u-boot/test/lib/lmb.c

815 lines
23 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2018 Simon Goldschmidt
*/
#include <common.h>
#include <dm.h>
#include <lmb.h>
#include <log.h>
#include <malloc.h>
#include <dm/test.h>
#include <test/test.h>
#include <test/ut.h>
static int check_lmb(struct unit_test_state *uts, struct lmb *lmb,
phys_addr_t ram_base, phys_size_t ram_size,
unsigned long num_reserved,
phys_addr_t base1, phys_size_t size1,
phys_addr_t base2, phys_size_t size2,
phys_addr_t base3, phys_size_t size3)
{
if (ram_size) {
ut_asserteq(lmb->memory.cnt, 1);
ut_asserteq(lmb->memory.region[0].base, ram_base);
ut_asserteq(lmb->memory.region[0].size, ram_size);
}
ut_asserteq(lmb->reserved.cnt, num_reserved);
if (num_reserved > 0) {
ut_asserteq(lmb->reserved.region[0].base, base1);
ut_asserteq(lmb->reserved.region[0].size, size1);
}
if (num_reserved > 1) {
ut_asserteq(lmb->reserved.region[1].base, base2);
ut_asserteq(lmb->reserved.region[1].size, size2);
}
if (num_reserved > 2) {
ut_asserteq(lmb->reserved.region[2].base, base3);
ut_asserteq(lmb->reserved.region[2].size, size3);
}
return 0;
}
#define ASSERT_LMB(lmb, ram_base, ram_size, num_reserved, base1, size1, \
base2, size2, base3, size3) \
ut_assert(!check_lmb(uts, lmb, ram_base, ram_size, \
num_reserved, base1, size1, base2, size2, base3, \
size3))
/*
* Test helper function that reserves 64 KiB somewhere in the simulated RAM and
* then does some alloc + free tests.
*/
static int test_multi_alloc(struct unit_test_state *uts, const phys_addr_t ram,
const phys_size_t ram_size, const phys_addr_t ram0,
const phys_size_t ram0_size,
const phys_addr_t alloc_64k_addr)
{
const phys_addr_t ram_end = ram + ram_size;
const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000;
struct lmb lmb;
long ret;
phys_addr_t a, a2, b, b2, c, d;
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
ut_assert(alloc_64k_end > alloc_64k_addr);
/* check input addresses + size */
ut_assert(alloc_64k_addr >= ram + 8);
ut_assert(alloc_64k_end <= ram_end - 8);
lmb_init(&lmb);
if (ram0_size) {
ret = lmb_add(&lmb, ram0, ram0_size);
ut_asserteq(ret, 0);
}
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
if (ram0_size) {
ut_asserteq(lmb.memory.cnt, 2);
ut_asserteq(lmb.memory.region[0].base, ram0);
ut_asserteq(lmb.memory.region[0].size, ram0_size);
ut_asserteq(lmb.memory.region[1].base, ram);
ut_asserteq(lmb.memory.region[1].size, ram_size);
} else {
ut_asserteq(lmb.memory.cnt, 1);
ut_asserteq(lmb.memory.region[0].base, ram);
ut_asserteq(lmb.memory.region[0].size, ram_size);
}
/* reserve 64KiB somewhere */
ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
/* allocate somewhere, should be at the end of RAM */
a = lmb_alloc(&lmb, 4, 1);
ut_asserteq(a, ram_end - 4);
ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr, 0x10000,
ram_end - 4, 4, 0, 0);
/* alloc below end of reserved region -> below reserved region */
b = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
ut_asserteq(b, alloc_64k_addr - 4);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0);
/* 2nd time */
c = lmb_alloc(&lmb, 4, 1);
ut_asserteq(c, ram_end - 8);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0);
d = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
ut_asserteq(d, alloc_64k_addr - 8);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
ret = lmb_free(&lmb, a, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
/* allocate again to ensure we get the same address */
a2 = lmb_alloc(&lmb, 4, 1);
ut_asserteq(a, a2);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
ret = lmb_free(&lmb, a2, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
ret = lmb_free(&lmb, b, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 3,
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
ram_end - 8, 4);
/* allocate again to ensure we get the same address */
b2 = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
ut_asserteq(b, b2);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
ret = lmb_free(&lmb, b2, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 3,
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
ram_end - 8, 4);
ret = lmb_free(&lmb, c, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0);
ret = lmb_free(&lmb, d, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
if (ram0_size) {
ut_asserteq(lmb.memory.cnt, 2);
ut_asserteq(lmb.memory.region[0].base, ram0);
ut_asserteq(lmb.memory.region[0].size, ram0_size);
ut_asserteq(lmb.memory.region[1].base, ram);
ut_asserteq(lmb.memory.region[1].size, ram_size);
} else {
ut_asserteq(lmb.memory.cnt, 1);
ut_asserteq(lmb.memory.region[0].base, ram);
ut_asserteq(lmb.memory.region[0].size, ram_size);
}
return 0;
}
static int test_multi_alloc_512mb(struct unit_test_state *uts,
const phys_addr_t ram)
{
return test_multi_alloc(uts, ram, 0x20000000, 0, 0, ram + 0x10000000);
}
static int test_multi_alloc_512mb_x2(struct unit_test_state *uts,
const phys_addr_t ram,
const phys_addr_t ram0)
{
return test_multi_alloc(uts, ram, 0x20000000, ram0, 0x20000000,
ram + 0x10000000);
}
/* Create a memory region with one reserved region and allocate */
static int lib_test_lmb_simple(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_multi_alloc_512mb(uts, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_multi_alloc_512mb(uts, 0xE0000000);
}
DM_TEST(lib_test_lmb_simple, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Create two memory regions with one reserved region and allocate */
static int lib_test_lmb_simple_x2(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 2GiB and 1 GiB */
ret = test_multi_alloc_512mb_x2(uts, 0x80000000, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 3.5GiB and 1 GiB */
return test_multi_alloc_512mb_x2(uts, 0xE0000000, 0x40000000);
}
DM_TEST(lib_test_lmb_simple_x2, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */
static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram)
{
const phys_size_t ram_size = 0x20000000;
const phys_size_t big_block_size = 0x10000000;
const phys_addr_t ram_end = ram + ram_size;
const phys_addr_t alloc_64k_addr = ram + 0x10000000;
struct lmb lmb;
long ret;
phys_addr_t a, b;
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
lmb_init(&lmb);
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
/* reserve 64KiB in the middle of RAM */
ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
/* allocate a big block, should be below reserved */
a = lmb_alloc(&lmb, big_block_size, 1);
ut_asserteq(a, ram);
ASSERT_LMB(&lmb, ram, ram_size, 1, a,
big_block_size + 0x10000, 0, 0, 0, 0);
/* allocate 2nd big block */
/* This should fail, printing an error */
b = lmb_alloc(&lmb, big_block_size, 1);
ut_asserteq(b, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, a,
big_block_size + 0x10000, 0, 0, 0, 0);
ret = lmb_free(&lmb, a, big_block_size);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
/* allocate too big block */
/* This should fail, printing an error */
a = lmb_alloc(&lmb, ram_size, 1);
ut_asserteq(a, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
return 0;
}
static int lib_test_lmb_big(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_bigblock(uts, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_bigblock(uts, 0xE0000000);
}
DM_TEST(lib_test_lmb_big, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Simulate 512 MiB RAM, allocate a block without previous reservation */
static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram,
const phys_addr_t alloc_size, const ulong align)
{
const phys_size_t ram_size = 0x20000000;
const phys_addr_t ram_end = ram + ram_size;
struct lmb lmb;
long ret;
phys_addr_t a, b;
const phys_addr_t alloc_size_aligned = (alloc_size + align - 1) &
~(align - 1);
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
lmb_init(&lmb);
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
/* allocate a block */
a = lmb_alloc(&lmb, alloc_size, align);
ut_assert(a != 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
alloc_size, 0, 0, 0, 0);
/* allocate another block */
b = lmb_alloc(&lmb, alloc_size, align);
ut_assert(b != 0);
if (alloc_size == alloc_size_aligned) {
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size -
(alloc_size_aligned * 2), alloc_size * 2, 0, 0, 0,
0);
} else {
ASSERT_LMB(&lmb, ram, ram_size, 2, ram + ram_size -
(alloc_size_aligned * 2), alloc_size, ram + ram_size
- alloc_size_aligned, alloc_size, 0, 0);
}
/* and free them */
ret = lmb_free(&lmb, b, alloc_size);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
alloc_size, 0, 0, 0, 0);
ret = lmb_free(&lmb, a, alloc_size);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
/* allocate a block with base*/
b = lmb_alloc_base(&lmb, alloc_size, align, ram_end);
ut_assert(a == b);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
alloc_size, 0, 0, 0, 0);
/* and free it */
ret = lmb_free(&lmb, b, alloc_size);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
return 0;
}
static int lib_test_lmb_noreserved(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_noreserved(uts, 0x40000000, 4, 1);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_noreserved(uts, 0xE0000000, 4, 1);
}
DM_TEST(lib_test_lmb_noreserved, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int lib_test_lmb_unaligned_size(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_noreserved(uts, 0x40000000, 5, 8);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_noreserved(uts, 0xE0000000, 5, 8);
}
DM_TEST(lib_test_lmb_unaligned_size, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/*
* Simulate a RAM that starts at 0 and allocate down to address 0, which must
* fail as '0' means failure for the lmb_alloc functions.
*/
static int lib_test_lmb_at_0(struct unit_test_state *uts)
{
const phys_addr_t ram = 0;
const phys_size_t ram_size = 0x20000000;
struct lmb lmb;
long ret;
phys_addr_t a, b;
lmb_init(&lmb);
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
/* allocate nearly everything */
a = lmb_alloc(&lmb, ram_size - 4, 1);
ut_asserteq(a, ram + 4);
ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
0, 0, 0, 0);
/* allocate the rest */
/* This should fail as the allocated address would be 0 */
b = lmb_alloc(&lmb, 4, 1);
ut_asserteq(b, 0);
/* check that this was an error by checking lmb */
ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
0, 0, 0, 0);
/* check that this was an error by freeing b */
ret = lmb_free(&lmb, b, 4);
ut_asserteq(ret, -1);
ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
0, 0, 0, 0);
ret = lmb_free(&lmb, a, ram_size - 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
return 0;
}
DM_TEST(lib_test_lmb_at_0, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Check that calling lmb_reserve with overlapping regions fails. */
static int lib_test_lmb_overlapping_reserve(struct unit_test_state *uts)
{
const phys_addr_t ram = 0x40000000;
const phys_size_t ram_size = 0x20000000;
struct lmb lmb;
long ret;
lmb_init(&lmb);
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
ret = lmb_reserve(&lmb, 0x40010000, 0x10000);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
0, 0, 0, 0);
/* allocate overlapping region should fail */
ret = lmb_reserve(&lmb, 0x40011000, 0x10000);
ut_asserteq(ret, -1);
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
0, 0, 0, 0);
/* allocate 3nd region */
ret = lmb_reserve(&lmb, 0x40030000, 0x10000);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40010000, 0x10000,
0x40030000, 0x10000, 0, 0);
/* allocate 2nd region */
ret = lmb_reserve(&lmb, 0x40020000, 0x10000);
ut_assert(ret >= 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x30000,
0, 0, 0, 0);
return 0;
}
DM_TEST(lib_test_lmb_overlapping_reserve,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/*
* Simulate 512 MiB RAM, reserve 3 blocks, allocate addresses in between.
* Expect addresses outside the memory range to fail.
*/
static int test_alloc_addr(struct unit_test_state *uts, const phys_addr_t ram)
{
const phys_size_t ram_size = 0x20000000;
const phys_addr_t ram_end = ram + ram_size;
const phys_size_t alloc_addr_a = ram + 0x8000000;
const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
struct lmb lmb;
long ret;
phys_addr_t a, b, c, d, e;
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
lmb_init(&lmb);
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
/* reserve 3 blocks */
ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000);
ut_asserteq(ret, 0);
ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000);
ut_asserteq(ret, 0);
ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000,
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
/* allocate blocks */
a = lmb_alloc_addr(&lmb, ram, alloc_addr_a - ram);
ut_asserteq(a, ram);
ASSERT_LMB(&lmb, ram, ram_size, 3, ram, 0x8010000,
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
b = lmb_alloc_addr(&lmb, alloc_addr_a + 0x10000,
alloc_addr_b - alloc_addr_a - 0x10000);
ut_asserteq(b, alloc_addr_a + 0x10000);
ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x10010000,
alloc_addr_c, 0x10000, 0, 0);
c = lmb_alloc_addr(&lmb, alloc_addr_b + 0x10000,
alloc_addr_c - alloc_addr_b - 0x10000);
ut_asserteq(c, alloc_addr_b + 0x10000);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
0, 0, 0, 0);
d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000,
ram_end - alloc_addr_c - 0x10000);
ut_asserteq(d, alloc_addr_c + 0x10000);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size,
0, 0, 0, 0);
/* allocating anything else should fail */
e = lmb_alloc(&lmb, 1, 1);
ut_asserteq(e, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size,
0, 0, 0, 0);
ret = lmb_free(&lmb, d, ram_end - alloc_addr_c - 0x10000);
ut_asserteq(ret, 0);
/* allocate at 3 points in free range */
d = lmb_alloc_addr(&lmb, ram_end - 4, 4);
ut_asserteq(d, ram_end - 4);
ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000,
d, 4, 0, 0);
ret = lmb_free(&lmb, d, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
0, 0, 0, 0);
d = lmb_alloc_addr(&lmb, ram_end - 128, 4);
ut_asserteq(d, ram_end - 128);
ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000,
d, 4, 0, 0);
ret = lmb_free(&lmb, d, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
0, 0, 0, 0);
d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000, 4);
ut_asserteq(d, alloc_addr_c + 0x10000);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010004,
0, 0, 0, 0);
ret = lmb_free(&lmb, d, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
0, 0, 0, 0);
/* allocate at the bottom */
ret = lmb_free(&lmb, a, alloc_addr_a - ram);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + 0x8000000, 0x10010000,
0, 0, 0, 0);
d = lmb_alloc_addr(&lmb, ram, 4);
ut_asserteq(d, ram);
ASSERT_LMB(&lmb, ram, ram_size, 2, d, 4,
ram + 0x8000000, 0x10010000, 0, 0);
/* check that allocating outside memory fails */
if (ram_end != 0) {
ret = lmb_alloc_addr(&lmb, ram_end, 1);
ut_asserteq(ret, 0);
}
if (ram != 0) {
ret = lmb_alloc_addr(&lmb, ram - 1, 1);
ut_asserteq(ret, 0);
}
return 0;
}
static int lib_test_lmb_alloc_addr(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_alloc_addr(uts, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_alloc_addr(uts, 0xE0000000);
}
DM_TEST(lib_test_lmb_alloc_addr, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Simulate 512 MiB RAM, reserve 3 blocks, check addresses in between */
static int test_get_unreserved_size(struct unit_test_state *uts,
const phys_addr_t ram)
{
const phys_size_t ram_size = 0x20000000;
const phys_addr_t ram_end = ram + ram_size;
const phys_size_t alloc_addr_a = ram + 0x8000000;
const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
struct lmb lmb;
long ret;
phys_size_t s;
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
lmb_init(&lmb);
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
/* reserve 3 blocks */
ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000);
ut_asserteq(ret, 0);
ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000);
ut_asserteq(ret, 0);
ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000,
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
/* check addresses in between blocks */
s = lmb_get_free_size(&lmb, ram);
ut_asserteq(s, alloc_addr_a - ram);
s = lmb_get_free_size(&lmb, ram + 0x10000);
ut_asserteq(s, alloc_addr_a - ram - 0x10000);
s = lmb_get_free_size(&lmb, alloc_addr_a - 4);
ut_asserteq(s, 4);
s = lmb_get_free_size(&lmb, alloc_addr_a + 0x10000);
ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x10000);
s = lmb_get_free_size(&lmb, alloc_addr_a + 0x20000);
ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x20000);
s = lmb_get_free_size(&lmb, alloc_addr_b - 4);
ut_asserteq(s, 4);
s = lmb_get_free_size(&lmb, alloc_addr_c + 0x10000);
ut_asserteq(s, ram_end - alloc_addr_c - 0x10000);
s = lmb_get_free_size(&lmb, alloc_addr_c + 0x20000);
ut_asserteq(s, ram_end - alloc_addr_c - 0x20000);
s = lmb_get_free_size(&lmb, ram_end - 4);
ut_asserteq(s, 4);
return 0;
}
static int lib_test_lmb_get_free_size(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_get_unreserved_size(uts, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_get_unreserved_size(uts, 0xE0000000);
}
DM_TEST(lib_test_lmb_get_free_size,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int lib_test_lmb_max_regions(struct unit_test_state *uts)
{
const phys_addr_t ram = 0x00000000;
const phys_size_t ram_size = 0x8000000;
const phys_size_t blk_size = 0x10000;
phys_addr_t offset;
struct lmb lmb;
int ret, i;
lmb_init(&lmb);
ut_asserteq(lmb.memory.cnt, 0);
ut_asserteq(lmb.memory.max, 8);
ut_asserteq(lmb.reserved.cnt, 0);
ut_asserteq(lmb.reserved.max, 8);
/* Add 8 memory regions */
for (i = 0; i < 8; i++) {
offset = ram + 2 * i * ram_size;
ret = lmb_add(&lmb, offset, ram_size);
ut_asserteq(ret, 0);
}
ut_asserteq(lmb.memory.cnt, 8);
ut_asserteq(lmb.reserved.cnt, 0);
/* error for the 9th memory regions */
offset = ram + 2 * 8 * ram_size;
ret = lmb_add(&lmb, offset, ram_size);
ut_asserteq(ret, -1);
ut_asserteq(lmb.memory.cnt, 8);
ut_asserteq(lmb.reserved.cnt, 0);
/* reserve 8 regions */
for (i = 0; i < 8; i++) {
offset = ram + 2 * i * blk_size;
ret = lmb_reserve(&lmb, offset, blk_size);
ut_asserteq(ret, 0);
}
ut_asserteq(lmb.memory.cnt, 8);
ut_asserteq(lmb.reserved.cnt, 8);
/* error for the 9th reserved blocks */
offset = ram + 2 * 8 * blk_size;
ret = lmb_reserve(&lmb, offset, blk_size);
ut_asserteq(ret, -1);
ut_asserteq(lmb.memory.cnt, 8);
ut_asserteq(lmb.reserved.cnt, 8);
/* check each regions */
for (i = 0; i < 8; i++)
ut_asserteq(lmb.memory.region[i].base, ram + 2 * i * ram_size);
for (i = 0; i < 8; i++)
ut_asserteq(lmb.reserved.region[i].base, ram + 2 * i * blk_size);
return 0;
}
DM_TEST(lib_test_lmb_max_regions,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int lib_test_lmb_flags(struct unit_test_state *uts)
{
const phys_addr_t ram = 0x40000000;
const phys_size_t ram_size = 0x20000000;
struct lmb lmb;
long ret;
lmb_init(&lmb);
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
/* reserve, same flag */
ret = lmb_reserve_flags(&lmb, 0x40010000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
0, 0, 0, 0);
/* reserve again, same flag */
ret = lmb_reserve_flags(&lmb, 0x40010000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
0, 0, 0, 0);
/* reserve again, new flag */
ret = lmb_reserve_flags(&lmb, 0x40010000, 0x10000, LMB_NONE);
ut_asserteq(ret, -1);
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
0, 0, 0, 0);
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1);
/* merge after */
ret = lmb_reserve_flags(&lmb, 0x40020000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, 1);
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x20000,
0, 0, 0, 0);
/* merge before */
ret = lmb_reserve_flags(&lmb, 0x40000000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, 1);
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40000000, 0x30000,
0, 0, 0, 0);
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1);
ret = lmb_reserve_flags(&lmb, 0x40030000, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40000000, 0x30000,
0x40030000, 0x10000, 0, 0);
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1);
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[1]), 0);
/* test that old API use LMB_NONE */
ret = lmb_reserve(&lmb, 0x40040000, 0x10000);
ut_asserteq(ret, 1);
ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40000000, 0x30000,
0x40030000, 0x20000, 0, 0);
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1);
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[1]), 0);
ret = lmb_reserve_flags(&lmb, 0x40070000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 3, 0x40000000, 0x30000,
0x40030000, 0x20000, 0x40070000, 0x10000);
ret = lmb_reserve_flags(&lmb, 0x40050000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 4, 0x40000000, 0x30000,
0x40030000, 0x20000, 0x40050000, 0x10000);
/* merge with 2 adjacent regions */
ret = lmb_reserve_flags(&lmb, 0x40060000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, 2);
ASSERT_LMB(&lmb, ram, ram_size, 3, 0x40000000, 0x30000,
0x40030000, 0x20000, 0x40050000, 0x30000);
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1);
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[1]), 0);
ut_asserteq(lmb_is_nomap(&lmb.reserved.region[2]), 1);
return 0;
}
DM_TEST(lib_test_lmb_flags,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);