u-boot/drivers/mtd/nand/raw/mxs_nand_spl.c

320 lines
7.9 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2014 Gateworks Corporation
* Copyright 2019 NXP
* Author: Tim Harvey <tharvey@gateworks.com>
*/
#include <common.h>
#include <log.h>
#include <nand.h>
#include <malloc.h>
#include <mxs_nand.h>
#include <asm/cache.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/mtd/rawnand.h>
static struct mtd_info *mtd;
static struct nand_chip nand_chip;
static void mxs_nand_command(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
register struct nand_chip *chip = mtd_to_nand(mtd);
u32 timeo, time_start;
/* write out the command to the device */
chip->cmd_ctrl(mtd, command, NAND_CLE);
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (chip->options & NAND_BUSWIDTH_16 &&
!nand_opcode_8bits(command))
column >>= 1;
chip->cmd_ctrl(mtd, column, NAND_ALE);
/*
* Assume LP NAND here, so use two bytes column address
* but not for CMD_READID and CMD_PARAM, which require
* only one byte column address
*/
if (command != NAND_CMD_READID &&
command != NAND_CMD_PARAM)
chip->cmd_ctrl(mtd, column >> 8, NAND_ALE);
}
if (page_addr != -1) {
chip->cmd_ctrl(mtd, page_addr, NAND_ALE);
chip->cmd_ctrl(mtd, page_addr >> 8, NAND_ALE);
/* One more address cycle for devices > 128MiB */
if (chip->chipsize > (128 << 20))
chip->cmd_ctrl(mtd, page_addr >> 16, NAND_ALE);
}
chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0);
if (command == NAND_CMD_READ0) {
chip->cmd_ctrl(mtd, NAND_CMD_READSTART, NAND_CLE);
chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0);
} else if (command == NAND_CMD_RNDOUT) {
/* No ready / busy check necessary */
chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
NAND_NCE | NAND_CLE);
chip->cmd_ctrl(mtd, NAND_CMD_NONE,
NAND_NCE);
}
/* wait for nand ready */
ndelay(100);
timeo = (CONFIG_SYS_HZ * 20) / 1000;
time_start = get_timer(0);
while (get_timer(time_start) < timeo) {
if (chip->dev_ready(mtd))
break;
}
}
#if defined (CONFIG_SPL_NAND_IDENT)
/* Trying to detect the NAND flash using ONFi, JEDEC, and (extended) IDs */
static int mxs_flash_full_ident(struct mtd_info *mtd)
{
int nand_maf_id, nand_dev_id;
struct nand_chip *chip = mtd_to_nand(mtd);
int ret;
ret = nand_detect(chip, &nand_maf_id, &nand_dev_id, NULL);
if (ret) {
chip->select_chip(mtd, -1);
return ret;
}
return 0;
}
#else
/* Trying to detect the NAND flash using ONFi only */
static int mxs_flash_onfi_ident(struct mtd_info *mtd)
{
register struct nand_chip *chip = mtd_to_nand(mtd);
int i;
u8 mfg_id, dev_id;
u8 id_data[8];
struct nand_onfi_params *p = &chip->onfi_params;
/* Reset the chip */
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Send the command for reading device ID */
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
mfg_id = chip->read_byte(mtd);
dev_id = chip->read_byte(mtd);
/* Try again to make sure */
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
for (i = 0; i < 8; i++)
id_data[i] = chip->read_byte(mtd);
if (id_data[0] != mfg_id || id_data[1] != dev_id) {
printf("second ID read did not match");
return -1;
}
debug("0x%02x:0x%02x ", mfg_id, dev_id);
/* read ONFI */
chip->onfi_version = 0;
chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I') {
return -2;
}
/* we have ONFI, probe it */
chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
mtd->name = p->model;
mtd->writesize = le32_to_cpu(p->byte_per_page);
mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
chip->chipsize = le32_to_cpu(p->blocks_per_lun);
chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
/* Calculate the address shift from the page size */
chip->page_shift = ffs(mtd->writesize) - 1;
chip->phys_erase_shift = ffs(mtd->erasesize) - 1;
/* Convert chipsize to number of pages per chip -1 */
chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
chip->badblockbits = 8;
debug("erasesize=%d (>>%d)\n", mtd->erasesize, chip->phys_erase_shift);
debug("writesize=%d (>>%d)\n", mtd->writesize, chip->page_shift);
debug("oobsize=%d\n", mtd->oobsize);
debug("chipsize=%lld\n", chip->chipsize);
return 0;
}
#endif /* CONFIG_SPL_NAND_IDENT */
static int mxs_flash_ident(struct mtd_info *mtd)
{
int ret;
#if defined (CONFIG_SPL_NAND_IDENT)
ret = mxs_flash_full_ident(mtd);
#else
ret = mxs_flash_onfi_ident(mtd);
#endif
return ret;
}
static int mxs_read_page_ecc(struct mtd_info *mtd, void *buf, unsigned int page)
{
register struct nand_chip *chip = mtd_to_nand(mtd);
int ret;
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, page);
ret = nand_chip.ecc.read_page(mtd, chip, buf, 1, page);
if (ret < 0) {
printf("read_page failed %d\n", ret);
return -1;
}
return 0;
}
static int is_badblock(struct mtd_info *mtd, loff_t offs, int allowbbt)
{
register struct nand_chip *chip = mtd_to_nand(mtd);
unsigned int block = offs >> chip->phys_erase_shift;
unsigned int page = offs >> chip->page_shift;
debug("%s offs=0x%08x block:%d page:%d\n", __func__, (int)offs, block,
page);
chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
memset(chip->oob_poi, 0, mtd->oobsize);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
return chip->oob_poi[0] != 0xff;
}
/* setup mtd and nand structs and init mxs_nand driver */
void nand_init(void)
{
/* return if already initalized */
if (nand_chip.numchips)
return;
/* init mxs nand driver */
mxs_nand_init_spl(&nand_chip);
mtd = nand_to_mtd(&nand_chip);
/* set mtd functions */
nand_chip.cmdfunc = mxs_nand_command;
nand_chip.scan_bbt = nand_default_bbt;
nand_chip.numchips = 1;
/* identify flash device */
if (mxs_flash_ident(mtd)) {
printf("Failed to identify\n");
nand_chip.numchips = 0; /* If fail, don't use nand */
return;
}
/* allocate and initialize buffers */
nand_chip.buffers = memalign(ARCH_DMA_MINALIGN,
sizeof(*nand_chip.buffers));
nand_chip.oob_poi = nand_chip.buffers->databuf + mtd->writesize;
/* setup flash layout (does not scan as we override that) */
mtd->size = nand_chip.chipsize;
nand_chip.scan_bbt(mtd);
mxs_nand_setup_ecc(mtd);
}
int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
{
unsigned int sz;
unsigned int block, lastblock;
unsigned int page, page_offset;
unsigned int nand_page_per_block;
struct nand_chip *chip;
u8 *page_buf = NULL;
chip = mtd_to_nand(mtd);
if (!chip->numchips)
return -ENODEV;
page_buf = malloc(mtd->writesize);
if (!page_buf)
return -ENOMEM;
/* offs has to be aligned to a page address! */
block = offs / mtd->erasesize;
lastblock = (offs + size - 1) / mtd->erasesize;
page = (offs % mtd->erasesize) / mtd->writesize;
page_offset = offs % mtd->writesize;
nand_page_per_block = mtd->erasesize / mtd->writesize;
while (block <= lastblock && size > 0) {
if (!is_badblock(mtd, mtd->erasesize * block, 1)) {
/* Skip bad blocks */
while (page < nand_page_per_block) {
int curr_page = nand_page_per_block * block + page;
if (mxs_read_page_ecc(mtd, page_buf, curr_page) < 0) {
free(page_buf);
return -EIO;
}
if (size > (mtd->writesize - page_offset))
sz = (mtd->writesize - page_offset);
else
sz = size;
memcpy(dst, page_buf + page_offset, sz);
dst += sz;
size -= sz;
page_offset = 0;
page++;
}
page = 0;
} else {
lastblock++;
}
block++;
}
free(page_buf);
return 0;
}
int nand_default_bbt(struct mtd_info *mtd)
{
return 0;
}
void nand_deselect(void)
{
}
u32 nand_spl_adjust_offset(u32 sector, u32 offs)
{
unsigned int block, lastblock;
block = sector / mtd->erasesize;
lastblock = (sector + offs) / mtd->erasesize;
while (block <= lastblock) {
if (is_badblock(mtd, block * mtd->erasesize, 1)) {
offs += mtd->erasesize;
lastblock++;
}
block++;
}
return offs;
}