u-boot/drivers/usb/host/xhci.c

1441 lines
40 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* USB HOST XHCI Controller stack
*
* Based on xHCI host controller driver in linux-kernel
* by Sarah Sharp.
*
* Copyright (C) 2008 Intel Corp.
* Author: Sarah Sharp
*
* Copyright (C) 2013 Samsung Electronics Co.Ltd
* Authors: Vivek Gautam <gautam.vivek@samsung.com>
* Vikas Sajjan <vikas.sajjan@samsung.com>
*/
/**
* This file gives the xhci stack for usb3.0 looking into
* xhci specification Rev1.0 (5/21/10).
* The quirk devices support hasn't been given yet.
*/
#include <common.h>
#include <cpu_func.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <log.h>
#include <malloc.h>
#include <usb.h>
#include <usb/xhci.h>
#include <watchdog.h>
#include <asm/byteorder.h>
#include <asm/cache.h>
#include <asm/unaligned.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/iopoll.h>
static struct descriptor {
struct usb_hub_descriptor hub;
struct usb_device_descriptor device;
struct usb_config_descriptor config;
struct usb_interface_descriptor interface;
struct usb_endpoint_descriptor endpoint;
struct usb_ss_ep_comp_descriptor ep_companion;
} __attribute__ ((packed)) descriptor = {
{
0xc, /* bDescLength */
0x2a, /* bDescriptorType: hub descriptor */
2, /* bNrPorts -- runtime modified */
cpu_to_le16(0x8), /* wHubCharacteristics */
10, /* bPwrOn2PwrGood */
0, /* bHubCntrCurrent */
{ /* Device removable */
} /* at most 7 ports! XXX */
},
{
0x12, /* bLength */
1, /* bDescriptorType: UDESC_DEVICE */
cpu_to_le16(0x0300), /* bcdUSB: v3.0 */
9, /* bDeviceClass: UDCLASS_HUB */
0, /* bDeviceSubClass: UDSUBCLASS_HUB */
3, /* bDeviceProtocol: UDPROTO_SSHUBSTT */
9, /* bMaxPacketSize: 512 bytes 2^9 */
0x0000, /* idVendor */
0x0000, /* idProduct */
cpu_to_le16(0x0100), /* bcdDevice */
1, /* iManufacturer */
2, /* iProduct */
0, /* iSerialNumber */
1 /* bNumConfigurations: 1 */
},
{
0x9,
2, /* bDescriptorType: UDESC_CONFIG */
cpu_to_le16(0x1f), /* includes SS endpoint descriptor */
1, /* bNumInterface */
1, /* bConfigurationValue */
0, /* iConfiguration */
0x40, /* bmAttributes: UC_SELF_POWER */
0 /* bMaxPower */
},
{
0x9, /* bLength */
4, /* bDescriptorType: UDESC_INTERFACE */
0, /* bInterfaceNumber */
0, /* bAlternateSetting */
1, /* bNumEndpoints */
9, /* bInterfaceClass: UICLASS_HUB */
0, /* bInterfaceSubClass: UISUBCLASS_HUB */
0, /* bInterfaceProtocol: UIPROTO_HSHUBSTT */
0 /* iInterface */
},
{
0x7, /* bLength */
5, /* bDescriptorType: UDESC_ENDPOINT */
0x81, /* bEndpointAddress: IN endpoint 1 */
3, /* bmAttributes: UE_INTERRUPT */
8, /* wMaxPacketSize */
255 /* bInterval */
},
{
0x06, /* ss_bLength */
0x30, /* ss_bDescriptorType: SS EP Companion */
0x00, /* ss_bMaxBurst: allows 1 TX between ACKs */
/* ss_bmAttributes: 1 packet per service interval */
0x00,
/* ss_wBytesPerInterval: 15 bits for max 15 ports */
cpu_to_le16(0x02),
},
};
struct xhci_ctrl *xhci_get_ctrl(struct usb_device *udev)
{
struct udevice *dev;
/* Find the USB controller */
for (dev = udev->dev;
device_get_uclass_id(dev) != UCLASS_USB;
dev = dev->parent)
;
return dev_get_priv(dev);
}
/**
* Waits for as per specified amount of time
* for the "result" to match with "done"
*
* @param ptr pointer to the register to be read
* @param mask mask for the value read
* @param done value to be campared with result
* @param usec time to wait till
* Return: 0 if handshake is success else < 0 on failure
*/
static int
handshake(uint32_t volatile *ptr, uint32_t mask, uint32_t done, int usec)
{
uint32_t result;
int ret;
ret = readx_poll_sleep_timeout(xhci_readl, ptr, result,
(result & mask) == done || result == U32_MAX,
1, usec);
if (result == U32_MAX) /* card removed */
return -ENODEV;
return ret;
}
/**
* Set the run bit and wait for the host to be running.
*
* @param hcor pointer to host controller operation registers
* Return: status of the Handshake
*/
static int xhci_start(struct xhci_hcor *hcor)
{
u32 temp;
int ret;
puts("Starting the controller\n");
temp = xhci_readl(&hcor->or_usbcmd);
temp |= (CMD_RUN);
xhci_writel(&hcor->or_usbcmd, temp);
/*
* Wait for the HCHalted Status bit to be 0 to indicate the host is
* running.
*/
ret = handshake(&hcor->or_usbsts, STS_HALT, 0, XHCI_MAX_HALT_USEC);
if (ret)
debug("Host took too long to start, "
"waited %u microseconds.\n",
XHCI_MAX_HALT_USEC);
return ret;
}
/**
* Resets the XHCI Controller
*
* @param hcor pointer to host controller operation registers
* Return: -EBUSY if XHCI Controller is not halted else status of handshake
*/
static int xhci_reset(struct xhci_hcor *hcor)
{
u32 cmd;
u32 state;
int ret;
/* Halting the Host first */
debug("// Halt the HC: %p\n", hcor);
state = xhci_readl(&hcor->or_usbsts) & STS_HALT;
if (!state) {
cmd = xhci_readl(&hcor->or_usbcmd);
cmd &= ~CMD_RUN;
xhci_writel(&hcor->or_usbcmd, cmd);
}
ret = handshake(&hcor->or_usbsts,
STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
if (ret) {
printf("Host not halted after %u microseconds.\n",
XHCI_MAX_HALT_USEC);
return -EBUSY;
}
debug("// Reset the HC\n");
cmd = xhci_readl(&hcor->or_usbcmd);
cmd |= CMD_RESET;
xhci_writel(&hcor->or_usbcmd, cmd);
ret = handshake(&hcor->or_usbcmd, CMD_RESET, 0, XHCI_MAX_RESET_USEC);
if (ret)
return ret;
/*
* xHCI cannot write to any doorbells or operational registers other
* than status until the "Controller Not Ready" flag is cleared.
*/
return handshake(&hcor->or_usbsts, STS_CNR, 0, XHCI_MAX_RESET_USEC);
}
/**
* Used for passing endpoint bitmasks between the core and HCDs.
* Find the index for an endpoint given its descriptor.
* Use the return value to right shift 1 for the bitmask.
*
* Index = (epnum * 2) + direction - 1,
* where direction = 0 for OUT, 1 for IN.
* For control endpoints, the IN index is used (OUT index is unused), so
* index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
*
* @param desc USB enpdoint Descriptor
* Return: index of the Endpoint
*/
static unsigned int xhci_get_ep_index(struct usb_endpoint_descriptor *desc)
{
unsigned int index;
if (usb_endpoint_xfer_control(desc))
index = (unsigned int)(usb_endpoint_num(desc) * 2);
else
index = (unsigned int)((usb_endpoint_num(desc) * 2) -
(usb_endpoint_dir_in(desc) ? 0 : 1));
return index;
}
/*
* Convert bInterval expressed in microframes (in 1-255 range) to exponent of
* microframes, rounded down to nearest power of 2.
*/
static unsigned int xhci_microframes_to_exponent(unsigned int desc_interval,
unsigned int min_exponent,
unsigned int max_exponent)
{
unsigned int interval;
interval = fls(desc_interval) - 1;
interval = clamp_val(interval, min_exponent, max_exponent);
if ((1 << interval) != desc_interval)
debug("rounding interval to %d microframes, "\
"ep desc says %d microframes\n",
1 << interval, desc_interval);
return interval;
}
static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
struct usb_endpoint_descriptor *endpt_desc)
{
if (endpt_desc->bInterval == 0)
return 0;
return xhci_microframes_to_exponent(endpt_desc->bInterval, 0, 15);
}
static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
struct usb_endpoint_descriptor *endpt_desc)
{
return xhci_microframes_to_exponent(endpt_desc->bInterval * 8, 3, 10);
}
/*
* Convert interval expressed as 2^(bInterval - 1) == interval into
* straight exponent value 2^n == interval.
*/
static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
struct usb_endpoint_descriptor *endpt_desc)
{
unsigned int interval;
interval = clamp_val(endpt_desc->bInterval, 1, 16) - 1;
if (interval != endpt_desc->bInterval - 1)
debug("ep %#x - rounding interval to %d %sframes\n",
endpt_desc->bEndpointAddress, 1 << interval,
udev->speed == USB_SPEED_FULL ? "" : "micro");
if (udev->speed == USB_SPEED_FULL) {
/*
* Full speed isoc endpoints specify interval in frames,
* not microframes. We are using microframes everywhere,
* so adjust accordingly.
*/
interval += 3; /* 1 frame = 2^3 uframes */
}
return interval;
}
/*
* Return the polling or NAK interval.
*
* The polling interval is expressed in "microframes". If xHCI's Interval field
* is set to N, it will service the endpoint every 2^(Interval)*125us.
*
* The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
* is set to 0.
*/
static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
struct usb_endpoint_descriptor *endpt_desc)
{
unsigned int interval = 0;
switch (udev->speed) {
case USB_SPEED_HIGH:
/* Max NAK rate */
if (usb_endpoint_xfer_control(endpt_desc) ||
usb_endpoint_xfer_bulk(endpt_desc)) {
interval = xhci_parse_microframe_interval(udev,
endpt_desc);
break;
}
/* Fall through - SS and HS isoc/int have same decoding */
case USB_SPEED_SUPER:
if (usb_endpoint_xfer_int(endpt_desc) ||
usb_endpoint_xfer_isoc(endpt_desc)) {
interval = xhci_parse_exponent_interval(udev,
endpt_desc);
}
break;
case USB_SPEED_FULL:
if (usb_endpoint_xfer_isoc(endpt_desc)) {
interval = xhci_parse_exponent_interval(udev,
endpt_desc);
break;
}
/*
* Fall through for interrupt endpoint interval decoding
* since it uses the same rules as low speed interrupt
* endpoints.
*/
case USB_SPEED_LOW:
if (usb_endpoint_xfer_int(endpt_desc) ||
usb_endpoint_xfer_isoc(endpt_desc)) {
interval = xhci_parse_frame_interval(udev, endpt_desc);
}
break;
default:
BUG();
}
return interval;
}
/*
* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
* High speed endpoint descriptors can define "the number of additional
* transaction opportunities per microframe", but that goes in the Max Burst
* endpoint context field.
*/
static u32 xhci_get_endpoint_mult(struct usb_device *udev,
struct usb_endpoint_descriptor *endpt_desc,
struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
{
if (udev->speed < USB_SPEED_SUPER ||
!usb_endpoint_xfer_isoc(endpt_desc))
return 0;
return ss_ep_comp_desc->bmAttributes;
}
static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
struct usb_endpoint_descriptor *endpt_desc,
struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
{
/* Super speed and Plus have max burst in ep companion desc */
if (udev->speed >= USB_SPEED_SUPER)
return ss_ep_comp_desc->bMaxBurst;
if (udev->speed == USB_SPEED_HIGH &&
(usb_endpoint_xfer_isoc(endpt_desc) ||
usb_endpoint_xfer_int(endpt_desc)))
return usb_endpoint_maxp_mult(endpt_desc) - 1;
return 0;
}
/*
* Return the maximum endpoint service interval time (ESIT) payload.
* Basically, this is the maxpacket size, multiplied by the burst size
* and mult size.
*/
static u32 xhci_get_max_esit_payload(struct usb_device *udev,
struct usb_endpoint_descriptor *endpt_desc,
struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
{
int max_burst;
int max_packet;
/* Only applies for interrupt or isochronous endpoints */
if (usb_endpoint_xfer_control(endpt_desc) ||
usb_endpoint_xfer_bulk(endpt_desc))
return 0;
/* SuperSpeed Isoc ep with less than 48k per esit */
if (udev->speed >= USB_SPEED_SUPER)
return le16_to_cpu(ss_ep_comp_desc->wBytesPerInterval);
max_packet = usb_endpoint_maxp(endpt_desc);
max_burst = usb_endpoint_maxp_mult(endpt_desc);
/* A 0 in max burst means 1 transfer per ESIT */
return max_packet * max_burst;
}
/**
* Issue a configure endpoint command or evaluate context command
* and wait for it to finish.
*
* @param udev pointer to the Device Data Structure
* @param ctx_change flag to indicate the Context has changed or NOT
* Return: 0 on success, -1 on failure
*/
static int xhci_configure_endpoints(struct usb_device *udev, bool ctx_change)
{
struct xhci_container_ctx *in_ctx;
struct xhci_virt_device *virt_dev;
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
union xhci_trb *event;
virt_dev = ctrl->devs[udev->slot_id];
in_ctx = virt_dev->in_ctx;
xhci_flush_cache((uintptr_t)in_ctx->bytes, in_ctx->size);
xhci_queue_command(ctrl, in_ctx->bytes, udev->slot_id, 0,
ctx_change ? TRB_EVAL_CONTEXT : TRB_CONFIG_EP);
event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags))
!= udev->slot_id);
switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) {
case COMP_SUCCESS:
debug("Successful %s command\n",
ctx_change ? "Evaluate Context" : "Configure Endpoint");
break;
default:
printf("ERROR: %s command returned completion code %d.\n",
ctx_change ? "Evaluate Context" : "Configure Endpoint",
GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)));
return -EINVAL;
}
xhci_acknowledge_event(ctrl);
return 0;
}
/**
* Configure the endpoint, programming the device contexts.
*
* @param udev pointer to the USB device structure
* Return: returns the status of the xhci_configure_endpoints
*/
static int xhci_set_configuration(struct usb_device *udev)
{
struct xhci_container_ctx *in_ctx;
struct xhci_container_ctx *out_ctx;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_slot_ctx *slot_ctx;
struct xhci_ep_ctx *ep_ctx[MAX_EP_CTX_NUM];
int cur_ep;
int max_ep_flag = 0;
int ep_index;
unsigned int dir;
unsigned int ep_type;
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
int num_of_ep;
int ep_flag = 0;
u64 trb_64 = 0;
int slot_id = udev->slot_id;
struct xhci_virt_device *virt_dev = ctrl->devs[slot_id];
struct usb_interface *ifdesc;
u32 max_esit_payload;
unsigned int interval;
unsigned int mult;
unsigned int max_burst;
unsigned int avg_trb_len;
unsigned int err_count = 0;
out_ctx = virt_dev->out_ctx;
in_ctx = virt_dev->in_ctx;
num_of_ep = udev->config.if_desc[0].no_of_ep;
ifdesc = &udev->config.if_desc[0];
ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
/* Initialize the input context control */
ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
ctrl_ctx->drop_flags = 0;
/* EP_FLAG gives values 1 & 4 for EP1OUT and EP2IN */
for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) {
ep_flag = xhci_get_ep_index(&ifdesc->ep_desc[cur_ep]);
ctrl_ctx->add_flags |= cpu_to_le32(1 << (ep_flag + 1));
if (max_ep_flag < ep_flag)
max_ep_flag = ep_flag;
}
xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
/* slot context */
xhci_slot_copy(ctrl, in_ctx, out_ctx);
slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
slot_ctx->dev_info &= ~(cpu_to_le32(LAST_CTX_MASK));
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(max_ep_flag + 1) | 0);
xhci_endpoint_copy(ctrl, in_ctx, out_ctx, 0);
/* filling up ep contexts */
for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) {
struct usb_endpoint_descriptor *endpt_desc = NULL;
struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc = NULL;
endpt_desc = &ifdesc->ep_desc[cur_ep];
ss_ep_comp_desc = &ifdesc->ss_ep_comp_desc[cur_ep];
trb_64 = 0;
/*
* Get values to fill the endpoint context, mostly from ep
* descriptor. The average TRB buffer lengt for bulk endpoints
* is unclear as we have no clue on scatter gather list entry
* size. For Isoc and Int, set it to max available.
* See xHCI 1.1 spec 4.14.1.1 for details.
*/
max_esit_payload = xhci_get_max_esit_payload(udev, endpt_desc,
ss_ep_comp_desc);
interval = xhci_get_endpoint_interval(udev, endpt_desc);
mult = xhci_get_endpoint_mult(udev, endpt_desc,
ss_ep_comp_desc);
max_burst = xhci_get_endpoint_max_burst(udev, endpt_desc,
ss_ep_comp_desc);
avg_trb_len = max_esit_payload;
ep_index = xhci_get_ep_index(endpt_desc);
ep_ctx[ep_index] = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
/* Allocate the ep rings */
virt_dev->eps[ep_index].ring = xhci_ring_alloc(ctrl, 1, true);
if (!virt_dev->eps[ep_index].ring)
return -ENOMEM;
/*NOTE: ep_desc[0] actually represents EP1 and so on */
dir = (((endpt_desc->bEndpointAddress) & (0x80)) >> 7);
ep_type = (((endpt_desc->bmAttributes) & (0x3)) | (dir << 2));
ep_ctx[ep_index]->ep_info =
cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
EP_INTERVAL(interval) | EP_MULT(mult));
ep_ctx[ep_index]->ep_info2 = cpu_to_le32(EP_TYPE(ep_type));
ep_ctx[ep_index]->ep_info2 |=
cpu_to_le32(MAX_PACKET
(get_unaligned(&endpt_desc->wMaxPacketSize)));
/* Allow 3 retries for everything but isoc, set CErr = 3 */
if (!usb_endpoint_xfer_isoc(endpt_desc))
err_count = 3;
ep_ctx[ep_index]->ep_info2 |=
cpu_to_le32(MAX_BURST(max_burst) |
ERROR_COUNT(err_count));
trb_64 = xhci_virt_to_bus(ctrl, virt_dev->eps[ep_index].ring->enqueue);
ep_ctx[ep_index]->deq = cpu_to_le64(trb_64 |
virt_dev->eps[ep_index].ring->cycle_state);
/*
* xHCI spec 6.2.3:
* 'Average TRB Length' should be 8 for control endpoints.
*/
if (usb_endpoint_xfer_control(endpt_desc))
avg_trb_len = 8;
ep_ctx[ep_index]->tx_info =
cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
EP_AVG_TRB_LENGTH(avg_trb_len));
/*
* The MediaTek xHCI defines some extra SW parameters which
* are put into reserved DWs in Slot and Endpoint Contexts
* for synchronous endpoints.
*/
if (ctrl->quirks & XHCI_MTK_HOST) {
ep_ctx[ep_index]->reserved[0] =
cpu_to_le32(EP_BPKTS(1) | EP_BBM(1));
}
}
return xhci_configure_endpoints(udev, false);
}
/**
* Issue an Address Device command (which will issue a SetAddress request to
* the device).
*
* @param udev pointer to the Device Data Structure
* Return: 0 if successful else error code on failure
*/
static int xhci_address_device(struct usb_device *udev, int root_portnr)
{
int ret = 0;
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
struct xhci_slot_ctx *slot_ctx;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_virt_device *virt_dev;
int slot_id = udev->slot_id;
union xhci_trb *event;
virt_dev = ctrl->devs[slot_id];
/*
* This is the first Set Address since device plug-in
* so setting up the slot context.
*/
debug("Setting up addressable devices %p\n", ctrl->dcbaa);
xhci_setup_addressable_virt_dev(ctrl, udev, root_portnr);
ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
ctrl_ctx->drop_flags = 0;
xhci_queue_command(ctrl, (void *)ctrl_ctx, slot_id, 0, TRB_ADDR_DEV);
event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)) != slot_id);
switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) {
case COMP_CTX_STATE:
case COMP_EBADSLT:
printf("Setup ERROR: address device command for slot %d.\n",
slot_id);
ret = -EINVAL;
break;
case COMP_TX_ERR:
puts("Device not responding to set address.\n");
ret = -EPROTO;
break;
case COMP_DEV_ERR:
puts("ERROR: Incompatible device"
"for address device command.\n");
ret = -ENODEV;
break;
case COMP_SUCCESS:
debug("Successful Address Device command\n");
udev->status = 0;
break;
default:
printf("ERROR: unexpected command completion code 0x%x.\n",
GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)));
ret = -EINVAL;
break;
}
xhci_acknowledge_event(ctrl);
if (ret < 0)
/*
* TODO: Unsuccessful Address Device command shall leave the
* slot in default state. So, issue Disable Slot command now.
*/
return ret;
xhci_inval_cache((uintptr_t)virt_dev->out_ctx->bytes,
virt_dev->out_ctx->size);
slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->out_ctx);
debug("xHC internal address is: %d\n",
le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
return 0;
}
/**
* Issue Enable slot command to the controller to allocate
* device slot and assign the slot id. It fails if the xHC
* ran out of device slots, the Enable Slot command timed out,
* or allocating memory failed.
*
* @param udev pointer to the Device Data Structure
* Return: Returns 0 on succes else return error code on failure
*/
static int _xhci_alloc_device(struct usb_device *udev)
{
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
union xhci_trb *event;
int ret;
/*
* Root hub will be first device to be initailized.
* If this device is root-hub, don't do any xHC related
* stuff.
*/
if (ctrl->rootdev == 0) {
udev->speed = USB_SPEED_SUPER;
return 0;
}
xhci_queue_command(ctrl, NULL, 0, 0, TRB_ENABLE_SLOT);
event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
BUG_ON(GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))
!= COMP_SUCCESS);
udev->slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags));
xhci_acknowledge_event(ctrl);
ret = xhci_alloc_virt_device(ctrl, udev->slot_id);
if (ret < 0) {
/*
* TODO: Unsuccessful Address Device command shall leave
* the slot in default. So, issue Disable Slot command now.
*/
puts("Could not allocate xHCI USB device data structures\n");
return ret;
}
return 0;
}
/*
* Full speed devices may have a max packet size greater than 8 bytes, but the
* USB core doesn't know that until it reads the first 8 bytes of the
* descriptor. If the usb_device's max packet size changes after that point,
* we need to issue an evaluate context command and wait on it.
*
* @param udev pointer to the Device Data Structure
* Return: returns the status of the xhci_configure_endpoints
*/
int xhci_check_maxpacket(struct usb_device *udev)
{
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
unsigned int slot_id = udev->slot_id;
int ep_index = 0; /* control endpoint */
struct xhci_container_ctx *in_ctx;
struct xhci_container_ctx *out_ctx;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_ep_ctx *ep_ctx;
int max_packet_size;
int hw_max_packet_size;
int ret = 0;
out_ctx = ctrl->devs[slot_id]->out_ctx;
xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
max_packet_size = udev->epmaxpacketin[0];
if (hw_max_packet_size != max_packet_size) {
debug("Max Packet Size for ep 0 changed.\n");
debug("Max packet size in usb_device = %d\n", max_packet_size);
debug("Max packet size in xHCI HW = %d\n", hw_max_packet_size);
debug("Issuing evaluate context command.\n");
/* Set up the modified control endpoint 0 */
xhci_endpoint_copy(ctrl, ctrl->devs[slot_id]->in_ctx,
ctrl->devs[slot_id]->out_ctx, ep_index);
in_ctx = ctrl->devs[slot_id]->in_ctx;
ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET(MAX_PACKET_MASK));
ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
/*
* Set up the input context flags for the command
* FIXME: This won't work if a non-default control endpoint
* changes max packet sizes.
*/
ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
ctrl_ctx->drop_flags = 0;
ret = xhci_configure_endpoints(udev, true);
}
return ret;
}
/**
* Clears the Change bits of the Port Status Register
*
* @param wValue request value
* @param wIndex request index
* @param addr address of posrt status register
* @param port_status state of port status register
* Return: none
*/
static void xhci_clear_port_change_bit(u16 wValue,
u16 wIndex, volatile uint32_t *addr, u32 port_status)
{
char *port_change_bit;
u32 status;
switch (wValue) {
case USB_PORT_FEAT_C_RESET:
status = PORT_RC;
port_change_bit = "reset";
break;
case USB_PORT_FEAT_C_CONNECTION:
status = PORT_CSC;
port_change_bit = "connect";
break;
case USB_PORT_FEAT_C_OVER_CURRENT:
status = PORT_OCC;
port_change_bit = "over-current";
break;
case USB_PORT_FEAT_C_ENABLE:
status = PORT_PEC;
port_change_bit = "enable/disable";
break;
case USB_PORT_FEAT_C_SUSPEND:
status = PORT_PLC;
port_change_bit = "suspend/resume";
break;
default:
/* Should never happen */
return;
}
/* Change bits are all write 1 to clear */
xhci_writel(addr, port_status | status);
port_status = xhci_readl(addr);
debug("clear port %s change, actual port %d status = 0x%x\n",
port_change_bit, wIndex, port_status);
}
/**
* Save Read Only (RO) bits and save read/write bits where
* writing a 0 clears the bit and writing a 1 sets the bit (RWS).
* For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
*
* @param state state of the Port Status and Control Regsiter
* Return: a value that would result in the port being in the
* same state, if the value was written to the port
* status control register.
*/
static u32 xhci_port_state_to_neutral(u32 state)
{
/* Save read-only status and port state */
return (state & XHCI_PORT_RO) | (state & XHCI_PORT_RWS);
}
/**
* Submits the Requests to the XHCI Host Controller
*
* @param udev pointer to the USB device structure
* @param pipe contains the DIR_IN or OUT , devnum
* @param buffer buffer to be read/written based on the request
* Return: returns 0 if successful else -1 on failure
*/
static int xhci_submit_root(struct usb_device *udev, unsigned long pipe,
void *buffer, struct devrequest *req)
{
uint8_t tmpbuf[4];
u16 typeReq;
void *srcptr = NULL;
int len, srclen;
uint32_t reg;
volatile uint32_t *status_reg;
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
struct xhci_hccr *hccr = ctrl->hccr;
struct xhci_hcor *hcor = ctrl->hcor;
int max_ports = HCS_MAX_PORTS(xhci_readl(&hccr->cr_hcsparams1));
if ((req->requesttype & USB_RT_PORT) &&
le16_to_cpu(req->index) > max_ports) {
printf("The request port(%d) exceeds maximum port number\n",
le16_to_cpu(req->index) - 1);
return -EINVAL;
}
status_reg = (volatile uint32_t *)
(&hcor->portregs[le16_to_cpu(req->index) - 1].or_portsc);
srclen = 0;
typeReq = req->request | req->requesttype << 8;
switch (typeReq) {
case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
switch (le16_to_cpu(req->value) >> 8) {
case USB_DT_DEVICE:
debug("USB_DT_DEVICE request\n");
srcptr = &descriptor.device;
srclen = 0x12;
break;
case USB_DT_CONFIG:
debug("USB_DT_CONFIG config\n");
srcptr = &descriptor.config;
srclen = 0x19;
break;
case USB_DT_STRING:
debug("USB_DT_STRING config\n");
switch (le16_to_cpu(req->value) & 0xff) {
case 0: /* Language */
srcptr = "\4\3\11\4";
srclen = 4;
break;
case 1: /* Vendor String */
srcptr = "\16\3U\0-\0B\0o\0o\0t\0";
srclen = 14;
break;
case 2: /* Product Name */
srcptr = "\52\3X\0H\0C\0I\0 "
"\0H\0o\0s\0t\0 "
"\0C\0o\0n\0t\0r\0o\0l\0l\0e\0r\0";
srclen = 42;
break;
default:
printf("unknown value DT_STRING %x\n",
le16_to_cpu(req->value));
goto unknown;
}
break;
default:
printf("unknown value %x\n", le16_to_cpu(req->value));
goto unknown;
}
break;
case USB_REQ_GET_DESCRIPTOR | ((USB_DIR_IN | USB_RT_HUB) << 8):
switch (le16_to_cpu(req->value) >> 8) {
case USB_DT_HUB:
case USB_DT_SS_HUB:
debug("USB_DT_HUB config\n");
srcptr = &descriptor.hub;
srclen = 0x8;
break;
default:
printf("unknown value %x\n", le16_to_cpu(req->value));
goto unknown;
}
break;
case USB_REQ_SET_ADDRESS | (USB_RECIP_DEVICE << 8):
debug("USB_REQ_SET_ADDRESS\n");
ctrl->rootdev = le16_to_cpu(req->value);
break;
case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
/* Do nothing */
break;
case USB_REQ_GET_STATUS | ((USB_DIR_IN | USB_RT_HUB) << 8):
tmpbuf[0] = 1; /* USB_STATUS_SELFPOWERED */
tmpbuf[1] = 0;
srcptr = tmpbuf;
srclen = 2;
break;
case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8):
memset(tmpbuf, 0, 4);
reg = xhci_readl(status_reg);
if (reg & PORT_CONNECT) {
tmpbuf[0] |= USB_PORT_STAT_CONNECTION;
switch (reg & DEV_SPEED_MASK) {
case XDEV_FS:
debug("SPEED = FULLSPEED\n");
break;
case XDEV_LS:
debug("SPEED = LOWSPEED\n");
tmpbuf[1] |= USB_PORT_STAT_LOW_SPEED >> 8;
break;
case XDEV_HS:
debug("SPEED = HIGHSPEED\n");
tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8;
break;
case XDEV_SS:
debug("SPEED = SUPERSPEED\n");
tmpbuf[1] |= USB_PORT_STAT_SUPER_SPEED >> 8;
break;
}
}
if (reg & PORT_PE)
tmpbuf[0] |= USB_PORT_STAT_ENABLE;
if ((reg & PORT_PLS_MASK) == XDEV_U3)
tmpbuf[0] |= USB_PORT_STAT_SUSPEND;
if (reg & PORT_OC)
tmpbuf[0] |= USB_PORT_STAT_OVERCURRENT;
if (reg & PORT_RESET)
tmpbuf[0] |= USB_PORT_STAT_RESET;
if (reg & PORT_POWER)
/*
* XXX: This Port power bit (for USB 3.0 hub)
* we are faking in USB 2.0 hub port status;
* since there's a change in bit positions in
* two:
* USB 2.0 port status PP is at position[8]
* USB 3.0 port status PP is at position[9]
* So, we are still keeping it at position [8]
*/
tmpbuf[1] |= USB_PORT_STAT_POWER >> 8;
if (reg & PORT_CSC)
tmpbuf[2] |= USB_PORT_STAT_C_CONNECTION;
if (reg & PORT_PEC)
tmpbuf[2] |= USB_PORT_STAT_C_ENABLE;
if (reg & PORT_OCC)
tmpbuf[2] |= USB_PORT_STAT_C_OVERCURRENT;
if (reg & PORT_RC)
tmpbuf[2] |= USB_PORT_STAT_C_RESET;
srcptr = tmpbuf;
srclen = 4;
break;
case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
reg = xhci_readl(status_reg);
reg = xhci_port_state_to_neutral(reg);
switch (le16_to_cpu(req->value)) {
case USB_PORT_FEAT_ENABLE:
reg |= PORT_PE;
xhci_writel(status_reg, reg);
break;
case USB_PORT_FEAT_POWER:
reg |= PORT_POWER;
xhci_writel(status_reg, reg);
break;
case USB_PORT_FEAT_RESET:
reg |= PORT_RESET;
xhci_writel(status_reg, reg);
break;
default:
printf("unknown feature %x\n", le16_to_cpu(req->value));
goto unknown;
}
break;
case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
reg = xhci_readl(status_reg);
reg = xhci_port_state_to_neutral(reg);
switch (le16_to_cpu(req->value)) {
case USB_PORT_FEAT_ENABLE:
reg &= ~PORT_PE;
break;
case USB_PORT_FEAT_POWER:
reg &= ~PORT_POWER;
break;
case USB_PORT_FEAT_C_RESET:
case USB_PORT_FEAT_C_CONNECTION:
case USB_PORT_FEAT_C_OVER_CURRENT:
case USB_PORT_FEAT_C_ENABLE:
xhci_clear_port_change_bit((le16_to_cpu(req->value)),
le16_to_cpu(req->index),
status_reg, reg);
break;
default:
printf("unknown feature %x\n", le16_to_cpu(req->value));
goto unknown;
}
xhci_writel(status_reg, reg);
break;
default:
puts("Unknown request\n");
goto unknown;
}
debug("scrlen = %d\n req->length = %d\n",
srclen, le16_to_cpu(req->length));
len = min(srclen, (int)le16_to_cpu(req->length));
if (srcptr != NULL && len > 0)
memcpy(buffer, srcptr, len);
else
debug("Len is 0\n");
udev->act_len = len;
udev->status = 0;
return 0;
unknown:
udev->act_len = 0;
udev->status = USB_ST_STALLED;
return -ENODEV;
}
/**
* Submits the INT request to XHCI Host cotroller
*
* @param udev pointer to the USB device
* @param pipe contains the DIR_IN or OUT , devnum
* @param buffer buffer to be read/written based on the request
* @param length length of the buffer
* @param interval interval of the interrupt
* Return: 0
*/
static int _xhci_submit_int_msg(struct usb_device *udev, unsigned long pipe,
void *buffer, int length, int interval,
bool nonblock)
{
if (usb_pipetype(pipe) != PIPE_INTERRUPT) {
printf("non-interrupt pipe (type=%lu)", usb_pipetype(pipe));
return -EINVAL;
}
/*
* xHCI uses normal TRBs for both bulk and interrupt. When the
* interrupt endpoint is to be serviced, the xHC will consume
* (at most) one TD. A TD (comprised of sg list entries) can
* take several service intervals to transmit.
*/
return xhci_bulk_tx(udev, pipe, length, buffer);
}
/**
* submit the BULK type of request to the USB Device
*
* @param udev pointer to the USB device
* @param pipe contains the DIR_IN or OUT , devnum
* @param buffer buffer to be read/written based on the request
* @param length length of the buffer
* Return: returns 0 if successful else -1 on failure
*/
static int _xhci_submit_bulk_msg(struct usb_device *udev, unsigned long pipe,
void *buffer, int length)
{
if (usb_pipetype(pipe) != PIPE_BULK) {
printf("non-bulk pipe (type=%lu)", usb_pipetype(pipe));
return -EINVAL;
}
return xhci_bulk_tx(udev, pipe, length, buffer);
}
/**
* submit the control type of request to the Root hub/Device based on the devnum
*
* @param udev pointer to the USB device
* @param pipe contains the DIR_IN or OUT , devnum
* @param buffer buffer to be read/written based on the request
* @param length length of the buffer
* @param setup Request type
* @param root_portnr Root port number that this device is on
* Return: returns 0 if successful else -1 on failure
*/
static int _xhci_submit_control_msg(struct usb_device *udev, unsigned long pipe,
void *buffer, int length,
struct devrequest *setup, int root_portnr)
{
struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
int ret = 0;
if (usb_pipetype(pipe) != PIPE_CONTROL) {
printf("non-control pipe (type=%lu)", usb_pipetype(pipe));
return -EINVAL;
}
if (usb_pipedevice(pipe) == ctrl->rootdev)
return xhci_submit_root(udev, pipe, buffer, setup);
if (setup->request == USB_REQ_SET_ADDRESS &&
(setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD)
return xhci_address_device(udev, root_portnr);
if (setup->request == USB_REQ_SET_CONFIGURATION &&
(setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
ret = xhci_set_configuration(udev);
if (ret) {
puts("Failed to configure xHCI endpoint\n");
return ret;
}
}
return xhci_ctrl_tx(udev, pipe, setup, length, buffer);
}
static int xhci_lowlevel_init(struct xhci_ctrl *ctrl)
{
struct xhci_hccr *hccr;
struct xhci_hcor *hcor;
uint32_t val;
uint32_t val2;
uint32_t reg;
hccr = ctrl->hccr;
hcor = ctrl->hcor;
/*
* Program the Number of Device Slots Enabled field in the CONFIG
* register with the max value of slots the HC can handle.
*/
val = (xhci_readl(&hccr->cr_hcsparams1) & HCS_SLOTS_MASK);
val2 = xhci_readl(&hcor->or_config);
val |= (val2 & ~HCS_SLOTS_MASK);
xhci_writel(&hcor->or_config, val);
/* initializing xhci data structures */
if (xhci_mem_init(ctrl, hccr, hcor) < 0)
return -ENOMEM;
reg = xhci_readl(&hccr->cr_hcsparams1);
descriptor.hub.bNbrPorts = HCS_MAX_PORTS(reg);
printf("Register %x NbrPorts %d\n", reg, descriptor.hub.bNbrPorts);
/* Port Indicators */
reg = xhci_readl(&hccr->cr_hccparams);
if (HCS_INDICATOR(reg))
put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
| 0x80, &descriptor.hub.wHubCharacteristics);
/* Port Power Control */
if (HCC_PPC(reg))
put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
| 0x01, &descriptor.hub.wHubCharacteristics);
if (xhci_start(hcor)) {
xhci_reset(hcor);
return -ENODEV;
}
/* Zero'ing IRQ control register and IRQ pending register */
xhci_writel(&ctrl->ir_set->irq_control, 0x0);
xhci_writel(&ctrl->ir_set->irq_pending, 0x0);
reg = HC_VERSION(xhci_readl(&hccr->cr_capbase));
printf("USB XHCI %x.%02x\n", reg >> 8, reg & 0xff);
ctrl->hci_version = reg;
return 0;
}
static int xhci_lowlevel_stop(struct xhci_ctrl *ctrl)
{
u32 temp;
xhci_reset(ctrl->hcor);
debug("// Disabling event ring interrupts\n");
temp = xhci_readl(&ctrl->hcor->or_usbsts);
xhci_writel(&ctrl->hcor->or_usbsts, temp & ~STS_EINT);
temp = xhci_readl(&ctrl->ir_set->irq_pending);
xhci_writel(&ctrl->ir_set->irq_pending, ER_IRQ_DISABLE(temp));
return 0;
}
static int xhci_submit_control_msg(struct udevice *dev, struct usb_device *udev,
unsigned long pipe, void *buffer, int length,
struct devrequest *setup)
{
struct usb_device *uhop;
struct udevice *hub;
int root_portnr = 0;
debug("%s: dev='%s', udev=%p, udev->dev='%s', portnr=%d\n", __func__,
dev->name, udev, udev->dev->name, udev->portnr);
hub = udev->dev;
if (device_get_uclass_id(hub) == UCLASS_USB_HUB) {
/* Figure out our port number on the root hub */
if (usb_hub_is_root_hub(hub)) {
root_portnr = udev->portnr;
} else {
while (!usb_hub_is_root_hub(hub->parent))
hub = hub->parent;
uhop = dev_get_parent_priv(hub);
root_portnr = uhop->portnr;
}
}
/*
struct usb_device *hop = udev;
if (hop->parent)
while (hop->parent->parent)
hop = hop->parent;
*/
return _xhci_submit_control_msg(udev, pipe, buffer, length, setup,
root_portnr);
}
static int xhci_submit_bulk_msg(struct udevice *dev, struct usb_device *udev,
unsigned long pipe, void *buffer, int length)
{
debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
return _xhci_submit_bulk_msg(udev, pipe, buffer, length);
}
static int xhci_submit_int_msg(struct udevice *dev, struct usb_device *udev,
unsigned long pipe, void *buffer, int length,
int interval, bool nonblock)
{
debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
return _xhci_submit_int_msg(udev, pipe, buffer, length, interval,
nonblock);
}
static int xhci_alloc_device(struct udevice *dev, struct usb_device *udev)
{
debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
return _xhci_alloc_device(udev);
}
static int xhci_update_hub_device(struct udevice *dev, struct usb_device *udev)
{
struct xhci_ctrl *ctrl = dev_get_priv(dev);
struct usb_hub_device *hub = dev_get_uclass_priv(udev->dev);
struct xhci_virt_device *virt_dev;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_container_ctx *out_ctx;
struct xhci_container_ctx *in_ctx;
struct xhci_slot_ctx *slot_ctx;
int slot_id = udev->slot_id;
unsigned think_time;
debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
/* Ignore root hubs */
if (usb_hub_is_root_hub(udev->dev))
return 0;
virt_dev = ctrl->devs[slot_id];
BUG_ON(!virt_dev);
out_ctx = virt_dev->out_ctx;
in_ctx = virt_dev->in_ctx;
ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
/* Initialize the input context control */
ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
ctrl_ctx->drop_flags = 0;
xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
/* slot context */
xhci_slot_copy(ctrl, in_ctx, out_ctx);
slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
/* Update hub related fields */
slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
/*
* refer to section 6.2.2: MTT should be 0 for full speed hub,
* but it may be already set to 1 when setup an xHCI virtual
* device, so clear it anyway.
*/
if (hub->tt.multi)
slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
else if (udev->speed == USB_SPEED_FULL)
slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(udev->maxchild));
/*
* Set TT think time - convert from ns to FS bit times.
* Note 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns
*
* 0 = 8 FS bit times, 1 = 16 FS bit times,
* 2 = 24 FS bit times, 3 = 32 FS bit times.
*
* This field shall be 0 if the device is not a high-spped hub.
*/
think_time = hub->tt.think_time;
if (think_time != 0)
think_time = (think_time / 666) - 1;
if (udev->speed == USB_SPEED_HIGH)
slot_ctx->tt_info |= cpu_to_le32(TT_THINK_TIME(think_time));
slot_ctx->dev_state = 0;
return xhci_configure_endpoints(udev, false);
}
static int xhci_get_max_xfer_size(struct udevice *dev, size_t *size)
{
/*
* xHCD allocates one segment which includes 64 TRBs for each endpoint
* and the last TRB in this segment is configured as a link TRB to form
* a TRB ring. Each TRB can transfer up to 64K bytes, however data
* buffers referenced by transfer TRBs shall not span 64KB boundaries.
* Hence the maximum number of TRBs we can use in one transfer is 62.
*/
*size = (TRBS_PER_SEGMENT - 2) * TRB_MAX_BUFF_SIZE;
return 0;
}
int xhci_register(struct udevice *dev, struct xhci_hccr *hccr,
struct xhci_hcor *hcor)
{
struct xhci_ctrl *ctrl = dev_get_priv(dev);
struct usb_bus_priv *priv = dev_get_uclass_priv(dev);
int ret;
debug("%s: dev='%s', ctrl=%p, hccr=%p, hcor=%p\n", __func__, dev->name,
ctrl, hccr, hcor);
ctrl->dev = dev;
/*
* XHCI needs to issue a Address device command to setup
* proper device context structures, before it can interact
* with the device. So a get_descriptor will fail before any
* of that is done for XHCI unlike EHCI.
*/
priv->desc_before_addr = false;
ret = xhci_reset(hcor);
if (ret)
goto err;
ctrl->hccr = hccr;
ctrl->hcor = hcor;
ret = xhci_lowlevel_init(ctrl);
if (ret)
goto err;
return 0;
err:
free(ctrl);
debug("%s: failed, ret=%d\n", __func__, ret);
return ret;
}
int xhci_deregister(struct udevice *dev)
{
struct xhci_ctrl *ctrl = dev_get_priv(dev);
xhci_lowlevel_stop(ctrl);
xhci_cleanup(ctrl);
return 0;
}
struct dm_usb_ops xhci_usb_ops = {
.control = xhci_submit_control_msg,
.bulk = xhci_submit_bulk_msg,
.interrupt = xhci_submit_int_msg,
.alloc_device = xhci_alloc_device,
.update_hub_device = xhci_update_hub_device,
.get_max_xfer_size = xhci_get_max_xfer_size,
};