u-boot/drivers/nvme/nvme.c

837 lines
19 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017 NXP Semiconductors
* Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <memalign.h>
#include <pci.h>
#include <dm/device-internal.h>
#include "nvme.h"
#define NVME_Q_DEPTH 2
#define NVME_AQ_DEPTH 2
#define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
#define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
#define ADMIN_TIMEOUT 60
#define IO_TIMEOUT 30
#define MAX_PRP_POOL 512
enum nvme_queue_id {
NVME_ADMIN_Q,
NVME_IO_Q,
NVME_Q_NUM,
};
/*
* An NVM Express queue. Each device has at least two (one for admin
* commands and one for I/O commands).
*/
struct nvme_queue {
struct nvme_dev *dev;
struct nvme_command *sq_cmds;
struct nvme_completion *cqes;
wait_queue_head_t sq_full;
u32 __iomem *q_db;
u16 q_depth;
s16 cq_vector;
u16 sq_head;
u16 sq_tail;
u16 cq_head;
u16 qid;
u8 cq_phase;
u8 cqe_seen;
unsigned long cmdid_data[];
};
static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
{
u32 bit = enabled ? NVME_CSTS_RDY : 0;
int timeout;
ulong start;
/* Timeout field in the CAP register is in 500 millisecond units */
timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
start = get_timer(0);
while (get_timer(start) < timeout) {
if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
return 0;
}
return -ETIME;
}
static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
int total_len, u64 dma_addr)
{
u32 page_size = dev->page_size;
int offset = dma_addr & (page_size - 1);
u64 *prp_pool;
int length = total_len;
int i, nprps;
length -= (page_size - offset);
if (length <= 0) {
*prp2 = 0;
return 0;
}
if (length)
dma_addr += (page_size - offset);
if (length <= page_size) {
*prp2 = dma_addr;
return 0;
}
nprps = DIV_ROUND_UP(length, page_size);
if (nprps > dev->prp_entry_num) {
free(dev->prp_pool);
dev->prp_pool = malloc(nprps << 3);
if (!dev->prp_pool) {
printf("Error: malloc prp_pool fail\n");
return -ENOMEM;
}
dev->prp_entry_num = nprps;
}
prp_pool = dev->prp_pool;
i = 0;
while (nprps) {
if (i == ((page_size >> 3) - 1)) {
*(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
page_size);
i = 0;
prp_pool += page_size;
}
*(prp_pool + i++) = cpu_to_le64(dma_addr);
dma_addr += page_size;
nprps--;
}
*prp2 = (ulong)dev->prp_pool;
return 0;
}
static __le16 nvme_get_cmd_id(void)
{
static unsigned short cmdid;
return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
}
static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
{
u64 start = (ulong)&nvmeq->cqes[index];
u64 stop = start + sizeof(struct nvme_completion);
invalidate_dcache_range(start, stop);
return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
}
/**
* nvme_submit_cmd() - copy a command into a queue and ring the doorbell
*
* @nvmeq: The queue to use
* @cmd: The command to send
*/
static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
{
u16 tail = nvmeq->sq_tail;
memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
(ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
if (++tail == nvmeq->q_depth)
tail = 0;
writel(tail, nvmeq->q_db);
nvmeq->sq_tail = tail;
}
static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
struct nvme_command *cmd,
u32 *result, unsigned timeout)
{
u16 head = nvmeq->cq_head;
u16 phase = nvmeq->cq_phase;
u16 status;
ulong start_time;
ulong timeout_us = timeout * 100000;
cmd->common.command_id = nvme_get_cmd_id();
nvme_submit_cmd(nvmeq, cmd);
start_time = timer_get_us();
for (;;) {
status = nvme_read_completion_status(nvmeq, head);
if ((status & 0x01) == phase)
break;
if (timeout_us > 0 && (timer_get_us() - start_time)
>= timeout_us)
return -ETIMEDOUT;
}
status >>= 1;
if (status) {
printf("ERROR: status = %x, phase = %d, head = %d\n",
status, phase, head);
status = 0;
if (++head == nvmeq->q_depth) {
head = 0;
phase = !phase;
}
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
nvmeq->cq_head = head;
nvmeq->cq_phase = phase;
return -EIO;
}
if (result)
*result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
if (++head == nvmeq->q_depth) {
head = 0;
phase = !phase;
}
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
nvmeq->cq_head = head;
nvmeq->cq_phase = phase;
return status;
}
static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
u32 *result)
{
return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
result, ADMIN_TIMEOUT);
}
static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
int qid, int depth)
{
struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
if (!nvmeq)
return NULL;
memset(nvmeq, 0, sizeof(*nvmeq));
nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
if (!nvmeq->cqes)
goto free_nvmeq;
memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
if (!nvmeq->sq_cmds)
goto free_queue;
memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
nvmeq->dev = dev;
nvmeq->cq_head = 0;
nvmeq->cq_phase = 1;
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
nvmeq->q_depth = depth;
nvmeq->qid = qid;
dev->queue_count++;
dev->queues[qid] = nvmeq;
return nvmeq;
free_queue:
free((void *)nvmeq->cqes);
free_nvmeq:
free(nvmeq);
return NULL;
}
static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.delete_queue.opcode = opcode;
c.delete_queue.qid = cpu_to_le16(id);
return nvme_submit_admin_cmd(dev, &c, NULL);
}
static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
{
return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
}
static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
{
return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
}
static int nvme_enable_ctrl(struct nvme_dev *dev)
{
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
dev->ctrl_config |= NVME_CC_ENABLE;
writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
return nvme_wait_ready(dev, true);
}
static int nvme_disable_ctrl(struct nvme_dev *dev)
{
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
dev->ctrl_config &= ~NVME_CC_ENABLE;
writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
return nvme_wait_ready(dev, false);
}
static void nvme_free_queue(struct nvme_queue *nvmeq)
{
free((void *)nvmeq->cqes);
free(nvmeq->sq_cmds);
free(nvmeq);
}
static void nvme_free_queues(struct nvme_dev *dev, int lowest)
{
int i;
for (i = dev->queue_count - 1; i >= lowest; i--) {
struct nvme_queue *nvmeq = dev->queues[i];
dev->queue_count--;
dev->queues[i] = NULL;
nvme_free_queue(nvmeq);
}
}
static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
{
struct nvme_dev *dev = nvmeq->dev;
nvmeq->sq_tail = 0;
nvmeq->cq_head = 0;
nvmeq->cq_phase = 1;
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
flush_dcache_range((ulong)nvmeq->cqes,
(ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
dev->online_queues++;
}
static int nvme_configure_admin_queue(struct nvme_dev *dev)
{
int result;
u32 aqa;
u64 cap = dev->cap;
struct nvme_queue *nvmeq;
/* most architectures use 4KB as the page size */
unsigned page_shift = 12;
unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
if (page_shift < dev_page_min) {
debug("Device minimum page size (%u) too large for host (%u)\n",
1 << dev_page_min, 1 << page_shift);
return -ENODEV;
}
if (page_shift > dev_page_max) {
debug("Device maximum page size (%u) smaller than host (%u)\n",
1 << dev_page_max, 1 << page_shift);
page_shift = dev_page_max;
}
result = nvme_disable_ctrl(dev);
if (result < 0)
return result;
nvmeq = dev->queues[NVME_ADMIN_Q];
if (!nvmeq) {
nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
if (!nvmeq)
return -ENOMEM;
}
aqa = nvmeq->q_depth - 1;
aqa |= aqa << 16;
aqa |= aqa << 16;
dev->page_size = 1 << page_shift;
dev->ctrl_config = NVME_CC_CSS_NVM;
dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
writel(aqa, &dev->bar->aqa);
nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
result = nvme_enable_ctrl(dev);
if (result)
goto free_nvmeq;
nvmeq->cq_vector = 0;
nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
return result;
free_nvmeq:
nvme_free_queues(dev, 0);
return result;
}
static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
memset(&c, 0, sizeof(c));
c.create_cq.opcode = nvme_admin_create_cq;
c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
c.create_cq.cqid = cpu_to_le16(qid);
c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_cq.cq_flags = cpu_to_le16(flags);
c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
return nvme_submit_admin_cmd(dev, &c, NULL);
}
static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
memset(&c, 0, sizeof(c));
c.create_sq.opcode = nvme_admin_create_sq;
c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
c.create_sq.sqid = cpu_to_le16(qid);
c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_sq.sq_flags = cpu_to_le16(flags);
c.create_sq.cqid = cpu_to_le16(qid);
return nvme_submit_admin_cmd(dev, &c, NULL);
}
int nvme_identify(struct nvme_dev *dev, unsigned nsid,
unsigned cns, dma_addr_t dma_addr)
{
struct nvme_command c;
u32 page_size = dev->page_size;
int offset = dma_addr & (page_size - 1);
int length = sizeof(struct nvme_id_ctrl);
int ret;
memset(&c, 0, sizeof(c));
c.identify.opcode = nvme_admin_identify;
c.identify.nsid = cpu_to_le32(nsid);
c.identify.prp1 = cpu_to_le64(dma_addr);
length -= (page_size - offset);
if (length <= 0) {
c.identify.prp2 = 0;
} else {
dma_addr += (page_size - offset);
c.identify.prp2 = cpu_to_le64(dma_addr);
}
c.identify.cns = cpu_to_le32(cns);
ret = nvme_submit_admin_cmd(dev, &c, NULL);
if (!ret)
invalidate_dcache_range(dma_addr,
dma_addr + sizeof(struct nvme_id_ctrl));
return ret;
}
int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_get_features;
c.features.nsid = cpu_to_le32(nsid);
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
/*
* TODO: add cache invalidate operation when the size of
* the DMA buffer is known
*/
return nvme_submit_admin_cmd(dev, &c, result);
}
int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_set_features;
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
c.features.dword11 = cpu_to_le32(dword11);
/*
* TODO: add cache flush operation when the size of
* the DMA buffer is known
*/
return nvme_submit_admin_cmd(dev, &c, result);
}
static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
{
struct nvme_dev *dev = nvmeq->dev;
int result;
nvmeq->cq_vector = qid - 1;
result = nvme_alloc_cq(dev, qid, nvmeq);
if (result < 0)
goto release_cq;
result = nvme_alloc_sq(dev, qid, nvmeq);
if (result < 0)
goto release_sq;
nvme_init_queue(nvmeq, qid);
return result;
release_sq:
nvme_delete_sq(dev, qid);
release_cq:
nvme_delete_cq(dev, qid);
return result;
}
static int nvme_set_queue_count(struct nvme_dev *dev, int count)
{
int status;
u32 result;
u32 q_count = (count - 1) | ((count - 1) << 16);
status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
q_count, 0, &result);
if (status < 0)
return status;
if (status > 1)
return 0;
return min(result & 0xffff, result >> 16) + 1;
}
static void nvme_create_io_queues(struct nvme_dev *dev)
{
unsigned int i;
for (i = dev->queue_count; i <= dev->max_qid; i++)
if (!nvme_alloc_queue(dev, i, dev->q_depth))
break;
for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
if (nvme_create_queue(dev->queues[i], i))
break;
}
static int nvme_setup_io_queues(struct nvme_dev *dev)
{
int nr_io_queues;
int result;
nr_io_queues = 1;
result = nvme_set_queue_count(dev, nr_io_queues);
if (result <= 0)
return result;
dev->max_qid = nr_io_queues;
/* Free previously allocated queues */
nvme_free_queues(dev, nr_io_queues + 1);
nvme_create_io_queues(dev);
return 0;
}
static int nvme_get_info_from_identify(struct nvme_dev *dev)
{
ALLOC_CACHE_ALIGN_BUFFER(char, buf, sizeof(struct nvme_id_ctrl));
struct nvme_id_ctrl *ctrl = (struct nvme_id_ctrl *)buf;
int ret;
int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
ret = nvme_identify(dev, 0, 1, (dma_addr_t)ctrl);
if (ret)
return -EIO;
dev->nn = le32_to_cpu(ctrl->nn);
dev->vwc = ctrl->vwc;
memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
if (ctrl->mdts)
dev->max_transfer_shift = (ctrl->mdts + shift);
else {
/*
* Maximum Data Transfer Size (MDTS) field indicates the maximum
* data transfer size between the host and the controller. The
* host should not submit a command that exceeds this transfer
* size. The value is in units of the minimum memory page size
* and is reported as a power of two (2^n).
*
* The spec also says: a value of 0h indicates no restrictions
* on transfer size. But in nvme_blk_read/write() below we have
* the following algorithm for maximum number of logic blocks
* per transfer:
*
* u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
*
* In order for lbas not to overflow, the maximum number is 15
* which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
* Let's use 20 which provides 1MB size.
*/
dev->max_transfer_shift = 20;
}
return 0;
}
int nvme_scan_namespace(void)
{
struct uclass *uc;
struct udevice *dev;
int ret;
ret = uclass_get(UCLASS_NVME, &uc);
if (ret)
return ret;
uclass_foreach_dev(dev, uc) {
ret = device_probe(dev);
if (ret)
return ret;
}
return 0;
}
static int nvme_blk_probe(struct udevice *udev)
{
struct nvme_dev *ndev = dev_get_priv(udev->parent);
struct blk_desc *desc = dev_get_uclass_platdata(udev);
struct nvme_ns *ns = dev_get_priv(udev);
u8 flbas;
ALLOC_CACHE_ALIGN_BUFFER(char, buf, sizeof(struct nvme_id_ns));
struct nvme_id_ns *id = (struct nvme_id_ns *)buf;
struct pci_child_platdata *pplat;
memset(ns, 0, sizeof(*ns));
ns->dev = ndev;
/* extract the namespace id from the block device name */
ns->ns_id = trailing_strtol(udev->name) + 1;
if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)id))
return -EIO;
flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
ns->flbas = flbas;
ns->lba_shift = id->lbaf[flbas].ds;
ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
ns->mode_select_block_len = 1 << ns->lba_shift;
list_add(&ns->list, &ndev->namespaces);
desc->lba = ns->mode_select_num_blocks;
desc->log2blksz = ns->lba_shift;
desc->blksz = 1 << ns->lba_shift;
desc->bdev = udev;
pplat = dev_get_parent_platdata(udev->parent);
sprintf(desc->vendor, "0x%.4x", pplat->vendor);
memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
part_init(desc);
return 0;
}
static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
lbaint_t blkcnt, void *buffer, bool read)
{
struct nvme_ns *ns = dev_get_priv(udev);
struct nvme_dev *dev = ns->dev;
struct nvme_command c;
struct blk_desc *desc = dev_get_uclass_platdata(udev);
int status;
u64 prp2;
u64 total_len = blkcnt << desc->log2blksz;
u64 temp_len = total_len;
u64 slba = blknr;
u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
u64 total_lbas = blkcnt;
if (!read)
flush_dcache_range((unsigned long)buffer,
(unsigned long)buffer + total_len);
c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
c.rw.flags = 0;
c.rw.nsid = cpu_to_le32(ns->ns_id);
c.rw.control = 0;
c.rw.dsmgmt = 0;
c.rw.reftag = 0;
c.rw.apptag = 0;
c.rw.appmask = 0;
c.rw.metadata = 0;
while (total_lbas) {
if (total_lbas < lbas) {
lbas = (u16)total_lbas;
total_lbas = 0;
} else {
total_lbas -= lbas;
}
if (nvme_setup_prps(dev, &prp2,
lbas << ns->lba_shift, (ulong)buffer))
return -EIO;
c.rw.slba = cpu_to_le64(slba);
slba += lbas;
c.rw.length = cpu_to_le16(lbas - 1);
c.rw.prp1 = cpu_to_le64((ulong)buffer);
c.rw.prp2 = cpu_to_le64(prp2);
status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
&c, NULL, IO_TIMEOUT);
if (status)
break;
temp_len -= (u32)lbas << ns->lba_shift;
buffer += lbas << ns->lba_shift;
}
if (read)
invalidate_dcache_range((unsigned long)buffer,
(unsigned long)buffer + total_len);
return (total_len - temp_len) >> desc->log2blksz;
}
static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
lbaint_t blkcnt, void *buffer)
{
return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
}
static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
lbaint_t blkcnt, const void *buffer)
{
return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
}
static const struct blk_ops nvme_blk_ops = {
.read = nvme_blk_read,
.write = nvme_blk_write,
};
U_BOOT_DRIVER(nvme_blk) = {
.name = "nvme-blk",
.id = UCLASS_BLK,
.probe = nvme_blk_probe,
.ops = &nvme_blk_ops,
.priv_auto_alloc_size = sizeof(struct nvme_ns),
};
static int nvme_bind(struct udevice *udev)
{
static int ndev_num;
char name[20];
sprintf(name, "nvme#%d", ndev_num++);
return device_set_name(udev, name);
}
static int nvme_probe(struct udevice *udev)
{
int ret;
struct nvme_dev *ndev = dev_get_priv(udev);
ndev->instance = trailing_strtol(udev->name);
INIT_LIST_HEAD(&ndev->namespaces);
ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
PCI_REGION_MEM);
if (readl(&ndev->bar->csts) == -1) {
ret = -ENODEV;
printf("Error: %s: Out of memory!\n", udev->name);
goto free_nvme;
}
ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
if (!ndev->queues) {
ret = -ENOMEM;
printf("Error: %s: Out of memory!\n", udev->name);
goto free_nvme;
}
memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
ndev->prp_pool = malloc(MAX_PRP_POOL);
if (!ndev->prp_pool) {
ret = -ENOMEM;
printf("Error: %s: Out of memory!\n", udev->name);
goto free_nvme;
}
ndev->prp_entry_num = MAX_PRP_POOL >> 3;
ndev->cap = nvme_readq(&ndev->bar->cap);
ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
ret = nvme_configure_admin_queue(ndev);
if (ret)
goto free_queue;
ret = nvme_setup_io_queues(ndev);
if (ret)
goto free_queue;
nvme_get_info_from_identify(ndev);
return 0;
free_queue:
free((void *)ndev->queues);
free_nvme:
return ret;
}
U_BOOT_DRIVER(nvme) = {
.name = "nvme",
.id = UCLASS_NVME,
.bind = nvme_bind,
.probe = nvme_probe,
.priv_auto_alloc_size = sizeof(struct nvme_dev),
};
struct pci_device_id nvme_supported[] = {
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
{}
};
U_BOOT_PCI_DEVICE(nvme, nvme_supported);