u-boot/drivers/net/keystone_net.c

717 lines
18 KiB
C
Raw Normal View History

/*
* Ethernet driver for TI K2HK EVM.
*
* (C) Copyright 2012-2014
* Texas Instruments Incorporated, <www.ti.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <net.h>
#include <miiphy.h>
#include <malloc.h>
#include <asm/arch/emac_defs.h>
#include <asm/arch/psc_defs.h>
#include <asm/arch/keystone_nav.h>
unsigned int emac_dbg;
unsigned int emac_open;
static unsigned int sys_has_mdio = 1;
#ifdef KEYSTONE2_EMAC_GIG_ENABLE
#define emac_gigabit_enable(x) keystone2_eth_gigabit_enable(x)
#else
#define emac_gigabit_enable(x) /* no gigabit to enable */
#endif
#define RX_BUFF_NUMS 24
#define RX_BUFF_LEN 1520
#define MAX_SIZE_STREAM_BUFFER RX_BUFF_LEN
static u8 rx_buffs[RX_BUFF_NUMS * RX_BUFF_LEN] __aligned(16);
struct rx_buff_desc net_rx_buffs = {
.buff_ptr = rx_buffs,
.num_buffs = RX_BUFF_NUMS,
.buff_len = RX_BUFF_LEN,
.rx_flow = 22,
};
static void keystone2_eth_mdio_enable(void);
static int gen_get_link_speed(int phy_addr);
/* EMAC Addresses */
static volatile struct emac_regs *adap_emac =
(struct emac_regs *)EMAC_EMACSL_BASE_ADDR;
static volatile struct mdio_regs *adap_mdio =
(struct mdio_regs *)EMAC_MDIO_BASE_ADDR;
int keystone2_eth_read_mac_addr(struct eth_device *dev)
{
struct eth_priv_t *eth_priv;
u32 maca = 0;
u32 macb = 0;
eth_priv = (struct eth_priv_t *)dev->priv;
/* Read the e-fuse mac address */
if (eth_priv->slave_port == 1) {
maca = __raw_readl(MAC_ID_BASE_ADDR);
macb = __raw_readl(MAC_ID_BASE_ADDR + 4);
}
dev->enetaddr[0] = (macb >> 8) & 0xff;
dev->enetaddr[1] = (macb >> 0) & 0xff;
dev->enetaddr[2] = (maca >> 24) & 0xff;
dev->enetaddr[3] = (maca >> 16) & 0xff;
dev->enetaddr[4] = (maca >> 8) & 0xff;
dev->enetaddr[5] = (maca >> 0) & 0xff;
return 0;
}
static void keystone2_eth_mdio_enable(void)
{
u_int32_t clkdiv;
clkdiv = (EMAC_MDIO_BUS_FREQ / EMAC_MDIO_CLOCK_FREQ) - 1;
writel((clkdiv & 0xffff) |
MDIO_CONTROL_ENABLE |
MDIO_CONTROL_FAULT |
MDIO_CONTROL_FAULT_ENABLE,
&adap_mdio->control);
while (readl(&adap_mdio->control) & MDIO_CONTROL_IDLE)
;
}
/* Read a PHY register via MDIO inteface. Returns 1 on success, 0 otherwise */
int keystone2_eth_phy_read(u_int8_t phy_addr, u_int8_t reg_num, u_int16_t *data)
{
int tmp;
while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO)
;
writel(MDIO_USERACCESS0_GO |
MDIO_USERACCESS0_WRITE_READ |
((reg_num & 0x1f) << 21) |
((phy_addr & 0x1f) << 16),
&adap_mdio->useraccess0);
/* Wait for command to complete */
while ((tmp = readl(&adap_mdio->useraccess0)) & MDIO_USERACCESS0_GO)
;
if (tmp & MDIO_USERACCESS0_ACK) {
*data = tmp & 0xffff;
return 0;
}
*data = -1;
return -1;
}
/*
* Write to a PHY register via MDIO inteface.
* Blocks until operation is complete.
*/
int keystone2_eth_phy_write(u_int8_t phy_addr, u_int8_t reg_num, u_int16_t data)
{
while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO)
;
writel(MDIO_USERACCESS0_GO |
MDIO_USERACCESS0_WRITE_WRITE |
((reg_num & 0x1f) << 21) |
((phy_addr & 0x1f) << 16) |
(data & 0xffff),
&adap_mdio->useraccess0);
/* Wait for command to complete */
while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO)
;
return 0;
}
/* PHY functions for a generic PHY */
static int gen_get_link_speed(int phy_addr)
{
u_int16_t tmp;
if ((!keystone2_eth_phy_read(phy_addr, MII_STATUS_REG, &tmp)) &&
(tmp & 0x04)) {
return 0;
}
return -1;
}
static void __attribute__((unused))
keystone2_eth_gigabit_enable(struct eth_device *dev)
{
u_int16_t data;
struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;
if (sys_has_mdio) {
if (keystone2_eth_phy_read(eth_priv->phy_addr, 0, &data) ||
!(data & (1 << 6))) /* speed selection MSB */
return;
}
/*
* Check if link detected is giga-bit
* If Gigabit mode detected, enable gigbit in MAC
*/
writel(readl(&(adap_emac[eth_priv->slave_port - 1].maccontrol)) |
EMAC_MACCONTROL_GIGFORCE | EMAC_MACCONTROL_GIGABIT_ENABLE,
&(adap_emac[eth_priv->slave_port - 1].maccontrol))
;
}
int keystone_sgmii_link_status(int port)
{
u32 status = 0;
status = __raw_readl(SGMII_STATUS_REG(port));
return status & SGMII_REG_STATUS_LINK;
}
int keystone_get_link_status(struct eth_device *dev)
{
struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;
int sgmii_link;
int link_state = 0;
#if CONFIG_GET_LINK_STATUS_ATTEMPTS > 1
int j;
for (j = 0; (j < CONFIG_GET_LINK_STATUS_ATTEMPTS) && (link_state == 0);
j++) {
#endif
sgmii_link =
keystone_sgmii_link_status(eth_priv->slave_port - 1);
if (sgmii_link) {
link_state = 1;
if (eth_priv->sgmii_link_type == SGMII_LINK_MAC_PHY)
if (gen_get_link_speed(eth_priv->phy_addr))
link_state = 0;
}
#if CONFIG_GET_LINK_STATUS_ATTEMPTS > 1
}
#endif
return link_state;
}
int keystone_sgmii_config(int port, int interface)
{
unsigned int i, status, mask;
unsigned int mr_adv_ability, control;
switch (interface) {
case SGMII_LINK_MAC_MAC_AUTONEG:
mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE |
SGMII_REG_MR_ADV_LINK |
SGMII_REG_MR_ADV_FULL_DUPLEX |
SGMII_REG_MR_ADV_GIG_MODE);
control = (SGMII_REG_CONTROL_MASTER |
SGMII_REG_CONTROL_AUTONEG);
break;
case SGMII_LINK_MAC_PHY:
case SGMII_LINK_MAC_PHY_FORCED:
mr_adv_ability = SGMII_REG_MR_ADV_ENABLE;
control = SGMII_REG_CONTROL_AUTONEG;
break;
case SGMII_LINK_MAC_MAC_FORCED:
mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE |
SGMII_REG_MR_ADV_LINK |
SGMII_REG_MR_ADV_FULL_DUPLEX |
SGMII_REG_MR_ADV_GIG_MODE);
control = SGMII_REG_CONTROL_MASTER;
break;
case SGMII_LINK_MAC_FIBER:
mr_adv_ability = 0x20;
control = SGMII_REG_CONTROL_AUTONEG;
break;
default:
mr_adv_ability = SGMII_REG_MR_ADV_ENABLE;
control = SGMII_REG_CONTROL_AUTONEG;
}
__raw_writel(0, SGMII_CTL_REG(port));
/*
* Wait for the SerDes pll to lock,
* but don't trap if lock is never read
*/
for (i = 0; i < 1000; i++) {
udelay(2000);
status = __raw_readl(SGMII_STATUS_REG(port));
if ((status & SGMII_REG_STATUS_LOCK) != 0)
break;
}
__raw_writel(mr_adv_ability, SGMII_MRADV_REG(port));
__raw_writel(control, SGMII_CTL_REG(port));
mask = SGMII_REG_STATUS_LINK;
if (control & SGMII_REG_CONTROL_AUTONEG)
mask |= SGMII_REG_STATUS_AUTONEG;
for (i = 0; i < 1000; i++) {
status = __raw_readl(SGMII_STATUS_REG(port));
if ((status & mask) == mask)
break;
}
return 0;
}
int mac_sl_reset(u32 port)
{
u32 i, v;
if (port >= DEVICE_N_GMACSL_PORTS)
return GMACSL_RET_INVALID_PORT;
/* Set the soft reset bit */
DEVICE_REG32_W(DEVICE_EMACSL_BASE(port) +
CPGMACSL_REG_RESET, CPGMAC_REG_RESET_VAL_RESET);
/* Wait for the bit to clear */
for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) {
v = DEVICE_REG32_R(DEVICE_EMACSL_BASE(port) +
CPGMACSL_REG_RESET);
if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) !=
CPGMAC_REG_RESET_VAL_RESET)
return GMACSL_RET_OK;
}
/* Timeout on the reset */
return GMACSL_RET_WARN_RESET_INCOMPLETE;
}
int mac_sl_config(u_int16_t port, struct mac_sl_cfg *cfg)
{
u32 v, i;
int ret = GMACSL_RET_OK;
if (port >= DEVICE_N_GMACSL_PORTS)
return GMACSL_RET_INVALID_PORT;
if (cfg->max_rx_len > CPGMAC_REG_MAXLEN_LEN) {
cfg->max_rx_len = CPGMAC_REG_MAXLEN_LEN;
ret = GMACSL_RET_WARN_MAXLEN_TOO_BIG;
}
/* Must wait if the device is undergoing reset */
for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) {
v = DEVICE_REG32_R(DEVICE_EMACSL_BASE(port) +
CPGMACSL_REG_RESET);
if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) !=
CPGMAC_REG_RESET_VAL_RESET)
break;
}
if (i == DEVICE_EMACSL_RESET_POLL_COUNT)
return GMACSL_RET_CONFIG_FAIL_RESET_ACTIVE;
DEVICE_REG32_W(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_MAXLEN,
cfg->max_rx_len);
DEVICE_REG32_W(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_CTL,
cfg->ctl);
return ret;
}
int ethss_config(u32 ctl, u32 max_pkt_size)
{
u32 i;
/* Max length register */
DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_MAXLEN, max_pkt_size);
/* Control register */
DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_CTL, ctl);
/* All statistics enabled by default */
DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_STAT_PORT_EN,
CPSW_REG_VAL_STAT_ENABLE_ALL);
/* Reset and enable the ALE */
DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_ALE_CONTROL,
CPSW_REG_VAL_ALE_CTL_RESET_AND_ENABLE |
CPSW_REG_VAL_ALE_CTL_BYPASS);
/* All ports put into forward mode */
for (i = 0; i < DEVICE_CPSW_NUM_PORTS; i++)
DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_ALE_PORTCTL(i),
CPSW_REG_VAL_PORTCTL_FORWARD_MODE);
return 0;
}
int ethss_start(void)
{
int i;
struct mac_sl_cfg cfg;
cfg.max_rx_len = MAX_SIZE_STREAM_BUFFER;
cfg.ctl = GMACSL_ENABLE | GMACSL_RX_ENABLE_EXT_CTL;
for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++) {
mac_sl_reset(i);
mac_sl_config(i, &cfg);
}
return 0;
}
int ethss_stop(void)
{
int i;
for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++)
mac_sl_reset(i);
return 0;
}
int32_t cpmac_drv_send(u32 *buffer, int num_bytes, int slave_port_num)
{
if (num_bytes < EMAC_MIN_ETHERNET_PKT_SIZE)
num_bytes = EMAC_MIN_ETHERNET_PKT_SIZE;
return netcp_send(buffer, num_bytes, (slave_port_num) << 16);
}
/* Eth device open */
static int keystone2_eth_open(struct eth_device *dev, bd_t *bis)
{
u_int32_t clkdiv;
int link;
struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;
debug("+ emac_open\n");
net_rx_buffs.rx_flow = eth_priv->rx_flow;
sys_has_mdio =
(eth_priv->sgmii_link_type == SGMII_LINK_MAC_PHY) ? 1 : 0;
psc_enable_module(KS2_LPSC_PA);
psc_enable_module(KS2_LPSC_CPGMAC);
sgmii_serdes_setup_156p25mhz();
if (sys_has_mdio)
keystone2_eth_mdio_enable();
keystone_sgmii_config(eth_priv->slave_port - 1,
eth_priv->sgmii_link_type);
udelay(10000);
/* On chip switch configuration */
ethss_config(target_get_switch_ctl(), SWITCH_MAX_PKT_SIZE);
/* TODO: add error handling code */
if (qm_init()) {
printf("ERROR: qm_init()\n");
return -1;
}
if (netcp_init(&net_rx_buffs)) {
qm_close();
printf("ERROR: netcp_init()\n");
return -1;
}
/*
* Streaming switch configuration. If not present this
* statement is defined to void in target.h.
* If present this is usually defined to a series of register writes
*/
hw_config_streaming_switch();
if (sys_has_mdio) {
/* Init MDIO & get link state */
clkdiv = (EMAC_MDIO_BUS_FREQ / EMAC_MDIO_CLOCK_FREQ) - 1;
writel((clkdiv & 0xff) | MDIO_CONTROL_ENABLE |
MDIO_CONTROL_FAULT, &adap_mdio->control)
;
/* We need to wait for MDIO to start */
udelay(1000);
link = keystone_get_link_status(dev);
if (link == 0) {
netcp_close();
qm_close();
return -1;
}
}
emac_gigabit_enable(dev);
ethss_start();
debug("- emac_open\n");
emac_open = 1;
return 0;
}
/* Eth device close */
void keystone2_eth_close(struct eth_device *dev)
{
debug("+ emac_close\n");
if (!emac_open)
return;
ethss_stop();
netcp_close();
qm_close();
emac_open = 0;
debug("- emac_close\n");
}
static int tx_send_loop;
/*
* This function sends a single packet on the network and returns
* positive number (number of bytes transmitted) or negative for error
*/
static int keystone2_eth_send_packet(struct eth_device *dev,
void *packet, int length)
{
int ret_status = -1;
struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;
tx_send_loop = 0;
if (keystone_get_link_status(dev) == 0)
return -1;
emac_gigabit_enable(dev);
if (cpmac_drv_send((u32 *)packet, length, eth_priv->slave_port) != 0)
return ret_status;
if (keystone_get_link_status(dev) == 0)
return -1;
emac_gigabit_enable(dev);
return length;
}
/*
* This function handles receipt of a packet from the network
*/
static int keystone2_eth_rcv_packet(struct eth_device *dev)
{
void *hd;
int pkt_size;
u32 *pkt;
hd = netcp_recv(&pkt, &pkt_size);
if (hd == NULL)
return 0;
NetReceive((uchar *)pkt, pkt_size);
netcp_release_rxhd(hd);
return pkt_size;
}
/*
* This function initializes the EMAC hardware.
*/
int keystone2_emac_initialize(struct eth_priv_t *eth_priv)
{
struct eth_device *dev;
dev = malloc(sizeof(struct eth_device));
if (dev == NULL)
return -1;
memset(dev, 0, sizeof(struct eth_device));
strcpy(dev->name, eth_priv->int_name);
dev->priv = eth_priv;
keystone2_eth_read_mac_addr(dev);
dev->iobase = 0;
dev->init = keystone2_eth_open;
dev->halt = keystone2_eth_close;
dev->send = keystone2_eth_send_packet;
dev->recv = keystone2_eth_rcv_packet;
eth_register(dev);
return 0;
}
void sgmii_serdes_setup_156p25mhz(void)
{
unsigned int cnt;
/*
* configure Serializer/Deserializer (SerDes) hardware. SerDes IP
* hardware vendor published only register addresses and their values
* to be used for configuring SerDes. So had to use hardcoded values
* below.
*/
clrsetbits_le32(0x0232a000, 0xffff0000, 0x00800000);
clrsetbits_le32(0x0232a014, 0x0000ffff, 0x00008282);
clrsetbits_le32(0x0232a060, 0x00ffffff, 0x00142438);
clrsetbits_le32(0x0232a064, 0x00ffff00, 0x00c3c700);
clrsetbits_le32(0x0232a078, 0x0000ff00, 0x0000c000);
clrsetbits_le32(0x0232a204, 0xff0000ff, 0x38000080);
clrsetbits_le32(0x0232a208, 0x000000ff, 0x00000000);
clrsetbits_le32(0x0232a20c, 0xff000000, 0x02000000);
clrsetbits_le32(0x0232a210, 0xff000000, 0x1b000000);
clrsetbits_le32(0x0232a214, 0x0000ffff, 0x00006fb8);
clrsetbits_le32(0x0232a218, 0xffff00ff, 0x758000e4);
clrsetbits_le32(0x0232a2ac, 0x0000ff00, 0x00004400);
clrsetbits_le32(0x0232a22c, 0x00ffff00, 0x00200800);
clrsetbits_le32(0x0232a280, 0x00ff00ff, 0x00820082);
clrsetbits_le32(0x0232a284, 0xffffffff, 0x1d0f0385);
clrsetbits_le32(0x0232a404, 0xff0000ff, 0x38000080);
clrsetbits_le32(0x0232a408, 0x000000ff, 0x00000000);
clrsetbits_le32(0x0232a40c, 0xff000000, 0x02000000);
clrsetbits_le32(0x0232a410, 0xff000000, 0x1b000000);
clrsetbits_le32(0x0232a414, 0x0000ffff, 0x00006fb8);
clrsetbits_le32(0x0232a418, 0xffff00ff, 0x758000e4);
clrsetbits_le32(0x0232a4ac, 0x0000ff00, 0x00004400);
clrsetbits_le32(0x0232a42c, 0x00ffff00, 0x00200800);
clrsetbits_le32(0x0232a480, 0x00ff00ff, 0x00820082);
clrsetbits_le32(0x0232a484, 0xffffffff, 0x1d0f0385);
clrsetbits_le32(0x0232a604, 0xff0000ff, 0x38000080);
clrsetbits_le32(0x0232a608, 0x000000ff, 0x00000000);
clrsetbits_le32(0x0232a60c, 0xff000000, 0x02000000);
clrsetbits_le32(0x0232a610, 0xff000000, 0x1b000000);
clrsetbits_le32(0x0232a614, 0x0000ffff, 0x00006fb8);
clrsetbits_le32(0x0232a618, 0xffff00ff, 0x758000e4);
clrsetbits_le32(0x0232a6ac, 0x0000ff00, 0x00004400);
clrsetbits_le32(0x0232a62c, 0x00ffff00, 0x00200800);
clrsetbits_le32(0x0232a680, 0x00ff00ff, 0x00820082);
clrsetbits_le32(0x0232a684, 0xffffffff, 0x1d0f0385);
clrsetbits_le32(0x0232a804, 0xff0000ff, 0x38000080);
clrsetbits_le32(0x0232a808, 0x000000ff, 0x00000000);
clrsetbits_le32(0x0232a80c, 0xff000000, 0x02000000);
clrsetbits_le32(0x0232a810, 0xff000000, 0x1b000000);
clrsetbits_le32(0x0232a814, 0x0000ffff, 0x00006fb8);
clrsetbits_le32(0x0232a818, 0xffff00ff, 0x758000e4);
clrsetbits_le32(0x0232a8ac, 0x0000ff00, 0x00004400);
clrsetbits_le32(0x0232a82c, 0x00ffff00, 0x00200800);
clrsetbits_le32(0x0232a880, 0x00ff00ff, 0x00820082);
clrsetbits_le32(0x0232a884, 0xffffffff, 0x1d0f0385);
clrsetbits_le32(0x0232aa00, 0x0000ff00, 0x00000800);
clrsetbits_le32(0x0232aa08, 0xffff0000, 0x38a20000);
clrsetbits_le32(0x0232aa30, 0x00ffff00, 0x008a8a00);
clrsetbits_le32(0x0232aa84, 0x0000ff00, 0x00000600);
clrsetbits_le32(0x0232aa94, 0xff000000, 0x10000000);
clrsetbits_le32(0x0232aaa0, 0xff000000, 0x81000000);
clrsetbits_le32(0x0232aabc, 0xff000000, 0xff000000);
clrsetbits_le32(0x0232aac0, 0x000000ff, 0x0000008b);
clrsetbits_le32(0x0232ab08, 0xffff0000, 0x583f0000);
clrsetbits_le32(0x0232ab0c, 0x000000ff, 0x0000004e);
clrsetbits_le32(0x0232a000, 0x000000ff, 0x00000003);
clrsetbits_le32(0x0232aa00, 0x000000ff, 0x0000005f);
clrsetbits_le32(0x0232aa48, 0x00ffff00, 0x00fd8c00);
clrsetbits_le32(0x0232aa54, 0x00ffffff, 0x002fec72);
clrsetbits_le32(0x0232aa58, 0xffffff00, 0x00f92100);
clrsetbits_le32(0x0232aa5c, 0xffffffff, 0x00040060);
clrsetbits_le32(0x0232aa60, 0xffffffff, 0x00008000);
clrsetbits_le32(0x0232aa64, 0xffffffff, 0x0c581220);
clrsetbits_le32(0x0232aa68, 0xffffffff, 0xe13b0602);
clrsetbits_le32(0x0232aa6c, 0xffffffff, 0xb8074cc1);
clrsetbits_le32(0x0232aa70, 0xffffffff, 0x3f02e989);
clrsetbits_le32(0x0232aa74, 0x000000ff, 0x00000001);
clrsetbits_le32(0x0232ab20, 0x00ff0000, 0x00370000);
clrsetbits_le32(0x0232ab1c, 0xff000000, 0x37000000);
clrsetbits_le32(0x0232ab20, 0x000000ff, 0x0000005d);
/*Bring SerDes out of Reset if SerDes is Shutdown & is in Reset Mode*/
clrbits_le32(0x0232a010, 1 << 28);
/* Enable TX and RX via the LANExCTL_STS 0x0000 + x*4 */
clrbits_le32(0x0232a228, 1 << 29);
writel(0xF800F8C0, 0x0232bfe0);
clrbits_le32(0x0232a428, 1 << 29);
writel(0xF800F8C0, 0x0232bfe4);
clrbits_le32(0x0232a628, 1 << 29);
writel(0xF800F8C0, 0x0232bfe8);
clrbits_le32(0x0232a828, 1 << 29);
writel(0xF800F8C0, 0x0232bfec);
/*Enable pll via the pll_ctrl 0x0014*/
writel(0xe0000000, 0x0232bff4)
;
/*Waiting for SGMII Serdes PLL lock.*/
for (cnt = 10000; cnt > 0 && ((readl(0x02090114) & 0x10) == 0); cnt--)
;
for (cnt = 10000; cnt > 0 && ((readl(0x02090214) & 0x10) == 0); cnt--)
;
for (cnt = 10000; cnt > 0 && ((readl(0x02090414) & 0x10) == 0); cnt--)
;
for (cnt = 10000; cnt > 0 && ((readl(0x02090514) & 0x10) == 0); cnt--)
;
udelay(45000);
}
void sgmii_serdes_shutdown(void)
{
/*
* shutdown SerDes hardware. SerDes hardware vendor published only
* register addresses and their values. So had to use hardcoded
* values below.
*/
clrbits_le32(0x0232bfe0, 3 << 29 | 3 << 13);
setbits_le32(0x02320228, 1 << 29);
clrbits_le32(0x0232bfe4, 3 << 29 | 3 << 13);
setbits_le32(0x02320428, 1 << 29);
clrbits_le32(0x0232bfe8, 3 << 29 | 3 << 13);
setbits_le32(0x02320628, 1 << 29);
clrbits_le32(0x0232bfec, 3 << 29 | 3 << 13);
setbits_le32(0x02320828, 1 << 29);
clrbits_le32(0x02320034, 3 << 29);
setbits_le32(0x02320010, 1 << 28);
}