u-boot/drivers/pci/pcie_iproc.c

1277 lines
32 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2020-2021 Broadcom
*
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <generic-phy.h>
#include <pci.h>
#include <malloc.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <linux/delay.h>
#include <linux/log2.h>
#define EP_PERST_SOURCE_SELECT_SHIFT 2
#define EP_PERST_SOURCE_SELECT BIT(EP_PERST_SOURCE_SELECT_SHIFT)
#define EP_MODE_SURVIVE_PERST_SHIFT 1
#define EP_MODE_SURVIVE_PERST BIT(EP_MODE_SURVIVE_PERST_SHIFT)
#define RC_PCIE_RST_OUTPUT_SHIFT 0
#define RC_PCIE_RST_OUTPUT BIT(RC_PCIE_RST_OUTPUT_SHIFT)
#define CFG_IND_ADDR_MASK 0x00001ffc
#define CFG_ADDR_CFG_ECAM_MASK 0xfffffffc
#define CFG_ADDR_CFG_TYPE_MASK 0x00000003
#define IPROC_PCI_PM_CAP 0x48
#define IPROC_PCI_PM_CAP_MASK 0xffff
#define IPROC_PCI_EXP_CAP 0xac
#define IPROC_PCIE_REG_INVALID 0xffff
#define PCI_EXP_TYPE_ROOT_PORT 0x4 /* Root Port */
#define PCI_EXP_RTCTL 28 /* Root Control */
/* CRS Software Visibility capability */
#define PCI_EXP_RTCAP_CRSVIS 0x0001
#define PCI_EXP_LNKSTA 18 /* Link Status */
#define PCI_EXP_LNKSTA_NLW 0x03f0 /* Negotiated Link Width */
#define PCIE_PHYLINKUP_SHIFT 3
#define PCIE_PHYLINKUP BIT(PCIE_PHYLINKUP_SHIFT)
#define PCIE_DL_ACTIVE_SHIFT 2
#define PCIE_DL_ACTIVE BIT(PCIE_DL_ACTIVE_SHIFT)
/* derive the enum index of the outbound/inbound mapping registers */
#define MAP_REG(base_reg, index) ((base_reg) + (index) * 2)
/*
* Maximum number of outbound mapping window sizes that can be supported by any
* OARR/OMAP mapping pair
*/
#define MAX_NUM_OB_WINDOW_SIZES 4
#define OARR_VALID_SHIFT 0
#define OARR_VALID BIT(OARR_VALID_SHIFT)
#define OARR_SIZE_CFG_SHIFT 1
/*
* Maximum number of inbound mapping region sizes that can be supported by an
* IARR
*/
#define MAX_NUM_IB_REGION_SIZES 9
#define IMAP_VALID_SHIFT 0
#define IMAP_VALID BIT(IMAP_VALID_SHIFT)
#define APB_ERR_EN_SHIFT 0
#define APB_ERR_EN BIT(APB_ERR_EN_SHIFT)
/**
* iProc PCIe host registers
*/
enum iproc_pcie_reg {
/* clock/reset signal control */
IPROC_PCIE_CLK_CTRL = 0,
/*
* To allow MSI to be steered to an external MSI controller (e.g., ARM
* GICv3 ITS)
*/
IPROC_PCIE_MSI_GIC_MODE,
/*
* IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
* window where the MSI posted writes are written, for the writes to be
* interpreted as MSI writes.
*/
IPROC_PCIE_MSI_BASE_ADDR,
IPROC_PCIE_MSI_WINDOW_SIZE,
/*
* To hold the address of the register where the MSI writes are
* programed. When ARM GICv3 ITS is used, this should be programmed
* with the address of the GITS_TRANSLATER register.
*/
IPROC_PCIE_MSI_ADDR_LO,
IPROC_PCIE_MSI_ADDR_HI,
/* enable MSI */
IPROC_PCIE_MSI_EN_CFG,
/* allow access to root complex configuration space */
IPROC_PCIE_CFG_IND_ADDR,
IPROC_PCIE_CFG_IND_DATA,
/* allow access to device configuration space */
IPROC_PCIE_CFG_ADDR,
IPROC_PCIE_CFG_DATA,
/* enable INTx */
IPROC_PCIE_INTX_EN,
IPROC_PCIE_INTX_CSR,
/* outbound address mapping */
IPROC_PCIE_OARR0,
IPROC_PCIE_OMAP0,
IPROC_PCIE_OARR1,
IPROC_PCIE_OMAP1,
IPROC_PCIE_OARR2,
IPROC_PCIE_OMAP2,
IPROC_PCIE_OARR3,
IPROC_PCIE_OMAP3,
/* inbound address mapping */
IPROC_PCIE_IARR0,
IPROC_PCIE_IMAP0,
IPROC_PCIE_IARR1,
IPROC_PCIE_IMAP1,
IPROC_PCIE_IARR2,
IPROC_PCIE_IMAP2,
IPROC_PCIE_IARR3,
IPROC_PCIE_IMAP3,
IPROC_PCIE_IARR4,
IPROC_PCIE_IMAP4,
/* config read status */
IPROC_PCIE_CFG_RD_STATUS,
/* link status */
IPROC_PCIE_LINK_STATUS,
/* enable APB error for unsupported requests */
IPROC_PCIE_APB_ERR_EN,
/* Ordering Mode configuration registers */
IPROC_PCIE_ORDERING_CFG,
IPROC_PCIE_IMAP0_RO_CONTROL,
IPROC_PCIE_IMAP1_RO_CONTROL,
IPROC_PCIE_IMAP2_RO_CONTROL,
IPROC_PCIE_IMAP3_RO_CONTROL,
IPROC_PCIE_IMAP4_RO_CONTROL,
/* total number of core registers */
IPROC_PCIE_MAX_NUM_REG,
};
/* iProc PCIe PAXB v2 registers */
static const u16 iproc_pcie_reg_paxb_v2[] = {
[IPROC_PCIE_CLK_CTRL] = 0x000,
[IPROC_PCIE_CFG_IND_ADDR] = 0x120,
[IPROC_PCIE_CFG_IND_DATA] = 0x124,
[IPROC_PCIE_CFG_ADDR] = 0x1f8,
[IPROC_PCIE_CFG_DATA] = 0x1fc,
[IPROC_PCIE_INTX_EN] = 0x330,
[IPROC_PCIE_INTX_CSR] = 0x334,
[IPROC_PCIE_OARR0] = 0xd20,
[IPROC_PCIE_OMAP0] = 0xd40,
[IPROC_PCIE_OARR1] = 0xd28,
[IPROC_PCIE_OMAP1] = 0xd48,
[IPROC_PCIE_OARR2] = 0xd60,
[IPROC_PCIE_OMAP2] = 0xd68,
[IPROC_PCIE_OARR3] = 0xdf0,
[IPROC_PCIE_OMAP3] = 0xdf8,
[IPROC_PCIE_IARR0] = 0xd00,
[IPROC_PCIE_IMAP0] = 0xc00,
[IPROC_PCIE_IARR2] = 0xd10,
[IPROC_PCIE_IMAP2] = 0xcc0,
[IPROC_PCIE_IARR3] = 0xe00,
[IPROC_PCIE_IMAP3] = 0xe08,
[IPROC_PCIE_IARR4] = 0xe68,
[IPROC_PCIE_IMAP4] = 0xe70,
[IPROC_PCIE_CFG_RD_STATUS] = 0xee0,
[IPROC_PCIE_LINK_STATUS] = 0xf0c,
[IPROC_PCIE_APB_ERR_EN] = 0xf40,
[IPROC_PCIE_ORDERING_CFG] = 0x2000,
[IPROC_PCIE_IMAP0_RO_CONTROL] = 0x201c,
[IPROC_PCIE_IMAP1_RO_CONTROL] = 0x2020,
[IPROC_PCIE_IMAP2_RO_CONTROL] = 0x2024,
[IPROC_PCIE_IMAP3_RO_CONTROL] = 0x2028,
[IPROC_PCIE_IMAP4_RO_CONTROL] = 0x202c,
};
/* iProc PCIe PAXC v2 registers */
static const u16 iproc_pcie_reg_paxc_v2[] = {
[IPROC_PCIE_MSI_GIC_MODE] = 0x050,
[IPROC_PCIE_MSI_BASE_ADDR] = 0x074,
[IPROC_PCIE_MSI_WINDOW_SIZE] = 0x078,
[IPROC_PCIE_MSI_ADDR_LO] = 0x07c,
[IPROC_PCIE_MSI_ADDR_HI] = 0x080,
[IPROC_PCIE_MSI_EN_CFG] = 0x09c,
[IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
[IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
[IPROC_PCIE_CFG_ADDR] = 0x1f8,
[IPROC_PCIE_CFG_DATA] = 0x1fc,
};
/**
* List of device IDs of controllers that have corrupted
* capability list that require SW fixup
*/
static const u16 iproc_pcie_corrupt_cap_did[] = {
0x16cd,
0x16f0,
0xd802,
0xd804
};
enum iproc_pcie_type {
IPROC_PCIE_PAXB_V2,
IPROC_PCIE_PAXC,
IPROC_PCIE_PAXC_V2,
};
/**
* struct iproc_pcie_ob - iProc PCIe outbound mapping
*
* @axi_offset: offset from the AXI address to the internal address used by
* the iProc PCIe core
* @nr_windows: total number of supported outbound mapping windows
*/
struct iproc_pcie_ob {
resource_size_t axi_offset;
unsigned int nr_windows;
};
/**
* struct iproc_pcie_ib - iProc PCIe inbound mapping
*
* @nr_regions: total number of supported inbound mapping regions
*/
struct iproc_pcie_ib {
unsigned int nr_regions;
};
/**
* struct iproc_pcie_ob_map - outbound mapping controller specific parameters
*
* @window_sizes: list of supported outbound mapping window sizes in MB
* @nr_sizes: number of supported outbound mapping window sizes
*/
struct iproc_pcie_ob_map {
resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
unsigned int nr_sizes;
};
static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
{
/* OARR0/OMAP0 */
.window_sizes = { 128, 256 },
.nr_sizes = 2,
},
{
/* OARR1/OMAP1 */
.window_sizes = { 128, 256 },
.nr_sizes = 2,
},
{
/* OARR2/OMAP2 */
.window_sizes = { 128, 256, 512, 1024 },
.nr_sizes = 4,
},
{
/* OARR3/OMAP3 */
.window_sizes = { 128, 256, 512, 1024 },
.nr_sizes = 4,
},
};
/**
* iProc PCIe inbound mapping type
*/
enum iproc_pcie_ib_map_type {
/* for DDR memory */
IPROC_PCIE_IB_MAP_MEM = 0,
/* for device I/O memory */
IPROC_PCIE_IB_MAP_IO,
/* invalid or unused */
IPROC_PCIE_IB_MAP_INVALID
};
/**
* struct iproc_pcie_ib_map - inbound mapping controller specific parameters
*
* @type: inbound mapping region type
* @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or SZ_1G
* @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
* GB, depedning on the size unit
* @nr_sizes: number of supported inbound mapping region sizes
* @nr_windows: number of supported inbound mapping windows for the region
* @imap_addr_offset: register offset between the upper and lower 32-bit
* IMAP address registers
* @imap_window_offset: register offset between each IMAP window
*/
struct iproc_pcie_ib_map {
enum iproc_pcie_ib_map_type type;
unsigned int size_unit;
resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
unsigned int nr_sizes;
unsigned int nr_windows;
u16 imap_addr_offset;
u16 imap_window_offset;
};
static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
{
/* IARR0/IMAP0 */
.type = IPROC_PCIE_IB_MAP_IO,
.size_unit = SZ_1K,
.region_sizes = { 32 },
.nr_sizes = 1,
.nr_windows = 8,
.imap_addr_offset = 0x40,
.imap_window_offset = 0x4,
},
{
/* IARR1/IMAP1 (currently unused) */
.type = IPROC_PCIE_IB_MAP_INVALID,
},
{
/* IARR2/IMAP2 */
.type = IPROC_PCIE_IB_MAP_MEM,
.size_unit = SZ_1M,
.region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
16384 },
.nr_sizes = 9,
.nr_windows = 1,
.imap_addr_offset = 0x4,
.imap_window_offset = 0x8,
},
{
/* IARR3/IMAP3 */
.type = IPROC_PCIE_IB_MAP_MEM,
.size_unit = SZ_1G,
.region_sizes = { 1, 2, 4, 8, 16, 32 },
.nr_sizes = 6,
.nr_windows = 8,
.imap_addr_offset = 0x4,
.imap_window_offset = 0x8,
},
{
/* IARR4/IMAP4 */
.type = IPROC_PCIE_IB_MAP_MEM,
.size_unit = SZ_1G,
.region_sizes = { 32, 64, 128, 256, 512 },
.nr_sizes = 5,
.nr_windows = 8,
.imap_addr_offset = 0x4,
.imap_window_offset = 0x8,
},
};
/**
* struct iproc_pcie - iproc pcie device instance
*
* @dev: pointer to pcie udevice
* @base: device I/O base address
* @type: pci device type, PAXC or PAXB
* @reg_offsets: pointer to pcie host register
* @fix_paxc_cap: paxc capability
* @need_ob_cfg: outbound mapping status
* @ob: pcie outbound mapping
* @ob_map: pointer to outbound mapping parameters
* @need_ib_cfg: inbound mapping status
* @ib: pcie inbound mapping
* @ib_map: pointer to inbound mapping parameters
* @ep_is_internal: ep status
* @phy: phy device
* @link_is_active: link up status
* @has_apb_err_disable: apb error status
*/
struct iproc_pcie {
struct udevice *dev;
void __iomem *base;
enum iproc_pcie_type type;
u16 *reg_offsets;
bool fix_paxc_cap;
bool need_ob_cfg;
struct iproc_pcie_ob ob;
const struct iproc_pcie_ob_map *ob_map;
bool need_ib_cfg;
struct iproc_pcie_ib ib;
const struct iproc_pcie_ib_map *ib_map;
bool ep_is_internal;
struct phy phy;
bool link_is_active;
bool has_apb_err_disable;
};
static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
{
return !!(reg_offset == IPROC_PCIE_REG_INVALID);
}
static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
enum iproc_pcie_reg reg)
{
return pcie->reg_offsets[reg];
}
static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
enum iproc_pcie_reg reg)
{
u16 offset = iproc_pcie_reg_offset(pcie, reg);
if (iproc_pcie_reg_is_invalid(offset))
return 0;
return readl(pcie->base + offset);
}
static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
enum iproc_pcie_reg reg, u32 val)
{
u16 offset = iproc_pcie_reg_offset(pcie, reg);
if (iproc_pcie_reg_is_invalid(offset))
return;
writel(val, pcie->base + offset);
}
static int iproc_pcie_map_ep_cfg_reg(const struct udevice *udev, pci_dev_t bdf,
uint where, void **paddress)
{
struct iproc_pcie *pcie = dev_get_priv(udev);
unsigned int busno = PCI_BUS(bdf);
unsigned int slot = PCI_DEV(bdf);
unsigned int fn = PCI_FUNC(bdf);
u16 offset;
u32 val;
/* root complex access */
if (busno == 0) {
if (slot > 0 || fn > 0)
return -ENODEV;
iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
where & CFG_IND_ADDR_MASK);
offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
if (iproc_pcie_reg_is_invalid(offset))
return -ENODEV;
*paddress = (pcie->base + offset);
return 0;
}
if (!pcie->link_is_active)
return -ENODEV;
/* EP device access */
val = (PCIE_ECAM_OFFSET(busno, slot, fn, where) & CFG_ADDR_CFG_ECAM_MASK)
| (1 & CFG_ADDR_CFG_TYPE_MASK);
iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
if (iproc_pcie_reg_is_invalid(offset))
return -ENODEV;
*paddress = (pcie->base + offset);
return 0;
}
static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, ulong *val)
{
u32 i, dev_id;
switch (where & ~0x3) {
case PCI_VENDOR_ID:
dev_id = *val >> 16;
/*
* Activate fixup for those controllers that have corrupted
* capability list registers
*/
for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
if (dev_id == iproc_pcie_corrupt_cap_did[i])
pcie->fix_paxc_cap = true;
break;
case IPROC_PCI_PM_CAP:
if (pcie->fix_paxc_cap) {
/* advertise PM, force next capability to PCIe */
*val &= ~IPROC_PCI_PM_CAP_MASK;
*val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
}
break;
case IPROC_PCI_EXP_CAP:
if (pcie->fix_paxc_cap) {
/* advertise root port, version 2, terminate here */
*val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
PCI_CAP_ID_EXP;
}
break;
case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
/* Don't advertise CRS SV support */
*val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
break;
default:
break;
}
}
static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
unsigned int devfn, int where,
int size, u32 *val)
{
void __iomem *addr;
int ret;
ret = iproc_pcie_map_ep_cfg_reg(pcie->dev, devfn, where & ~0x3, &addr);
if (ret) {
*val = ~0;
return -EINVAL;
}
*val = readl(addr);
if (size <= 2)
*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
return 0;
}
static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
unsigned int devfn, int where,
int size, u32 val)
{
void __iomem *addr;
int ret;
u32 mask, tmp;
ret = iproc_pcie_map_ep_cfg_reg(pcie->dev, devfn, where & ~0x3, &addr);
if (ret)
return -EINVAL;
if (size == 4) {
writel(val, addr);
return 0;
}
mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
tmp = readl(addr) & mask;
tmp |= val << ((where & 0x3) * 8);
writel(tmp, addr);
return 0;
}
/**
* iproc_pcie_apb_err_disable() - configure apb error
*
* APB error forwarding can be disabled during access of configuration
* registers of the endpoint device, to prevent unsupported requests
* (typically seen during enumeration with multi-function devices) from
* triggering a system exception.
*
* @bus: pcie udevice
* @bdf: pdf value
* @disabled: flag to enable/disabled apb error
*/
static inline void iproc_pcie_apb_err_disable(const struct udevice *bus,
pci_dev_t bdf, bool disable)
{
struct iproc_pcie *pcie = dev_get_priv(bus);
u32 val;
if (PCI_BUS(bdf) && pcie->has_apb_err_disable) {
val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
if (disable)
val &= ~APB_ERR_EN;
else
val |= APB_ERR_EN;
iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
}
}
static int iproc_pcie_config_read32(const struct udevice *bus, pci_dev_t bdf,
uint offset, ulong *valuep,
enum pci_size_t size)
{
struct iproc_pcie *pcie = dev_get_priv(bus);
int ret;
ulong data;
iproc_pcie_apb_err_disable(bus, bdf, true);
ret = pci_generic_mmap_read_config(bus, iproc_pcie_map_ep_cfg_reg,
bdf, offset, &data, PCI_SIZE_32);
iproc_pcie_apb_err_disable(bus, bdf, false);
if (size <= PCI_SIZE_16)
*valuep = (data >> (8 * (offset & 3))) &
((1 << (BIT(size) * 8)) - 1);
else
*valuep = data;
if (!ret && PCI_BUS(bdf) == 0)
iproc_pcie_fix_cap(pcie, offset, valuep);
return ret;
}
static int iproc_pcie_config_write32(struct udevice *bus, pci_dev_t bdf,
uint offset, ulong value,
enum pci_size_t size)
{
void *addr;
ulong mask, tmp;
int ret;
ret = iproc_pcie_map_ep_cfg_reg(bus, bdf, offset, &addr);
if (ret)
return ret;
if (size == PCI_SIZE_32) {
writel(value, addr);
return ret;
}
iproc_pcie_apb_err_disable(bus, bdf, true);
mask = ~(((1 << (BIT(size) * 8)) - 1) << ((offset & 0x3) * 8));
tmp = readl(addr) & mask;
tmp |= (value << ((offset & 0x3) * 8));
writel(tmp, addr);
iproc_pcie_apb_err_disable(bus, bdf, false);
return ret;
}
const static struct dm_pci_ops iproc_pcie_ops = {
.read_config = iproc_pcie_config_read32,
.write_config = iproc_pcie_config_write32,
};
static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
{
unsigned int reg_idx;
const u16 *regs;
u16 num_elements;
switch (pcie->type) {
case IPROC_PCIE_PAXC_V2:
pcie->ep_is_internal = true;
regs = iproc_pcie_reg_paxc_v2;
num_elements = ARRAY_SIZE(iproc_pcie_reg_paxc_v2);
break;
case IPROC_PCIE_PAXB_V2:
regs = iproc_pcie_reg_paxb_v2;
num_elements = ARRAY_SIZE(iproc_pcie_reg_paxb_v2);
pcie->has_apb_err_disable = true;
if (pcie->need_ob_cfg) {
pcie->ob.axi_offset = 0;
pcie->ob_map = paxb_v2_ob_map;
pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
}
pcie->need_ib_cfg = true;
pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
pcie->ib_map = paxb_v2_ib_map;
break;
default:
dev_dbg(pcie->dev, "incompatible iProc PCIe interface\n");
return -EINVAL;
}
pcie->reg_offsets = calloc(IPROC_PCIE_MAX_NUM_REG,
sizeof(*pcie->reg_offsets));
if (!pcie->reg_offsets)
return -ENOMEM;
/* go through the register table and populate all valid registers */
pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
IPROC_PCIE_REG_INVALID : regs[0];
for (reg_idx = 1; reg_idx < num_elements; reg_idx++)
pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
regs[reg_idx] : IPROC_PCIE_REG_INVALID;
return 0;
}
static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
int window_idx)
{
u32 val;
val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
return !!(val & OARR_VALID);
}
static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
int size_idx, u64 axi_addr, u64 pci_addr)
{
u16 oarr_offset, omap_offset;
/*
* Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
* on window index.
*/
oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
window_idx));
omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
window_idx));
if (iproc_pcie_reg_is_invalid(oarr_offset) ||
iproc_pcie_reg_is_invalid(omap_offset))
return -EINVAL;
/*
* Program the OARR registers. The upper 32-bit OARR register is
* always right after the lower 32-bit OARR register.
*/
writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
OARR_VALID, pcie->base + oarr_offset);
writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
/* now program the OMAP registers */
writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
debug("ob window [%d]: offset 0x%x axi %pap pci %pap\n",
window_idx, oarr_offset, &axi_addr, &pci_addr);
debug("oarr lo 0x%x oarr hi 0x%x\n",
readl(pcie->base + oarr_offset),
readl(pcie->base + oarr_offset + 4));
debug("omap lo 0x%x omap hi 0x%x\n",
readl(pcie->base + omap_offset),
readl(pcie->base + omap_offset + 4));
return 0;
}
/**
* iproc_pcie_setup_ob() - setup outbound address mapping
*
* Some iProc SoCs require the SW to configure the outbound address mapping
* Outbound address translation:
*
* iproc_pcie_address = axi_address - axi_offset
* OARR = iproc_pcie_address
* OMAP = pci_addr
* axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
*
* @pcie: pcie device
* @axi_addr: axi address to be translated
* @pci_addr: pci address
* @size: window size
*
* @return: 0 on success and -ve on failure
*/
static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
u64 pci_addr, resource_size_t size)
{
struct iproc_pcie_ob *ob = &pcie->ob;
int ret = -EINVAL, window_idx, size_idx;
if (axi_addr < ob->axi_offset) {
pr_err("axi address %pap less than offset %pap\n",
&axi_addr, &ob->axi_offset);
return -EINVAL;
}
/*
* Translate the AXI address to the internal address used by the iProc
* PCIe core before programming the OARR
*/
axi_addr -= ob->axi_offset;
/* iterate through all OARR/OMAP mapping windows */
for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
const struct iproc_pcie_ob_map *ob_map =
&pcie->ob_map[window_idx];
/*
* If current outbound window is already in use, move on to the
* next one.
*/
if (iproc_pcie_ob_is_valid(pcie, window_idx))
continue;
/*
* Iterate through all supported window sizes within the
* OARR/OMAP pair to find a match. Go through the window sizes
* in a descending order.
*/
for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
size_idx--) {
resource_size_t window_size =
ob_map->window_sizes[size_idx] * SZ_1M;
/*
* Keep iterating until we reach the last window and
* with the minimal window size at index zero. In this
* case, we take a compromise by mapping it using the
* minimum window size that can be supported
*/
if (size < window_size) {
if (size_idx > 0 || window_idx > 0)
continue;
/*
* For the corner case of reaching the minimal
* window size that can be supported on the
* last window
*/
axi_addr = ALIGN_DOWN(axi_addr, window_size);
pci_addr = ALIGN_DOWN(pci_addr, window_size);
size = window_size;
}
if (!IS_ALIGNED(axi_addr, window_size) ||
!IS_ALIGNED(pci_addr, window_size)) {
pr_err("axi %pap or pci %pap not aligned\n",
&axi_addr, &pci_addr);
return -EINVAL;
}
/*
* Match found! Program both OARR and OMAP and mark
* them as a valid entry.
*/
ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
axi_addr, pci_addr);
if (ret)
goto err_ob;
size -= window_size;
if (size == 0)
return 0;
/*
* If we are here, we are done with the current window,
* but not yet finished all mappings. Need to move on
* to the next window.
*/
axi_addr += window_size;
pci_addr += window_size;
break;
}
}
err_ob:
pr_err("unable to configure outbound mapping\n");
pr_err("axi %pap, axi offset %pap, pci %pap, res size %pap\n",
&axi_addr, &ob->axi_offset, &pci_addr, &size);
return ret;
}
static int iproc_pcie_map_ranges(struct udevice *dev)
{
struct iproc_pcie *pcie = dev_get_priv(dev);
struct udevice *bus = pci_get_controller(dev);
struct pci_controller *hose = dev_get_uclass_priv(bus);
int i, ret;
for (i = 0; i < hose->region_count; i++) {
if (hose->regions[i].flags == PCI_REGION_MEM ||
hose->regions[i].flags == PCI_REGION_PREFETCH) {
debug("%d: bus_addr %p, axi_addr %p, size 0x%llx\n",
i, &hose->regions[i].bus_start,
&hose->regions[i].phys_start,
hose->regions[i].size);
ret = iproc_pcie_setup_ob(pcie,
hose->regions[i].phys_start,
hose->regions[i].bus_start,
hose->regions[i].size);
if (ret)
return ret;
}
}
return 0;
}
static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
int region_idx)
{
const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
u32 val;
val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
return !!(val & (BIT(ib_map->nr_sizes) - 1));
}
static inline bool
iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
enum iproc_pcie_ib_map_type type)
{
return !!(ib_map->type == type);
}
static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
int size_idx, int nr_windows, u64 axi_addr,
u64 pci_addr, resource_size_t size)
{
const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
u16 iarr_offset, imap_offset;
u32 val;
int window_idx;
iarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_IARR0,
region_idx));
imap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_IMAP0,
region_idx));
if (iproc_pcie_reg_is_invalid(iarr_offset) ||
iproc_pcie_reg_is_invalid(imap_offset))
return -EINVAL;
debug("ib region [%d]: offset 0x%x axi %pap pci %pap\n",
region_idx, iarr_offset, &axi_addr, &pci_addr);
/*
* Program the IARR registers. The upper 32-bit IARR register is
* always right after the lower 32-bit IARR register.
*/
writel(lower_32_bits(pci_addr) | BIT(size_idx),
pcie->base + iarr_offset);
writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
debug("iarr lo 0x%x iarr hi 0x%x\n",
readl(pcie->base + iarr_offset),
readl(pcie->base + iarr_offset + 4));
/*
* Now program the IMAP registers. Each IARR region may have one or
* more IMAP windows.
*/
size >>= ilog2(nr_windows);
for (window_idx = 0; window_idx < nr_windows; window_idx++) {
val = readl(pcie->base + imap_offset);
val |= lower_32_bits(axi_addr) | IMAP_VALID;
writel(val, pcie->base + imap_offset);
writel(upper_32_bits(axi_addr),
pcie->base + imap_offset + ib_map->imap_addr_offset);
debug("imap window [%d] lo 0x%x hi 0x%x\n",
window_idx, readl(pcie->base + imap_offset),
readl(pcie->base + imap_offset +
ib_map->imap_addr_offset));
imap_offset += ib_map->imap_window_offset;
axi_addr += size;
}
return 0;
}
/**
* iproc_pcie_setup_ib() - setup inbound address mapping
*
* @pcie: pcie device
* @axi_addr: axi address to be translated
* @pci_addr: pci address
* @size: window size
* @type: inbound mapping type
*
* @return: 0 on success and -ve on failure
*/
static int iproc_pcie_setup_ib(struct iproc_pcie *pcie, u64 axi_addr,
u64 pci_addr, resource_size_t size,
enum iproc_pcie_ib_map_type type)
{
struct iproc_pcie_ib *ib = &pcie->ib;
int ret;
unsigned int region_idx, size_idx;
/* iterate through all IARR mapping regions */
for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
const struct iproc_pcie_ib_map *ib_map =
&pcie->ib_map[region_idx];
/*
* If current inbound region is already in use or not a
* compatible type, move on to the next.
*/
if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
!iproc_pcie_ib_check_type(ib_map, type))
continue;
/* iterate through all supported region sizes to find a match */
for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
resource_size_t region_size =
ib_map->region_sizes[size_idx] * ib_map->size_unit;
if (size != region_size)
continue;
if (!IS_ALIGNED(axi_addr, region_size) ||
!IS_ALIGNED(pci_addr, region_size)) {
pr_err("axi %pap or pci %pap not aligned\n",
&axi_addr, &pci_addr);
return -EINVAL;
}
/* Match found! Program IARR and all IMAP windows. */
ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
ib_map->nr_windows, axi_addr,
pci_addr, size);
if (ret)
goto err_ib;
else
return 0;
}
}
ret = -EINVAL;
err_ib:
pr_err("unable to configure inbound mapping\n");
pr_err("axi %pap, pci %pap, res size %pap\n",
&axi_addr, &pci_addr, &size);
return ret;
}
static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
{
int ret;
struct pci_region regions;
int i = 0;
while (!pci_get_dma_regions(pcie->dev, &regions, i)) {
dev_dbg(pcie->dev,
"dma %d: bus_addr %#llx, axi_addr %#llx, size %#llx\n",
i, regions.bus_start, regions.phys_start, regions.size);
/* Each range entry corresponds to an inbound mapping region */
ret = iproc_pcie_setup_ib(pcie, regions.phys_start,
regions.bus_start,
regions.size,
IPROC_PCIE_IB_MAP_MEM);
if (ret)
return ret;
i++;
}
return 0;
}
static void iproc_pcie_reset_map_regs(struct iproc_pcie *pcie)
{
struct iproc_pcie_ib *ib = &pcie->ib;
struct iproc_pcie_ob *ob = &pcie->ob;
int window_idx, region_idx;
if (pcie->ep_is_internal)
return;
/* iterate through all OARR mapping regions */
for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
iproc_pcie_write_reg(pcie, MAP_REG(IPROC_PCIE_OARR0,
window_idx), 0);
}
/* iterate through all IARR mapping regions */
for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
iproc_pcie_write_reg(pcie, MAP_REG(IPROC_PCIE_IARR0,
region_idx), 0);
}
}
static void iproc_pcie_reset(struct iproc_pcie *pcie)
{
u32 val;
/*
* PAXC and the internal emulated endpoint device downstream should not
* be reset. If firmware has been loaded on the endpoint device at an
* earlier boot stage, reset here causes issues.
*/
if (pcie->ep_is_internal)
return;
/*
* Select perst_b signal as reset source. Put the device into reset,
* and then bring it out of reset
*/
val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
~RC_PCIE_RST_OUTPUT;
iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
udelay(250);
val |= RC_PCIE_RST_OUTPUT;
iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
mdelay(100);
}
static inline bool iproc_pcie_link_is_active(struct iproc_pcie *pcie)
{
u32 val;
val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
return !!((val & PCIE_PHYLINKUP) && (val & PCIE_DL_ACTIVE));
}
static int iproc_pcie_check_link(struct iproc_pcie *pcie)
{
u32 link_status, class;
pcie->link_is_active = false;
/* force class to PCI bridge Normal decode (0x060400) */
#define PCI_BRIDGE_CTRL_REG_OFFSET 0x43c
#define PCI_BRIDGE_CTRL_REG_CLASS_MASK 0xffffff
iproc_pci_raw_config_read32(pcie, 0,
PCI_BRIDGE_CTRL_REG_OFFSET,
4, &class);
class &= ~PCI_BRIDGE_CTRL_REG_CLASS_MASK;
class |= (PCI_CLASS_BRIDGE_PCI << 8);
iproc_pci_raw_config_write32(pcie, 0,
PCI_BRIDGE_CTRL_REG_OFFSET,
4, class);
/*
* PAXC connects to emulated endpoint devices directly and does not
* have a Serdes. Therefore skip the link detection logic here.
*/
if (pcie->ep_is_internal) {
pcie->link_is_active = true;
return 0;
}
if (!iproc_pcie_link_is_active(pcie)) {
pr_err("PHY or data link is INACTIVE!\n");
return -ENODEV;
}
#define PCI_TARGET_LINK_SPEED_MASK 0xf
#define PCI_TARGET_LINK_WIDTH_MASK 0x3f
#define PCI_TARGET_LINK_WIDTH_OFFSET 0x4
/* check link status to see if link is active */
iproc_pci_raw_config_read32(pcie, 0,
IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
2, &link_status);
if (link_status & PCI_EXP_LNKSTA_NLW)
pcie->link_is_active = true;
if (pcie->link_is_active)
pr_info("link UP @ Speed Gen-%d and width-x%d\n",
link_status & PCI_TARGET_LINK_SPEED_MASK,
(link_status >> PCI_TARGET_LINK_WIDTH_OFFSET) &
PCI_TARGET_LINK_WIDTH_MASK);
else
pr_info("link DOWN\n");
return 0;
}
static int iproc_pcie_probe(struct udevice *dev)
{
struct iproc_pcie *pcie = dev_get_priv(dev);
int ret;
pcie->type = (enum iproc_pcie_type)dev_get_driver_data(dev);
debug("PAX type %d\n", pcie->type);
pcie->base = dev_read_addr_ptr(dev);
debug("PAX reg base %p\n", pcie->base);
if (!pcie->base)
return -ENODEV;
if (dev_read_bool(dev, "brcm,pcie-ob"))
pcie->need_ob_cfg = true;
pcie->dev = dev;
ret = iproc_pcie_rev_init(pcie);
if (ret)
return ret;
if (!pcie->ep_is_internal) {
ret = generic_phy_get_by_name(dev, "pcie-phy", &pcie->phy);
if (!ret) {
ret = generic_phy_init(&pcie->phy);
if (ret) {
pr_err("failed to init %s PHY\n", dev->name);
return ret;
}
ret = generic_phy_power_on(&pcie->phy);
if (ret) {
pr_err("power on %s PHY failed\n", dev->name);
goto err_exit_phy;
}
}
}
iproc_pcie_reset(pcie);
if (pcie->need_ob_cfg) {
ret = iproc_pcie_map_ranges(dev);
if (ret) {
pr_err("outbound map failed\n");
goto err_power_off_phy;
}
}
if (pcie->need_ib_cfg) {
ret = iproc_pcie_map_dma_ranges(pcie);
if (ret) {
pr_err("inbound map failed\n");
goto err_power_off_phy;
}
}
if (iproc_pcie_check_link(pcie))
pr_info("no PCIe EP device detected\n");
return 0;
err_power_off_phy:
generic_phy_power_off(&pcie->phy);
err_exit_phy:
generic_phy_exit(&pcie->phy);
return ret;
}
static int iproc_pcie_remove(struct udevice *dev)
{
struct iproc_pcie *pcie = dev_get_priv(dev);
int ret;
iproc_pcie_reset_map_regs(pcie);
if (generic_phy_valid(&pcie->phy)) {
ret = generic_phy_power_off(&pcie->phy);
if (ret) {
pr_err("failed to power off PCIe phy\n");
return ret;
}
ret = generic_phy_exit(&pcie->phy);
if (ret) {
pr_err("failed to power off PCIe phy\n");
return ret;
}
}
return 0;
}
static const struct udevice_id pci_iproc_ids[] = {
{ .compatible = "brcm,iproc-pcie-paxb-v2",
.data = IPROC_PCIE_PAXB_V2 },
{ .compatible = "brcm,iproc-pcie-paxc-v2",
.data = IPROC_PCIE_PAXC_V2 },
{ }
};
U_BOOT_DRIVER(pci_iproc) = {
.name = "pci_iproc",
.id = UCLASS_PCI,
.of_match = pci_iproc_ids,
.ops = &iproc_pcie_ops,
.probe = iproc_pcie_probe,
.remove = iproc_pcie_remove,
.priv_auto = sizeof(struct iproc_pcie),
.flags = DM_FLAG_OS_PREPARE,
};