u-boot/drivers/spi/stm32_qspi.c

551 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2016
*
* Michael Kurz, <michi.kurz@gmail.com>
*
* STM32 QSPI driver
*/
#define LOG_CATEGORY UCLASS_SPI
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <log.h>
#include <reset.h>
#include <spi.h>
#include <spi-mem.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <linux/sizes.h>
struct stm32_qspi_regs {
u32 cr; /* 0x00 */
u32 dcr; /* 0x04 */
u32 sr; /* 0x08 */
u32 fcr; /* 0x0C */
u32 dlr; /* 0x10 */
u32 ccr; /* 0x14 */
u32 ar; /* 0x18 */
u32 abr; /* 0x1C */
u32 dr; /* 0x20 */
u32 psmkr; /* 0x24 */
u32 psmar; /* 0x28 */
u32 pir; /* 0x2C */
u32 lptr; /* 0x30 */
};
/*
* QUADSPI control register
*/
#define STM32_QSPI_CR_EN BIT(0)
#define STM32_QSPI_CR_ABORT BIT(1)
#define STM32_QSPI_CR_DMAEN BIT(2)
#define STM32_QSPI_CR_TCEN BIT(3)
#define STM32_QSPI_CR_SSHIFT BIT(4)
#define STM32_QSPI_CR_DFM BIT(6)
#define STM32_QSPI_CR_FSEL BIT(7)
#define STM32_QSPI_CR_FTHRES_SHIFT 8
#define STM32_QSPI_CR_TEIE BIT(16)
#define STM32_QSPI_CR_TCIE BIT(17)
#define STM32_QSPI_CR_FTIE BIT(18)
#define STM32_QSPI_CR_SMIE BIT(19)
#define STM32_QSPI_CR_TOIE BIT(20)
#define STM32_QSPI_CR_APMS BIT(22)
#define STM32_QSPI_CR_PMM BIT(23)
#define STM32_QSPI_CR_PRESCALER_MASK GENMASK(7, 0)
#define STM32_QSPI_CR_PRESCALER_SHIFT 24
/*
* QUADSPI device configuration register
*/
#define STM32_QSPI_DCR_CKMODE BIT(0)
#define STM32_QSPI_DCR_CSHT_MASK GENMASK(2, 0)
#define STM32_QSPI_DCR_CSHT_SHIFT 8
#define STM32_QSPI_DCR_FSIZE_MASK GENMASK(4, 0)
#define STM32_QSPI_DCR_FSIZE_SHIFT 16
/*
* QUADSPI status register
*/
#define STM32_QSPI_SR_TEF BIT(0)
#define STM32_QSPI_SR_TCF BIT(1)
#define STM32_QSPI_SR_FTF BIT(2)
#define STM32_QSPI_SR_SMF BIT(3)
#define STM32_QSPI_SR_TOF BIT(4)
#define STM32_QSPI_SR_BUSY BIT(5)
/*
* QUADSPI flag clear register
*/
#define STM32_QSPI_FCR_CTEF BIT(0)
#define STM32_QSPI_FCR_CTCF BIT(1)
#define STM32_QSPI_FCR_CSMF BIT(3)
#define STM32_QSPI_FCR_CTOF BIT(4)
/*
* QUADSPI communication configuration register
*/
#define STM32_QSPI_CCR_DDRM BIT(31)
#define STM32_QSPI_CCR_DHHC BIT(30)
#define STM32_QSPI_CCR_SIOO BIT(28)
#define STM32_QSPI_CCR_FMODE_SHIFT 26
#define STM32_QSPI_CCR_DMODE_SHIFT 24
#define STM32_QSPI_CCR_DCYC_SHIFT 18
#define STM32_QSPI_CCR_ABSIZE_SHIFT 16
#define STM32_QSPI_CCR_ABMODE_SHIFT 14
#define STM32_QSPI_CCR_ADSIZE_SHIFT 12
#define STM32_QSPI_CCR_ADMODE_SHIFT 10
#define STM32_QSPI_CCR_IMODE_SHIFT 8
#define STM32_QSPI_CCR_IND_WRITE 0
#define STM32_QSPI_CCR_IND_READ 1
#define STM32_QSPI_CCR_MEM_MAP 3
#define STM32_QSPI_MAX_MMAP_SZ SZ_256M
#define STM32_QSPI_MAX_CHIP 2
#define STM32_QSPI_FIFO_TIMEOUT_US 30000
#define STM32_QSPI_CMD_TIMEOUT_US 1000000
#define STM32_BUSY_TIMEOUT_US 100000
#define STM32_ABT_TIMEOUT_US 100000
struct stm32_qspi_flash {
u32 cr;
u32 dcr;
bool initialized;
};
struct stm32_qspi_priv {
struct stm32_qspi_regs *regs;
struct stm32_qspi_flash flash[STM32_QSPI_MAX_CHIP];
void __iomem *mm_base;
resource_size_t mm_size;
ulong clock_rate;
int cs_used;
};
static int _stm32_qspi_wait_for_not_busy(struct stm32_qspi_priv *priv)
{
u32 sr;
int ret;
ret = readl_poll_timeout(&priv->regs->sr, sr,
!(sr & STM32_QSPI_SR_BUSY),
STM32_BUSY_TIMEOUT_US);
if (ret)
log_err("busy timeout (stat:%#x)\n", sr);
return ret;
}
static int _stm32_qspi_wait_cmd(struct stm32_qspi_priv *priv,
const struct spi_mem_op *op)
{
u32 sr;
int ret;
if (!op->data.nbytes)
return _stm32_qspi_wait_for_not_busy(priv);
ret = readl_poll_timeout(&priv->regs->sr, sr,
sr & STM32_QSPI_SR_TCF,
STM32_QSPI_CMD_TIMEOUT_US);
if (ret) {
log_err("cmd timeout (stat:%#x)\n", sr);
} else if (readl(&priv->regs->sr) & STM32_QSPI_SR_TEF) {
log_err("transfer error (stat:%#x)\n", sr);
ret = -EIO;
}
/* clear flags */
writel(STM32_QSPI_FCR_CTCF | STM32_QSPI_FCR_CTEF, &priv->regs->fcr);
return ret;
}
static void _stm32_qspi_read_fifo(u8 *val, void __iomem *addr)
{
*val = readb(addr);
}
static void _stm32_qspi_write_fifo(u8 *val, void __iomem *addr)
{
writeb(*val, addr);
}
static int _stm32_qspi_poll(struct stm32_qspi_priv *priv,
const struct spi_mem_op *op)
{
void (*fifo)(u8 *val, void __iomem *addr);
u32 len = op->data.nbytes, sr;
u8 *buf;
int ret;
if (op->data.dir == SPI_MEM_DATA_IN) {
fifo = _stm32_qspi_read_fifo;
buf = op->data.buf.in;
} else {
fifo = _stm32_qspi_write_fifo;
buf = (u8 *)op->data.buf.out;
}
while (len--) {
ret = readl_poll_timeout(&priv->regs->sr, sr,
sr & STM32_QSPI_SR_FTF,
STM32_QSPI_FIFO_TIMEOUT_US);
if (ret) {
log_err("fifo timeout (len:%d stat:%#x)\n", len, sr);
return ret;
}
fifo(buf++, &priv->regs->dr);
}
return 0;
}
static int stm32_qspi_mm(struct stm32_qspi_priv *priv,
const struct spi_mem_op *op)
{
memcpy_fromio(op->data.buf.in, priv->mm_base + op->addr.val,
op->data.nbytes);
return 0;
}
static int _stm32_qspi_tx(struct stm32_qspi_priv *priv,
const struct spi_mem_op *op,
u8 mode)
{
if (!op->data.nbytes)
return 0;
if (mode == STM32_QSPI_CCR_MEM_MAP)
return stm32_qspi_mm(priv, op);
return _stm32_qspi_poll(priv, op);
}
static int _stm32_qspi_get_mode(u8 buswidth)
{
if (buswidth == 4)
return 3;
return buswidth;
}
static int stm32_qspi_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct stm32_qspi_priv *priv = dev_get_priv(slave->dev->parent);
u32 cr, ccr, addr_max;
u8 mode = STM32_QSPI_CCR_IND_WRITE;
int timeout, ret;
dev_dbg(slave->dev, "cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n",
op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
op->dummy.buswidth, op->data.buswidth,
op->addr.val, op->data.nbytes);
ret = _stm32_qspi_wait_for_not_busy(priv);
if (ret)
return ret;
addr_max = op->addr.val + op->data.nbytes + 1;
if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes) {
if (addr_max < priv->mm_size && op->addr.buswidth)
mode = STM32_QSPI_CCR_MEM_MAP;
else
mode = STM32_QSPI_CCR_IND_READ;
}
if (op->data.nbytes)
writel(op->data.nbytes - 1, &priv->regs->dlr);
ccr = (mode << STM32_QSPI_CCR_FMODE_SHIFT);
ccr |= op->cmd.opcode;
ccr |= (_stm32_qspi_get_mode(op->cmd.buswidth)
<< STM32_QSPI_CCR_IMODE_SHIFT);
if (op->addr.nbytes) {
ccr |= ((op->addr.nbytes - 1) << STM32_QSPI_CCR_ADSIZE_SHIFT);
ccr |= (_stm32_qspi_get_mode(op->addr.buswidth)
<< STM32_QSPI_CCR_ADMODE_SHIFT);
}
if (op->dummy.buswidth && op->dummy.nbytes)
ccr |= (op->dummy.nbytes * 8 / op->dummy.buswidth
<< STM32_QSPI_CCR_DCYC_SHIFT);
if (op->data.nbytes)
ccr |= (_stm32_qspi_get_mode(op->data.buswidth)
<< STM32_QSPI_CCR_DMODE_SHIFT);
writel(ccr, &priv->regs->ccr);
if (op->addr.nbytes && mode != STM32_QSPI_CCR_MEM_MAP)
writel(op->addr.val, &priv->regs->ar);
ret = _stm32_qspi_tx(priv, op, mode);
/*
* Abort in:
* -error case
* -read memory map: prefetching must be stopped if we read the last
* byte of device (device size - fifo size). like device size is not
* knows, the prefetching is always stop.
*/
if (ret || mode == STM32_QSPI_CCR_MEM_MAP)
goto abort;
/* Wait end of tx in indirect mode */
ret = _stm32_qspi_wait_cmd(priv, op);
if (ret)
goto abort;
return 0;
abort:
setbits_le32(&priv->regs->cr, STM32_QSPI_CR_ABORT);
/* Wait clear of abort bit by hw */
timeout = readl_poll_timeout(&priv->regs->cr, cr,
!(cr & STM32_QSPI_CR_ABORT),
STM32_ABT_TIMEOUT_US);
writel(STM32_QSPI_FCR_CTCF, &priv->regs->fcr);
if (ret || timeout)
dev_err(slave->dev, "ret:%d abort timeout:%d\n", ret, timeout);
return ret;
}
static int stm32_qspi_probe(struct udevice *bus)
{
struct stm32_qspi_priv *priv = dev_get_priv(bus);
struct resource res;
struct clk clk;
struct reset_ctl reset_ctl;
int ret;
ret = dev_read_resource_byname(bus, "qspi", &res);
if (ret) {
dev_err(bus, "can't get regs base addresses(ret = %d)!\n", ret);
return ret;
}
priv->regs = (struct stm32_qspi_regs *)res.start;
ret = dev_read_resource_byname(bus, "qspi_mm", &res);
if (ret) {
dev_err(bus, "can't get mmap base address(ret = %d)!\n", ret);
return ret;
}
priv->mm_base = (void __iomem *)res.start;
priv->mm_size = resource_size(&res);
if (priv->mm_size > STM32_QSPI_MAX_MMAP_SZ)
return -EINVAL;
dev_dbg(bus, "regs=<0x%p> mapped=<0x%p> mapped_size=<0x%lx>\n",
priv->regs, priv->mm_base, priv->mm_size);
ret = clk_get_by_index(bus, 0, &clk);
if (ret < 0)
return ret;
ret = clk_enable(&clk);
if (ret) {
dev_err(bus, "failed to enable clock\n");
return ret;
}
priv->clock_rate = clk_get_rate(&clk);
if (!priv->clock_rate) {
clk_disable(&clk);
return -EINVAL;
}
ret = reset_get_by_index(bus, 0, &reset_ctl);
if (ret) {
if (ret != -ENOENT) {
dev_err(bus, "failed to get reset\n");
clk_disable(&clk);
return ret;
}
} else {
/* Reset QSPI controller */
reset_assert(&reset_ctl);
udelay(2);
reset_deassert(&reset_ctl);
}
priv->cs_used = -1;
setbits_le32(&priv->regs->cr, STM32_QSPI_CR_SSHIFT);
/* Set dcr fsize to max address */
setbits_le32(&priv->regs->dcr,
STM32_QSPI_DCR_FSIZE_MASK << STM32_QSPI_DCR_FSIZE_SHIFT);
return 0;
}
static int stm32_qspi_claim_bus(struct udevice *dev)
{
struct stm32_qspi_priv *priv = dev_get_priv(dev->parent);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
int slave_cs = slave_plat->cs;
if (slave_cs >= STM32_QSPI_MAX_CHIP)
return -ENODEV;
if (priv->cs_used != slave_cs) {
struct stm32_qspi_flash *flash = &priv->flash[slave_cs];
priv->cs_used = slave_cs;
if (flash->initialized) {
/* Set the configuration: speed + cs */
writel(flash->cr, &priv->regs->cr);
writel(flash->dcr, &priv->regs->dcr);
} else {
/* Set chip select */
clrsetbits_le32(&priv->regs->cr, STM32_QSPI_CR_FSEL,
priv->cs_used ? STM32_QSPI_CR_FSEL : 0);
/* Save the configuration: speed + cs */
flash->cr = readl(&priv->regs->cr);
flash->dcr = readl(&priv->regs->dcr);
flash->initialized = true;
}
}
setbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN);
return 0;
}
static int stm32_qspi_release_bus(struct udevice *dev)
{
struct stm32_qspi_priv *priv = dev_get_priv(dev->parent);
clrbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN);
return 0;
}
static int stm32_qspi_set_speed(struct udevice *bus, uint speed)
{
struct stm32_qspi_priv *priv = dev_get_priv(bus);
u32 qspi_clk = priv->clock_rate;
u32 prescaler = 255;
u32 csht;
int ret;
if (speed > 0) {
prescaler = 0;
if (qspi_clk) {
prescaler = DIV_ROUND_UP(qspi_clk, speed) - 1;
if (prescaler > 255)
prescaler = 255;
}
}
csht = DIV_ROUND_UP((5 * qspi_clk) / (prescaler + 1), 100000000);
csht = (csht - 1) & STM32_QSPI_DCR_CSHT_MASK;
ret = _stm32_qspi_wait_for_not_busy(priv);
if (ret)
return ret;
clrsetbits_le32(&priv->regs->cr,
STM32_QSPI_CR_PRESCALER_MASK <<
STM32_QSPI_CR_PRESCALER_SHIFT,
prescaler << STM32_QSPI_CR_PRESCALER_SHIFT);
clrsetbits_le32(&priv->regs->dcr,
STM32_QSPI_DCR_CSHT_MASK << STM32_QSPI_DCR_CSHT_SHIFT,
csht << STM32_QSPI_DCR_CSHT_SHIFT);
dev_dbg(bus, "regs=%p, speed=%d\n", priv->regs,
(qspi_clk / (prescaler + 1)));
return 0;
}
static int stm32_qspi_set_mode(struct udevice *bus, uint mode)
{
struct stm32_qspi_priv *priv = dev_get_priv(bus);
int ret;
const char *str_rx, *str_tx;
ret = _stm32_qspi_wait_for_not_busy(priv);
if (ret)
return ret;
if ((mode & SPI_CPHA) && (mode & SPI_CPOL))
setbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE);
else if (!(mode & SPI_CPHA) && !(mode & SPI_CPOL))
clrbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE);
else
return -ENODEV;
if (mode & SPI_CS_HIGH)
return -ENODEV;
if (mode & SPI_RX_QUAD)
str_rx = "quad";
else if (mode & SPI_RX_DUAL)
str_rx = "dual";
else
str_rx = "single";
if (mode & SPI_TX_QUAD)
str_tx = "quad";
else if (mode & SPI_TX_DUAL)
str_tx = "dual";
else
str_tx = "single";
dev_dbg(bus, "regs=%p, mode=%d rx: %s, tx: %s\n",
priv->regs, mode, str_rx, str_tx);
return 0;
}
static const struct spi_controller_mem_ops stm32_qspi_mem_ops = {
.exec_op = stm32_qspi_exec_op,
};
static const struct dm_spi_ops stm32_qspi_ops = {
.claim_bus = stm32_qspi_claim_bus,
.release_bus = stm32_qspi_release_bus,
.set_speed = stm32_qspi_set_speed,
.set_mode = stm32_qspi_set_mode,
.mem_ops = &stm32_qspi_mem_ops,
};
static const struct udevice_id stm32_qspi_ids[] = {
{ .compatible = "st,stm32f469-qspi" },
{ }
};
U_BOOT_DRIVER(stm32_qspi) = {
.name = "stm32_qspi",
.id = UCLASS_SPI,
.of_match = stm32_qspi_ids,
.ops = &stm32_qspi_ops,
.priv_auto = sizeof(struct stm32_qspi_priv),
.probe = stm32_qspi_probe,
};