR_WORDS (ATA_SECT_SIZE/2)
/* Forwards */
u8 sil3114_spin_up (int num);
u8 sil3114_spin_down (int num);
static int sata_bus_softreset (int num);
static void sata_identify (int num, int dev);
static u8 check_power_mode (int num);
static void sata_port (struct sata_ioports *ioport);
static void set_Feature_cmd (int num, int dev);
static u8 sata_busy_wait (struct sata_ioports *ioaddr, int bits,
unsigned int max, u8 usealtstatus);
static u8 sata_chk_status (struct sata_ioports *ioaddr, u8 usealtstatus);
static void msleep (int count);
static u32 iobase[6] = { 0, 0, 0, 0, 0, 0}; /* PCI BAR registers for device */
static struct sata_port port[CONFIG_SYS_SATA_MAX_DEVICE];
static void output_data (struct sata_ioports *ioaddr, u16 * sect_buf, int words)
{
while (words--) {
__raw_writew (*sect_buf++, (void *)ioaddr->data_addr);
}
}
static int input_data (struct sata_ioports *ioaddr, u16 * sect_buf, int words)
{
while (words--) {
*sect_buf++ = __raw_readw ((void *)ioaddr->data_addr);
}
return 0;
}
static int sata_bus_softreset (int num)
{
u8 status = 0;
port[num].dev_mask = 1;
port[num].ctl_reg = 0x08; /*Default value of control reg */
writeb (port[num].ctl_reg, port[num].ioaddr.ctl_addr);
udelay (10);
writeb (port[num].ctl_reg | ATA_SRST, port[num].ioaddr.ctl_addr);
udelay (10);
writeb (port[num].ctl_reg, port[num].ioaddr.ctl_addr);
/* spec mandates ">= 2ms" before checking status.
* We wait 150ms, because that was the magic delay used for
* ATAPI devices in Hale Landis's ATADRVR, for the period of time
* between when the ATA command register is written, and then
* status is checked. Because waiting for "a while" before
* checking status is fine, post SRST, we perform this magic
* delay here as well.
*/
msleep (150);
status = sata_busy_wait (&port[num].ioaddr, ATA_BUSY, 300, 0);
while ((status & ATA_BUSY)) {
msleep (100);
status = sata_busy_wait (&port[num].ioaddr, ATA_BUSY, 3, 0);
}
if (status & ATA_BUSY) {
printf ("ata%u is slow to respond,plz be patient\n", num);
}
while ((status & ATA_BUSY)) {
msleep (100);
status = sata_chk_status (&port[num].ioaddr, 0);
}
if (status & ATA_BUSY) {
printf ("ata%u failed to respond : ", num);
printf ("bus reset failed\n");
port[num].dev_mask = 0;
return 1;
}
return 0;
}
static void sata_identify (int num, int dev)
{
u8 cmd = 0, status = 0, devno = num;
u16 iobuf[ATA_SECTOR_WORDS];
u64 n_sectors = 0;
memset (iobuf, 0, sizeof (iobuf));
if (!(port[num].dev_mask & 0x01)) {
printf ("dev%d is not present on port#%d\n", dev, num);
return;
}
debug ("port=%d dev=%d\n", num, dev);
status = 0;
cmd = ATA_CMD_ID_ATA; /*Device Identify Command */
writeb (cmd, port[num].ioaddr.command_addr);
readb (port[num].ioaddr.altstatus_addr);
udelay (10);
status = sata_busy_wait (&port[num].ioaddr, ATA_BUSY, 1000, 0);
if (status & ATA_ERR) {
printf ("\ndevice not responding\n");
port[num].dev_mask &= ~0x01;
return;
}
input_data (&port[num].ioaddr, iobuf, ATA_SECTOR_WORDS);
ata_swap_buf_le16 (iobuf, ATA_SECTOR_WORDS);
debug ("Specific config: %x\n", iobuf[2]);
/* we require LBA and DMA support (bits 8 & 9 of word 49) */
if (!ata_id_has_dma (iobuf) || !ata_id_has_lba (iobuf)) {
debug ("ata%u: no dma/lba\n", num);
}
#ifdef DEBUG
ata_dump_id (iobuf);
#endif
n_sectors = ata_id_n_sectors (iobuf);
if (n_sectors == 0) {
port[num].dev_mask &= ~0x01;
return;
}
ata_id_c_string (iobuf, (unsigned char *)sata_dev_desc[devno].revision,
ATA_ID_FW_REV, sizeof (sata_dev_desc[devno].revision));
ata_id_c_string (iobuf, (unsigned char *)sata_dev_desc[devno].vendor,
ATA_ID_PROD, sizeof (sata_dev_desc[devno].vendor));
ata_id_c_string (iobuf, (unsigned char *)sata_dev_desc[devno].product,
ATA_ID_SERNO, sizeof (sata_dev_desc[devno].product));
/* TODO - atm we asume harddisk ie not removable */
sata_dev_desc[devno].removable = 0;
sata_dev_desc[devno].lba = (u32) n_sectors;
debug("lba=0x%lx\n", sata_dev_desc[devno].lba);
#ifdef CONFIG_LBA48
if (iobuf[83] & (1 << 10)) {
sata_dev_desc[devno].lba48 = 1;
} else {
sata_dev_desc[devno].lba48 = 0;
}
#endif
/* assuming HD */
sata_dev_desc[devno].type = DEV_TYPE_HARDDISK;
sata_dev_desc[devno].blksz = ATA_SECT_SIZE;
sata_dev_desc[devno].lun = 0; /* just to fill something in... */
}
static void set_Feature_cmd (int num, int dev)
{
u8 status = 0;
if (!(port[num].dev_mask & 0x01)) {
debug ("dev%d is not present on port#%d\n", dev, num);
return;
}
writeb (SETFEATURES_XFER, port[num].ioaddr.feature_addr);
writeb (XFER_PIO_4, port[num].ioaddr.nsect_addr);
writeb (0, port[num].ioaddr.lbal_addr);
writeb (0, port[num].ioaddr.lbam_addr);
writeb (0, port[num].ioaddr.lbah_addr);
writeb (ATA_DEVICE_OBS, port[num].ioaddr.device_addr);
writeb (ATA_CMD_SET_FEATURES, port[num].ioaddr.command_addr);
udelay (50);
msleep (150);
status = sata_busy_wait (&port[num].ioaddr, ATA_BUSY, 5000, 0);
if ((status & (ATA_BUSY | ATA_ERR))) {
printf ("Error : status 0x%02x\n", status);
port[num].dev_mask &= ~0x01;
}
}
u8 sil3114_spin_down (int num)
{
u8 status = 0;
debug ("Spin down disk\n");
if (!(port[num].dev_mask & 0x01)) {
debug ("Device ata%d is not present\n", num);
return 1;
}
if ((status = check_power_mode (num)) == 0x00) {
debug ("Already in standby\n");
return 0;
}
if (status == 0x01) {
printf ("Failed to check power mode on ata%d\n", num);
return 1;
}
if (!((status = sata_chk_status (&port[num].ioaddr, 0)) & ATA_DRDY)) {
printf ("Device ata%d not ready\n", num);
return 1;
}
writeb (0x00, port[num].ioaddr.feature_addr);
writeb (0x00, port[num].ioaddr.nsect_addr);
writeb (0x00, port[num].ioaddr.lbal_addr);
writeb (0x00, port[num].ioaddr.lbam_addr);
writeb (0x00, port[num].ioaddr.lbah_addr);
writeb (ATA_DEVICE_OBS, port[num].ioaddr.device_addr);
writeb (ATA_CMD_STANDBY, port[num].ioaddr.command_addr);
status = sata_busy_wait (&port[num].ioaddr, ATA_BUSY, 30000, 0);
if ((status & (ATA_BUSY | ATA_ERR))) {
printf ("Error waiting for disk spin down: status 0x%02x\n",
status);
port[num].dev_mask &= ~0x01;
return 1;
}
return 0;
}
u8 sil3114_spin_up (int num)
{
u8 status = 0;
debug ("Spin up disk\n");
if (!(port[num].dev_mask & 0x01)) {
debug ("Device ata%d is not present\n", num);
return 1;
}
if ((status = check_power_mode (num)) != 0x00) {
if (status == 0x01) {
printf ("Failed to check power mode on ata%d\n", num);
return 1;
} else {
/* should be up and running already */
return 0;
}
}
if (!((status = sata_chk_status (&port[num].ioaddr, 0)) & ATA_DRDY)) {
printf ("Device ata%d not ready\n", num);
return 1;
}
debug ("Stautus of device check: %d\n", status);
writeb (0x00, port[num].ioaddr.feature_addr);
writeb (0x00, port[num].ioaddr.nsect_addr);
writeb (0x00, port[num].ioaddr.lbal_addr);
writeb (0x00, port[num].ioaddr.lbam_addr);
writeb (0x00, port[num].ioaddr.lbah_addr);
writeb (ATA_DEVICE_OBS, port[num].ioaddr.device_addr);
writeb (ATA_CMD_IDLE, port[num].ioaddr.command_addr);
status = sata_busy_wait (&port[num].ioaddr, ATA_BUSY, 30000, 0);
if ((status & (ATA_BUSY | ATA_ERR))) {
printf ("Error waiting for disk spin up: status 0x%02x\n",
status);
port[num].dev_mask &= ~0x01;
return 1;
}
/* Wait for disk to enter Active state */
do {
msleep (10);
status = check_power_mode (num);
} while ((status == 0x00) || (status == 0x80));
if (status == 0x01) {
printf ("Falied waiting for disk to spin up\n");
return 1;
}
return 0;
}
/* Return value is not the usual here
* 0x00 - Device stand by
* 0x01 - Operation failed
* 0x80 - Device idle
* 0xff - Device active
*/
static u8 check_power_mode (int num)
{
u8 status = 0;
u8 res = 0;
if (!(port[num].dev_mask & 0x01)) {
debug ("Device ata%d is not present\n", num);
return 1;
}
if (!(sata_chk_status (&port[num].ioaddr, 0) & ATA_DRDY)) {
printf ("Device ata%d not ready\n", num);
return 1;
}
writeb (0, port[num].ioaddr.feature_addr);
writeb (0, port[num].ioaddr.nsect_addr);
writeb (0, port[num].ioaddr.lbal_addr);
writeb (0, port[num].ioaddr.lbam_addr);
writeb (0, port[num].ioaddr.lbah_addr);
writeb (ATA_DEVICE_OBS, port[num].ioaddr.device_addr);
writeb (ATA_CMD_CHK_POWER, port[num].ioaddr.command_addr);
status = sata_busy_wait (&port[num].ioaddr, ATA_BUSY, 5000, 0);
if ((status & (ATA_BUSY | ATA_ERR))) {
printf
("Error waiting for check power mode complete : status 0x%02x\n",
status);
port[num].dev_mask &= ~0x01;
return 1;
}
res = readb (port[num].ioaddr.nsect_addr);
debug ("Check powermode: %d\n", res);
return res;
}
static void sata_port (struct sata_ioports *ioport)
{
ioport->data_addr = ioport->cmd_addr + ATA_REG_DATA;
ioport->error_addr = ioport->cmd_addr + ATA_REG_ERR;
ioport->feature_addr = ioport->cmd_addr + ATA_REG_FEATURE;
ioport->nsect_addr = ioport->cmd_addr + ATA_REG_NSECT;
ioport->lbal_addr = ioport->cmd_addr + ATA_REG_LBAL;
ioport->lbam_addr = ioport->cmd_addr + ATA_REG_LBAM;
ioport->lbah_addr = ioport->cmd_addr + ATA_REG_LBAH;
ioport->device_addr = ioport->cmd_addr + ATA_REG_DEVICE;
ioport->status_addr = ioport->cmd_addr + ATA_REG_STATUS;
ioport->command_addr = ioport->cmd_addr + ATA_REG_CMD;
}
static u8 wait_for_irq (int num, unsigned int max)
{
u32 port = iobase[5];
switch (num) {
case 0:
port += VND_TF_CNST_CH0;
break;
case 1:
port += VND_TF_CNST_CH1;
break;
case 2:
port += VND_TF_CNST_CH2;
break;
case 3:
port += VND_TF_CNST_CH3;
break;
default:
return 1;
}
do {
if (readl (port) & VND_TF_CNST_INTST) {
break;
}
udelay (1000);
max--;
} while ((max > 0));
return (max == 0);
}
static u8 sata_busy_wait (struct sata_ioports *ioaddr, int bits,
unsigned int max, u8 usealtstatus)
{
u8 status;
do {
if (!((status = sata_chk_status (ioaddr, usealtstatus)) & bits)) {
break;
}
udelay (1000);
max--;
} while ((status & bits) && (max > 0));
return status;
}
static u8 sata_chk_status (struct sata_ioports *ioaddr, u8 usealtstatus)
{
if (!usealtstatus) {
return readb (ioaddr->status_addr);
} else {
return readb (ioaddr->altstatus_addr);
}
}
static void msleep (int count)
{
int i;
for (i = 0; i < count; i++)
udelay (1000);
}
/* Read up to 255 sectors
*
* Returns sectors read
*/
static u8 do_one_read (int device, ulong block, u8 blkcnt, u16 * buff,
uchar lba48)
{
u8 sr = 0;
u8 status;
u64 blknr = (u64) block;
if (!(sata_chk_status (&port[device].ioaddr, 0) & ATA_DRDY)) {
printf ("Device ata%d not ready\n", device);
return 0;
}
/* Set up transfer */
#ifdef CONFIG_LBA48
if (lba48) {
/* write high bits */
writeb (0, port[device].ioaddr.nsect_addr);
writeb ((blknr >> 24) & 0xFF, port[device].ioaddr.lbal_addr);
writeb ((blknr >> 32) & 0xFF, port[device].ioaddr.lbam_addr);
writeb ((blknr >> 40) & 0xFF, port[device].ioaddr.lbah_addr);
}
#endif
writeb (blkcnt, port[device].ioaddr.nsect_addr);
writeb (((blknr) >> 0) & 0xFF, port[device].ioaddr.lbal_addr);
writeb ((blknr >> 8) & 0xFF, port[device].ioaddr.lbam_addr);
writeb ((blknr >> 16) & 0xFF, port[device].ioaddr.lbah_addr);
#ifdef CONFIG_LBA48
if (lba48) {
writeb (ATA_LBA, port[device].ioaddr.device_addr);
writeb (ATA_CMD_PIO_READ_EXT, port[device].ioaddr.command_addr);
} else
#endif
{
writeb (ATA_LBA | ((blknr >> 24) & 0xF),
port[device].ioaddr.device_addr);
writeb (ATA_CMD_PIO_READ, port[device].ioaddr.command_addr);
}
status = sata_busy_wait (&port[device].ioaddr, ATA_BUSY, 10000, 1);
if (status & ATA_BUSY) {
u8 err = 0;
printf ("Device %d not responding status %d\n", device, status);
err = readb (port[device].ioaddr.error_addr);
printf ("Error reg = 0x%x\n", err);
return (sr);
}
while (blkcnt--) {
if (wait_for_irq (device, 500)) {
printf ("ata%u irq failed\n", device);
return sr;
}
status = sata_chk_status (&port[device].ioaddr, 0);
if (status & ATA_ERR) {
printf ("ata%u error %d\n", device,
readb (port[device].ioaddr.error_addr));
return sr;
}
/* Read one sector */
input_data (&port[device].ioaddr, buff, ATA_SECTOR_WORDS);
buff += ATA_SECTOR_WORDS;
sr++;
}
return sr;
}
ulong sata_read (int device, ulong block, lbaint_t blkcnt, void *buff)
{
ulong n = 0, sread;
u16 *buffer = (u16 *) buff;
u8 status = 0;
u64 blknr = (u64) block;
unsigned char lba48 = 0;
#ifdef CONFIG_LBA48
if (blknr > 0xfffffff) {
if (!sata_dev_desc[device].lba48) {
printf ("Drive doesn't support 48-bit addressing\n");
return 0;
}
/* more than 28 bits used, use 48bit mode */
lba48 = 1;
}
#endif
while (blkcnt > 0) {
if (blkcnt > 255) {
sread = 255;
} else {
sread = blkcnt;
}
status = do_one_read (device, blknr, sread, buffer, lba48);
if (status != sread) {
printf ("Read failed\n");
return n;
}
blkcnt -= sread;
blknr += sread;
n += sread;
buffer += sread * ATA_SECTOR_WORDS;
}
return n;
}
ulong sata_write (int device, ulong block, lbaint_t blkcnt, const void *buff)
{
ulong n = 0;
u16 *buffer = (u16 *) buff;
unsigned char status = 0, num = 0;
u64 blknr = (u64) block;
#ifdef CONFIG_LBA48
unsigned char lba48 = 0;
if (blknr > 0xfffffff) {
if (!sata_dev_desc[device].lba48) {
printf ("Drive doesn't support 48-bit addressing\n");
return 0;
}
/* more than 28 bits used, use 48bit mode */
lba48 = 1;
}
#endif
/*Port Number */
num = device;
while (blkcnt-- > 0) {
status = sata_busy_wait (&port[num].ioaddr, ATA_BUSY, 500, 0);
if (status & ATA_BUSY) {
printf ("ata%u failed to respond\n", port[num].port_no);
return n;
}
#ifdef CONFIG_LBA48
if (lba48) {
/* write high bits */
writeb (0, port[num].ioaddr.nsect_addr);
writeb ((blknr >> 24) & 0xFF,
port[num].ioaddr.lbal_addr);
writeb ((blknr >> 32) & 0xFF,
port[num].ioaddr.lbam_addr);
writeb ((blknr >> 40) & 0xFF,
port[num].ioaddr.lbah_addr);
}
#endif
writeb (1, port[num].ioaddr.nsect_addr);
writeb ((blknr >> 0) & 0xFF, port[num].ioaddr.lbal_addr);
writeb ((blknr >> 8) & 0xFF, port[num].ioaddr.lbam_addr);
writeb ((blknr >> 16) & 0xFF, port[num].ioaddr.lbah_addr);
#ifdef CONFIG_LBA48
if (lba48) {
writeb (ATA_LBA, port[num].ioaddr.device_addr);
writeb (ATA_CMD_PIO_WRITE_EXT, port[num].ioaddr.command_addr);
} else
#endif
{
writeb (ATA_LBA | ((blknr >> 24) & 0xF),
port[num].ioaddr.device_addr);
writeb (ATA_CMD_PIO_WRITE, port[num].ioaddr.command_addr);
}
msleep (50);
/*may take up to 4 sec */
status = sata_busy_wait (&port[num].ioaddr, ATA_BUSY, 4000, 0);
if ((status & (ATA_DRQ | ATA_BUSY | ATA_ERR)) != ATA_DRQ) {
printf ("Error no DRQ dev %d blk %ld: sts 0x%02x\n",
device, (ulong) blknr, status);
return (n);
}
output_data (&port[num].ioaddr, buffer, ATA_SECTOR_WORDS);
readb (port[num].ioaddr.altstatus_addr);
udelay (50);
++n;
++blknr;
buffer += ATA_SECTOR_WORDS;
}
return n;
}
/* Driver implementation */
static u8 sil_get_device_cache_line (pci_dev_t pdev)
{
u8 cache_line = 0;
pci_read_config_byte (pdev, PCI_CACHE_LINE_SIZE, &cache_line);
return cache_line;
}
int init_sata (int dev)
{
static u8 init_done = 0;
static int res = 1;
pci_dev_t devno;
u8 cls = 0;
u16 cmd = 0;
u32 sconf = 0;
if (init_done) {
return res;
}
init_done = 1;
if ((devno = pci_find_device (SIL_VEND_ID, SIL3114_DEVICE_ID, 0)) == -1) {
res = 1;
return res;
}
/* Read out all BARs, even though we only use MMIO from BAR5 */
pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase[0]);
pci_read_config_dword (devno, PCI_BASE_ADDRESS_1, &iobase[1]);
pci_read_config_dword (devno, PCI_BASE_ADDRESS_2, &iobase[2]);
pci_read_config_dword (devno, PCI_BASE_ADDRESS_3, &iobase[3]);
pci_read_config_dword (devno, PCI_BASE_ADDRESS_4, &iobase[4]);
pci_read_config_dword (devno, PCI_BASE_ADDRESS_5, &iobase[5]);
if ((iobase[0] == 0xFFFFFFFF) || (iobase[1] == 0xFFFFFFFF) ||
(iobase[2] == 0xFFFFFFFF) || (iobase[3] == 0xFFFFFFFF) ||
(iobase[4] == 0xFFFFFFFF) || (iobase[5] == 0xFFFFFFFF)) {
printf ("Error no base addr for SATA controller\n");
res = 1;
return res;
}
/* mask off unused bits */
iobase[0] &= 0xfffffffc;
iobase[1] &= 0xfffffff8;
iobase[2] &= 0xfffffffc;
iobase[3] &= 0xfffffff8;
iobase[4] &= 0xfffffff0;
iobase[5] &= 0xfffffc00;
/* from sata_sil in Linux kernel */
cls = sil_get_device_cache_line (devno);
if (cls) {
cls >>= 3;
cls++; /* cls = (line_size/8)+1 */
writel (cls << 8 | cls, iobase[5] + VND_FIFOCFG_CH0);
writel (cls << 8 | cls, iobase[5] + VND_FIFOCFG_CH1);
writel (cls << 8 | cls, iobase[5] + VND_FIFOCFG_CH2);
writel (cls << 8 | cls, iobase[5] + VND_FIFOCFG_CH3);
} else {
printf ("Cache line not set. Driver may not function\n");
}
/* Enable operation */
pci_read_config_word (devno, PCI_COMMAND, &cmd);
cmd |= PCI_COMMAND_MASTER | PCI_COMMAND_IO | PCI_COMMAND_MEMORY;
pci_write_config_word (devno, PCI_COMMAND, cmd);
/* Disable interrupt usage */
pci_read_config_dword (devno, VND_SYSCONFSTAT, &sconf);
sconf |= (VND_SYSCONFSTAT_CHN_0_INTBLOCK | VND_SYSCONFSTAT_CHN_1_INTBLOCK);
pci_write_config_dword (devno, VND_SYSCONFSTAT, sconf);
res = 0;
return res;
}
/* Check if device is connected to port */
int sata_bus_probe (int portno)
{
u32 port = iobase[5];
u32 val;
switch (portno) {
case 0:
port += VND_SSTATUS_CH0;
break;
case 1:
port += VND_SSTATUS_CH1;
break;
case 2:
port += VND_SSTATUS_CH2;
break;
case 3:
port += VND_SSTATUS_CH3;
break;
default:
return 0;
}
val = readl (port);
if ((val & SATA_DET_PRES) == SATA_DET_PRES) {
return 1;
} else {
return 0;
}
}
int sata_phy_reset (int portno)
{
u32 port = iobase[5];
u32 val;
switch (portno) {
case 0:
port += VND_SCONTROL_CH0;
break;
case 1:
port += VND_SCONTROL_CH1;
break;
case 2:
port += VND_SCONTROL_CH2;
break;
case 3:
port += VND_SCONTROL_CH3;
break;
default:
return 0;
}
val = readl (port);
writel (val | SATA_SC_DET_RST, port);
msleep (150);
writel (val & ~SATA_SC_DET_RST, port);
return 0;
}
int scan_sata (int dev)
{
/* A bit brain dead, but the code has a legacy */
switch (dev) {
case 0:
port[0].port_no = 0;
port[0].ioaddr.cmd_addr = iobase[5] + VND_TF0_CH0;
port[0].ioaddr.altstatus_addr = port[0].ioaddr.ctl_addr =
(iobase[5] + VND_TF2_CH0) | ATA_PCI_CTL_OFS;
port[0].ioaddr.bmdma_addr = iobase[5] + VND_BMDMA_CH0;
break;
#if (CONFIG_SYS_SATA_MAX_DEVICE >= 1)
case 1:
port[1].port_no = 0;
port[1].ioaddr.cmd_addr = iobase[5] + VND_TF0_CH1;
port[1].ioaddr.altstatus_addr = port[1].ioaddr.ctl_addr =
(iobase[5] + VND_TF2_CH1) | ATA_PCI_CTL_OFS;
port[1].ioaddr.bmdma_addr = iobase[5] + VND_BMDMA_CH1;
break;
#elif (CONFIG_SYS_SATA_MAX_DEVICE >= 2)
case 2:
port[2].port_no = 0;
port[2].ioaddr.cmd_addr = iobase[5] + VND_TF0_CH2;
port[2].ioaddr.altstatus_addr = port[2].ioaddr.ctl_addr =
(iobase[5] + VND_TF2_CH2) | ATA_PCI_CTL_OFS;
port[2].ioaddr.bmdma_addr = iobase[5] + VND_BMDMA_CH2;
break;
#elif (CONFIG_SYS_SATA_MAX_DEVICE >= 3)
case 3:
port[3].port_no = 0;
port[3].ioaddr.cmd_addr = iobase[5] + VND_TF0_CH3;
port[3].ioaddr.altstatus_addr = port[3].ioaddr.ctl_addr =
(iobase[5] + VND_TF2_CH3) | ATA_PCI_CTL_OFS;
port[3].ioaddr.bmdma_addr = iobase[5] + VND_BMDMA_CH3;
break;
#endif
default:
printf ("Tried to scan unknown port: ata%d\n", dev);
return 1;
}
/* Initialize other registers */
sata_port (&port[dev].ioaddr);
/* Check for attached device */
if (!sata_bus_probe (dev)) {
port[dev].port_state = 0;
debug ("SATA#%d port is not present\n", dev);
} else {
debug ("SATA#%d port is present\n", dev);
if (sata_bus_softreset (dev)) {
/* soft reset failed, try a hard one */
sata_phy_reset (dev);
if (sata_bus_softreset (dev)) {
port[dev].port_state = 0;
} else {
port[dev].port_state = 1;
}
} else {
port[dev].port_state = 1;
}
}
if (port[dev].port_state == 1) {
/* Probe device and set xfer mode */
sata_identify (dev, 0);
set_Feature_cmd (dev, 0);
}
return 0;
}