u-boot/drivers/i2c/fsl_i2c.c

652 lines
17 KiB
C
Raw Normal View History

/*
* Copyright 2006,2009 Freescale Semiconductor, Inc.
*
* 2012, Heiko Schocher, DENX Software Engineering, hs@denx.de.
* Changes for multibus/multiadapter I2C support.
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <command.h>
#include <i2c.h> /* Functional interface */
#include <asm/io.h>
#include <asm/fsl_i2c.h> /* HW definitions */
#include <dm.h>
#include <mapmem.h>
/* The maximum number of microseconds we will wait until another master has
* released the bus. If not defined in the board header file, then use a
* generic value.
*/
#ifndef CONFIG_I2C_MBB_TIMEOUT
#define CONFIG_I2C_MBB_TIMEOUT 100000
#endif
/* The maximum number of microseconds we will wait for a read or write
* operation to complete. If not defined in the board header file, then use a
* generic value.
*/
#ifndef CONFIG_I2C_TIMEOUT
#define CONFIG_I2C_TIMEOUT 100000
#endif
#define I2C_READ_BIT 1
#define I2C_WRITE_BIT 0
DECLARE_GLOBAL_DATA_PTR;
#ifndef CONFIG_DM_I2C
static const struct fsl_i2c_base *i2c_base[4] = {
(struct fsl_i2c_base *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C_OFFSET),
#ifdef CONFIG_SYS_FSL_I2C2_OFFSET
(struct fsl_i2c_base *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C2_OFFSET),
#endif
#ifdef CONFIG_SYS_FSL_I2C3_OFFSET
(struct fsl_i2c_base *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C3_OFFSET),
#endif
#ifdef CONFIG_SYS_FSL_I2C4_OFFSET
(struct fsl_i2c_base *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C4_OFFSET)
#endif
};
#endif
/* I2C speed map for a DFSR value of 1 */
#ifdef __M68K__
/*
* Map I2C frequency dividers to FDR and DFSR values
*
* This structure is used to define the elements of a table that maps I2C
* frequency divider (I2C clock rate divided by I2C bus speed) to a value to be
* programmed into the Frequency Divider Ratio (FDR) and Digital Filter
* Sampling Rate (DFSR) registers.
*
* The actual table should be defined in the board file, and it must be called
* fsl_i2c_speed_map[].
*
* The last entry of the table must have a value of {-1, X}, where X is same
* FDR/DFSR values as the second-to-last entry. This guarantees that any
* search through the array will always find a match.
*
* The values of the divider must be in increasing numerical order, i.e.
* fsl_i2c_speed_map[x+1].divider > fsl_i2c_speed_map[x].divider.
*
* For this table, the values are based on a value of 1 for the DFSR
* register. See the application note AN2919 "Determining the I2C Frequency
* Divider Ratio for SCL"
*
* ColdFire I2C frequency dividers for FDR values are different from
* PowerPC. The protocol to use the I2C module is still the same.
* A different table is defined and are based on MCF5xxx user manual.
*
*/
static const struct {
unsigned short divider;
u8 fdr;
} fsl_i2c_speed_map[] = {
{20, 32}, {22, 33}, {24, 34}, {26, 35},
{28, 0}, {28, 36}, {30, 1}, {32, 37},
{34, 2}, {36, 38}, {40, 3}, {40, 39},
{44, 4}, {48, 5}, {48, 40}, {56, 6},
{56, 41}, {64, 42}, {68, 7}, {72, 43},
{80, 8}, {80, 44}, {88, 9}, {96, 41},
{104, 10}, {112, 42}, {128, 11}, {128, 43},
{144, 12}, {160, 13}, {160, 48}, {192, 14},
{192, 49}, {224, 50}, {240, 15}, {256, 51},
{288, 16}, {320, 17}, {320, 52}, {384, 18},
{384, 53}, {448, 54}, {480, 19}, {512, 55},
{576, 20}, {640, 21}, {640, 56}, {768, 22},
{768, 57}, {960, 23}, {896, 58}, {1024, 59},
{1152, 24}, {1280, 25}, {1280, 60}, {1536, 26},
{1536, 61}, {1792, 62}, {1920, 27}, {2048, 63},
{2304, 28}, {2560, 29}, {3072, 30}, {3840, 31},
{-1, 31}
};
#endif
/**
* Set the I2C bus speed for a given I2C device
*
* @param base: the I2C device registers
* @i2c_clk: I2C bus clock frequency
* @speed: the desired speed of the bus
*
* The I2C device must be stopped before calling this function.
*
* The return value is the actual bus speed that is set.
*/
static uint set_i2c_bus_speed(const struct fsl_i2c_base *base,
uint i2c_clk, uint speed)
{
ushort divider = min(i2c_clk / speed, (uint)USHRT_MAX);
/*
* We want to choose an FDR/DFSR that generates an I2C bus speed that
* is equal to or lower than the requested speed. That means that we
* want the first divider that is equal to or greater than the
* calculated divider.
*/
#ifdef __PPC__
u8 dfsr, fdr = 0x31; /* Default if no FDR found */
/* a, b and dfsr matches identifiers A,B and C respectively in AN2919 */
ushort a, b, ga, gb;
ulong c_div, est_div;
#ifdef CONFIG_FSL_I2C_CUSTOM_DFSR
dfsr = CONFIG_FSL_I2C_CUSTOM_DFSR;
#else
/* Condition 1: dfsr <= 50/T */
dfsr = (5 * (i2c_clk / 1000)) / 100000;
#endif
#ifdef CONFIG_FSL_I2C_CUSTOM_FDR
fdr = CONFIG_FSL_I2C_CUSTOM_FDR;
speed = i2c_clk / divider; /* Fake something */
#else
debug("Requested speed:%d, i2c_clk:%d\n", speed, i2c_clk);
if (!dfsr)
dfsr = 1;
est_div = ~0;
for (ga = 0x4, a = 10; a <= 30; ga++, a += 2) {
for (gb = 0; gb < 8; gb++) {
b = 16 << gb;
c_div = b * (a + ((3 * dfsr) / b) * 2);
if (c_div > divider && c_div < est_div) {
ushort bin_gb, bin_ga;
est_div = c_div;
bin_gb = gb << 2;
bin_ga = (ga & 0x3) | ((ga & 0x4) << 3);
fdr = bin_gb | bin_ga;
speed = i2c_clk / est_div;
debug("FDR: 0x%.2x, ", fdr);
debug("div: %ld, ", est_div);
debug("ga: 0x%x, gb: 0x%x, ", ga, gb);
debug("a: %d, b: %d, speed: %d\n", a, b, speed);
/* Condition 2 not accounted for */
debug("Tr <= %d ns\n",
(b - 3 * dfsr) * 1000000 /
(i2c_clk / 1000));
}
}
if (a == 20)
a += 2;
if (a == 24)
a += 4;
}
debug("divider: %d, est_div: %ld, DFSR: %d\n", divider, est_div, dfsr);
debug("FDR: 0x%.2x, speed: %d\n", fdr, speed);
#endif
writeb(dfsr, &base->dfsrr); /* set default filter */
writeb(fdr, &base->fdr); /* set bus speed */
#else
uint i;
for (i = 0; i < ARRAY_SIZE(fsl_i2c_speed_map); i++)
if (fsl_i2c_speed_map[i].divider >= divider) {
u8 fdr;
fdr = fsl_i2c_speed_map[i].fdr;
speed = i2c_clk / fsl_i2c_speed_map[i].divider;
writeb(fdr, &base->fdr); /* set bus speed */
break;
}
#endif
return speed;
}
#ifndef CONFIG_DM_I2C
static uint get_i2c_clock(int bus)
{
if (bus)
return gd->arch.i2c2_clk; /* I2C2 clock */
else
return gd->arch.i2c1_clk; /* I2C1 clock */
}
#endif
static int fsl_i2c_fixup(const struct fsl_i2c_base *base)
{
const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT);
unsigned long long timeval = 0;
int ret = -1;
uint flags = 0;
#ifdef CONFIG_SYS_FSL_ERRATUM_I2C_A004447
uint svr = get_svr();
if ((SVR_SOC_VER(svr) == SVR_8548 && IS_SVR_REV(svr, 3, 1)) ||
(SVR_REV(svr) <= CONFIG_SYS_FSL_A004447_SVR_REV))
flags = I2C_CR_BIT6;
#endif
writeb(I2C_CR_MEN | I2C_CR_MSTA, &base->cr);
timeval = get_ticks();
while (!(readb(&base->sr) & I2C_SR_MBB)) {
if ((get_ticks() - timeval) > timeout)
goto err;
}
if (readb(&base->sr) & I2C_SR_MAL) {
/* SDA is stuck low */
writeb(0, &base->cr);
udelay(100);
writeb(I2C_CR_MSTA | flags, &base->cr);
writeb(I2C_CR_MEN | I2C_CR_MSTA | flags, &base->cr);
}
readb(&base->dr);
timeval = get_ticks();
while (!(readb(&base->sr) & I2C_SR_MIF)) {
if ((get_ticks() - timeval) > timeout)
goto err;
}
ret = 0;
err:
writeb(I2C_CR_MEN | flags, &base->cr);
writeb(0, &base->sr);
udelay(100);
return ret;
}
static void __i2c_init(const struct fsl_i2c_base *base, int speed, int
slaveadd, int i2c_clk, int busnum)
{
const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT);
unsigned long long timeval;
#ifdef CONFIG_SYS_I2C_INIT_BOARD
/* Call board specific i2c bus reset routine before accessing the
* environment, which might be in a chip on that bus. For details
* about this problem see doc/I2C_Edge_Conditions.
*/
i2c_init_board();
#endif
writeb(0, &base->cr); /* stop I2C controller */
udelay(5); /* let it shutdown in peace */
set_i2c_bus_speed(base, i2c_clk, speed);
writeb(slaveadd << 1, &base->adr);/* write slave address */
writeb(0x0, &base->sr); /* clear status register */
writeb(I2C_CR_MEN, &base->cr); /* start I2C controller */
timeval = get_ticks();
while (readb(&base->sr) & I2C_SR_MBB) {
if ((get_ticks() - timeval) < timeout)
continue;
if (fsl_i2c_fixup(base))
debug("i2c_init: BUS#%d failed to init\n",
busnum);
break;
}
}
static int i2c_wait4bus(const struct fsl_i2c_base *base)
{
unsigned long long timeval = get_ticks();
const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT);
while (readb(&base->sr) & I2C_SR_MBB) {
if ((get_ticks() - timeval) > timeout)
return -1;
}
return 0;
}
static int i2c_wait(const struct fsl_i2c_base *base, int write)
{
u32 csr;
unsigned long long timeval = get_ticks();
const unsigned long long timeout = usec2ticks(CONFIG_I2C_TIMEOUT);
do {
csr = readb(&base->sr);
if (!(csr & I2C_SR_MIF))
continue;
/* Read again to allow register to stabilise */
csr = readb(&base->sr);
writeb(0x0, &base->sr);
if (csr & I2C_SR_MAL) {
debug("%s: MAL\n", __func__);
return -1;
}
if (!(csr & I2C_SR_MCF)) {
debug("%s: unfinished\n", __func__);
return -1;
}
if (write == I2C_WRITE_BIT && (csr & I2C_SR_RXAK)) {
debug("%s: No RXACK\n", __func__);
return -1;
}
return 0;
} while ((get_ticks() - timeval) < timeout);
debug("%s: timed out\n", __func__);
return -1;
}
static int i2c_write_addr(const struct fsl_i2c_base *base, u8 dev,
u8 dir, int rsta)
{
writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_MTX
| (rsta ? I2C_CR_RSTA : 0),
&base->cr);
writeb((dev << 1) | dir, &base->dr);
if (i2c_wait(base, I2C_WRITE_BIT) < 0)
return 0;
return 1;
}
static int __i2c_write_data(const struct fsl_i2c_base *base, u8 *data,
int length)
{
int i;
for (i = 0; i < length; i++) {
writeb(data[i], &base->dr);
if (i2c_wait(base, I2C_WRITE_BIT) < 0)
break;
}
return i;
}
static int __i2c_read_data(const struct fsl_i2c_base *base, u8 *data,
int length)
{
int i;
writeb(I2C_CR_MEN | I2C_CR_MSTA | ((length == 1) ? I2C_CR_TXAK : 0),
&base->cr);
/* dummy read */
readb(&base->dr);
for (i = 0; i < length; i++) {
if (i2c_wait(base, I2C_READ_BIT) < 0)
break;
/* Generate ack on last next to last byte */
if (i == length - 2)
writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_TXAK,
&base->cr);
/* Do not generate stop on last byte */
if (i == length - 1)
writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_MTX,
&base->cr);
data[i] = readb(&base->dr);
}
return i;
}
static int __i2c_read(const struct fsl_i2c_base *base, u8 chip_addr, u8 *offset,
int olen, u8 *data, int dlen)
{
int ret = -1; /* signal error */
if (i2c_wait4bus(base) < 0)
return -1;
/* Some drivers use offset lengths in excess of 4 bytes. These drivers
* adhere to the following convention:
* - the offset length is passed as negative (that is, the absolute
* value of olen is the actual offset length)
* - the offset itself is passed in data, which is overwritten by the
* subsequent read operation
*/
if (olen < 0) {
if (i2c_write_addr(base, chip_addr, I2C_WRITE_BIT, 0) != 0)
ret = __i2c_write_data(base, data, -olen);
if (ret != -olen)
return -1;
if (dlen && i2c_write_addr(base, chip_addr,
I2C_READ_BIT, 1) != 0)
ret = __i2c_read_data(base, data, dlen);
} else {
if ((!dlen || olen > 0) &&
i2c_write_addr(base, chip_addr, I2C_WRITE_BIT, 0) != 0 &&
__i2c_write_data(base, offset, olen) == olen)
ret = 0; /* No error so far */
if (dlen && i2c_write_addr(base, chip_addr, I2C_READ_BIT,
olen ? 1 : 0) != 0)
ret = __i2c_read_data(base, data, dlen);
}
writeb(I2C_CR_MEN, &base->cr);
if (i2c_wait4bus(base)) /* Wait until STOP */
debug("i2c_read: wait4bus timed out\n");
if (ret == dlen)
return 0;
return -1;
}
static int __i2c_write(const struct fsl_i2c_base *base, u8 chip_addr,
u8 *offset, int olen, u8 *data, int dlen)
{
int ret = -1; /* signal error */
if (i2c_wait4bus(base) < 0)
return -1;
if (i2c_write_addr(base, chip_addr, I2C_WRITE_BIT, 0) != 0 &&
__i2c_write_data(base, offset, olen) == olen) {
ret = __i2c_write_data(base, data, dlen);
}
writeb(I2C_CR_MEN, &base->cr);
if (i2c_wait4bus(base)) /* Wait until STOP */
debug("i2c_write: wait4bus timed out\n");
if (ret == dlen)
return 0;
return -1;
}
static int __i2c_probe_chip(const struct fsl_i2c_base *base, uchar chip)
{
/* For unknown reason the controller will ACK when
* probing for a slave with the same address, so skip
* it.
*/
if (chip == (readb(&base->adr) >> 1))
return -1;
return __i2c_read(base, chip, 0, 0, NULL, 0);
}
static uint __i2c_set_bus_speed(const struct fsl_i2c_base *base,
uint speed, int i2c_clk)
{
writeb(0, &base->cr); /* stop controller */
set_i2c_bus_speed(base, i2c_clk, speed);
writeb(I2C_CR_MEN, &base->cr); /* start controller */
return 0;
}
#ifndef CONFIG_DM_I2C
static void fsl_i2c_init(struct i2c_adapter *adap, int speed, int slaveadd)
{
__i2c_init(i2c_base[adap->hwadapnr], speed, slaveadd,
get_i2c_clock(adap->hwadapnr), adap->hwadapnr);
}
static int fsl_i2c_probe_chip(struct i2c_adapter *adap, uchar chip)
{
return __i2c_probe_chip(i2c_base[adap->hwadapnr], chip);
}
static int fsl_i2c_read(struct i2c_adapter *adap, u8 chip_addr, uint offset,
int olen, u8 *data, int dlen)
{
u8 *o = (u8 *)&offset;
return __i2c_read(i2c_base[adap->hwadapnr], chip_addr, &o[4 - olen],
olen, data, dlen);
}
static int fsl_i2c_write(struct i2c_adapter *adap, u8 chip_addr, uint offset,
int olen, u8 *data, int dlen)
{
u8 *o = (u8 *)&offset;
return __i2c_write(i2c_base[adap->hwadapnr], chip_addr, &o[4 - olen],
olen, data, dlen);
}
static uint fsl_i2c_set_bus_speed(struct i2c_adapter *adap, uint speed)
{
return __i2c_set_bus_speed(i2c_base[adap->hwadapnr], speed,
get_i2c_clock(adap->hwadapnr));
}
/*
* Register fsl i2c adapters
*/
U_BOOT_I2C_ADAP_COMPLETE(fsl_0, fsl_i2c_init, fsl_i2c_probe_chip, fsl_i2c_read,
fsl_i2c_write, fsl_i2c_set_bus_speed,
CONFIG_SYS_FSL_I2C_SPEED, CONFIG_SYS_FSL_I2C_SLAVE,
0)
#ifdef CONFIG_SYS_FSL_I2C2_OFFSET
U_BOOT_I2C_ADAP_COMPLETE(fsl_1, fsl_i2c_init, fsl_i2c_probe_chip, fsl_i2c_read,
fsl_i2c_write, fsl_i2c_set_bus_speed,
CONFIG_SYS_FSL_I2C2_SPEED, CONFIG_SYS_FSL_I2C2_SLAVE,
1)
#endif
#ifdef CONFIG_SYS_FSL_I2C3_OFFSET
U_BOOT_I2C_ADAP_COMPLETE(fsl_2, fsl_i2c_init, fsl_i2c_probe_chip, fsl_i2c_read,
fsl_i2c_write, fsl_i2c_set_bus_speed,
CONFIG_SYS_FSL_I2C3_SPEED, CONFIG_SYS_FSL_I2C3_SLAVE,
2)
#endif
#ifdef CONFIG_SYS_FSL_I2C4_OFFSET
U_BOOT_I2C_ADAP_COMPLETE(fsl_3, fsl_i2c_init, fsl_i2c_probe_chip, fsl_i2c_read,
fsl_i2c_write, fsl_i2c_set_bus_speed,
CONFIG_SYS_FSL_I2C4_SPEED, CONFIG_SYS_FSL_I2C4_SLAVE,
3)
#endif
#else /* CONFIG_DM_I2C */
static int fsl_i2c_probe_chip(struct udevice *bus, u32 chip_addr,
u32 chip_flags)
{
struct fsl_i2c_dev *dev = dev_get_priv(bus);
return __i2c_probe_chip(dev->base, chip_addr);
}
static int fsl_i2c_set_bus_speed(struct udevice *bus, uint speed)
{
struct fsl_i2c_dev *dev = dev_get_priv(bus);
return __i2c_set_bus_speed(dev->base, speed, dev->i2c_clk);
}
static int fsl_i2c_ofdata_to_platdata(struct udevice *bus)
{
struct fsl_i2c_dev *dev = dev_get_priv(bus);
fdt_addr_t addr;
addr = dev_read_u32_default(bus, "reg", -1);
dev->base = map_sysmem(CONFIG_SYS_IMMR + addr, sizeof(struct fsl_i2c_base));
if (!dev->base)
return -ENOMEM;
dev->index = dev_read_u32_default(bus, "cell-index", -1);
dev->slaveadd = dev_read_u32_default(bus, "u-boot,i2c-slave-addr",
0x7f);
dev->speed = dev_read_u32_default(bus, "clock-frequency", 400000);
dev->i2c_clk = dev->index ? gd->arch.i2c2_clk : gd->arch.i2c1_clk;
return 0;
}
static int fsl_i2c_probe(struct udevice *bus)
{
struct fsl_i2c_dev *dev = dev_get_priv(bus);
__i2c_init(dev->base, dev->speed, dev->slaveadd, dev->i2c_clk,
dev->index);
return 0;
}
static int fsl_i2c_xfer(struct udevice *bus, struct i2c_msg *msg, int nmsgs)
{
struct fsl_i2c_dev *dev = dev_get_priv(bus);
struct i2c_msg *dmsg, *omsg, dummy;
memset(&dummy, 0, sizeof(struct i2c_msg));
/* We expect either two messages (one with an offset and one with the
* actual data) or one message (just data)
*/
if (nmsgs > 2 || nmsgs == 0) {
debug("%s: Only one or two messages are supported.", __func__);
return -1;
}
omsg = nmsgs == 1 ? &dummy : msg;
dmsg = nmsgs == 1 ? msg : msg + 1;
if (dmsg->flags & I2C_M_RD)
return __i2c_read(dev->base, dmsg->addr, omsg->buf, omsg->len,
dmsg->buf, dmsg->len);
else
return __i2c_write(dev->base, dmsg->addr, omsg->buf, omsg->len,
dmsg->buf, dmsg->len);
}
static const struct dm_i2c_ops fsl_i2c_ops = {
.xfer = fsl_i2c_xfer,
.probe_chip = fsl_i2c_probe_chip,
.set_bus_speed = fsl_i2c_set_bus_speed,
};
static const struct udevice_id fsl_i2c_ids[] = {
{ .compatible = "fsl-i2c", },
{ /* sentinel */ }
};
U_BOOT_DRIVER(i2c_fsl) = {
.name = "i2c_fsl",
.id = UCLASS_I2C,
.of_match = fsl_i2c_ids,
.probe = fsl_i2c_probe,
.ofdata_to_platdata = fsl_i2c_ofdata_to_platdata,
.priv_auto_alloc_size = sizeof(struct fsl_i2c_dev),
.ops = &fsl_i2c_ops,
};
#endif /* CONFIG_DM_I2C */