u-boot/arch/mips/mach-octeon/cvmx-helper-fdt.c

971 lines
29 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 Marvell International Ltd.
*
* FDT Helper functions similar to those provided to U-Boot.
*/
#include <log.h>
#include <malloc.h>
#include <net.h>
#include <linux/delay.h>
#include <mach/cvmx-regs.h>
#include <mach/cvmx-csr.h>
#include <mach/cvmx-bootmem.h>
#include <mach/octeon-model.h>
#include <mach/octeon_fdt.h>
#include <mach/cvmx-helper.h>
#include <mach/cvmx-helper-board.h>
#include <mach/cvmx-helper-cfg.h>
#include <mach/cvmx-helper-fdt.h>
#include <mach/cvmx-helper-gpio.h>
/** Structure used to get type of GPIO from device tree */
struct gpio_compat {
char *compatible; /** Compatible string */
enum cvmx_gpio_type type; /** Type */
int8_t size; /** (max) Number of pins */
};
#define GPIO_REG_PCA953X_IN 0
#define GPIO_REG_PCA953X_OUT 1
#define GPIO_REG_PCA953X_INVERT 2
#define GPIO_REG_PCA953X_DIR 3
#define GPIO_REG_PCA957X_IN 0
#define GPIO_REG_PCA957X_INVERT 1
#define GPIO_REG_PCA957X_CFG 4
#define GPIO_REG_PCA957X_OUT 5
enum cvmx_i2c_mux_type { I2C_MUX, I2C_SWITCH };
/** Structure used to get type of GPIO from device tree */
struct mux_compat {
char *compatible; /** Compatible string */
enum cvmx_i2c_bus_type type; /** Mux chip type */
enum cvmx_i2c_mux_type mux_type; /** Type of mux */
u8 enable; /** Enable bit for mux */
u8 size; /** (max) Number of channels */
};
/**
* Local allocator to handle both SE and U-Boot that also zeroes out memory
*
* @param size number of bytes to allocate
*
* @return pointer to allocated memory or NULL if out of memory.
* Alignment is set to 8-bytes.
*/
void *__cvmx_fdt_alloc(size_t size)
{
return calloc(size, 1);
}
/**
* Free allocated memory.
*
* @param ptr pointer to memory to free
*
* NOTE: This only works in U-Boot since SE does not really have a freeing
* mechanism. In SE the memory is zeroed out.
*/
void __cvmx_fdt_free(void *ptr, size_t size)
{
free(ptr);
}
/**
* Look up a phandle and follow it to its node then return the offset of that
* node.
*
* @param[in] fdt_addr pointer to FDT blob
* @param node node to read phandle from
* @param[in] prop_name name of property to find
* @param[in,out] lenp Number of phandles, input max number
* @param[out] nodes Array of phandle nodes
*
* @return -ve error code on error or 0 for success
*/
int cvmx_fdt_lookup_phandles(const void *fdt_addr, int node,
const char *prop_name, int *lenp,
int *nodes)
{
const u32 *phandles;
int count;
int i;
phandles = fdt_getprop(fdt_addr, node, prop_name, &count);
if (!phandles || count < 0)
return -FDT_ERR_NOTFOUND;
count /= 4;
if (count > *lenp)
count = *lenp;
for (i = 0; i < count; i++)
nodes[i] = fdt_node_offset_by_phandle(fdt_addr,
fdt32_to_cpu(phandles[i]));
*lenp = count;
return 0;
}
/**
* Given a FDT node return the CPU node number
*
* @param[in] fdt_addr Address of FDT
* @param node FDT node number
*
* @return CPU node number or error if negative
*/
int cvmx_fdt_get_cpu_node(const void *fdt_addr, int node)
{
int parent = node;
const u32 *ranges;
int len = 0;
while (fdt_node_check_compatible(fdt_addr, parent, "simple-bus") != 0) {
parent = fdt_parent_offset(fdt_addr, parent);
if (parent < 0)
return parent;
}
ranges = fdt_getprop(fdt_addr, parent, "ranges", &len);
if (!ranges)
return len;
if (len == 0)
return 0;
if (len < 24)
return -FDT_ERR_TRUNCATED;
return fdt32_to_cpu(ranges[2]) / 0x10;
}
/**
* Get the total size of the flat device tree
*
* @param[in] fdt_addr Address of FDT
*
* @return Size of flat device tree in bytes or error if negative.
*/
int cvmx_fdt_get_fdt_size(const void *fdt_addr)
{
int rc;
rc = fdt_check_header(fdt_addr);
if (rc)
return rc;
return fdt_totalsize(fdt_addr);
}
/**
* Returns if a node is compatible with one of the items in the string list
*
* @param[in] fdt_addr Pointer to flat device tree
* @param node Node offset to check
* @param[in] strlist Array of FDT device compatibility strings,
* must end with NULL or empty string.
*
* @return 0 if at least one item matches, 1 if no matches
*/
int cvmx_fdt_node_check_compatible_list(const void *fdt_addr, int node, const char *const *strlist)
{
while (*strlist && **strlist) {
if (!fdt_node_check_compatible(fdt_addr, node, *strlist))
return 0;
strlist++;
}
return 1;
}
/**
* Given a FDT node, return the next compatible node.
*
* @param[in] fdt_addr Pointer to flat device tree
* @param start_offset Starting node offset or -1 to find the first
* @param strlist Array of FDT device compatibility strings, must
* end with NULL or empty string.
*
* @return next matching node or -1 if no more matches.
*/
int cvmx_fdt_node_offset_by_compatible_list(const void *fdt_addr, int startoffset,
const char *const *strlist)
{
int offset;
for (offset = fdt_next_node(fdt_addr, startoffset, NULL); offset >= 0;
offset = fdt_next_node(fdt_addr, offset, NULL)) {
if (!cvmx_fdt_node_check_compatible_list(fdt_addr, offset, strlist))
return offset;
}
return -1;
}
/**
* Attaches a PHY to a SFP or QSFP.
*
* @param sfp sfp to attach PHY to
* @param phy_info phy descriptor to attach or NULL to detach
*/
void cvmx_sfp_attach_phy(struct cvmx_fdt_sfp_info *sfp, struct cvmx_phy_info *phy_info)
{
sfp->phy_info = phy_info;
if (phy_info)
phy_info->sfp_info = sfp;
}
/**
* Assigns an IPD port to a SFP slot
*
* @param sfp Handle to SFP data structure
* @param ipd_port Port to assign it to
*
* @return 0 for success, -1 on error
*/
int cvmx_sfp_set_ipd_port(struct cvmx_fdt_sfp_info *sfp, int ipd_port)
{
int i;
if (sfp->is_qsfp) {
int xiface;
cvmx_helper_interface_mode_t mode;
xiface = cvmx_helper_get_interface_num(ipd_port);
mode = cvmx_helper_interface_get_mode(xiface);
sfp->ipd_port[0] = ipd_port;
switch (mode) {
case CVMX_HELPER_INTERFACE_MODE_SGMII:
case CVMX_HELPER_INTERFACE_MODE_XFI:
case CVMX_HELPER_INTERFACE_MODE_10G_KR:
for (i = 1; i < 4; i++)
sfp->ipd_port[i] = cvmx_helper_get_ipd_port(xiface, i);
break;
case CVMX_HELPER_INTERFACE_MODE_XLAUI:
case CVMX_HELPER_INTERFACE_MODE_40G_KR4:
sfp->ipd_port[0] = ipd_port;
for (i = 1; i < 4; i++)
sfp->ipd_port[i] = -1;
break;
default:
debug("%s: Interface mode %s for interface 0x%x, ipd_port %d not supported for QSFP\n",
__func__, cvmx_helper_interface_mode_to_string(mode), xiface,
ipd_port);
return -1;
}
} else {
sfp->ipd_port[0] = ipd_port;
for (i = 1; i < 4; i++)
sfp->ipd_port[i] = -1;
}
return 0;
}
/**
* Parses all of the channels assigned to a VSC7224 device
*
* @param[in] fdt_addr Address of flat device tree
* @param of_offset Offset of vsc7224 node
* @param[in,out] vsc7224 Data structure to hold the data
*
* @return 0 for success, -1 on error
*/
static int cvmx_fdt_parse_vsc7224_channels(const void *fdt_addr, int of_offset,
struct cvmx_vsc7224 *vsc7224)
{
int parent_offset = of_offset;
int err = 0;
int reg;
int num_chan = 0;
struct cvmx_vsc7224_chan *channel;
struct cvmx_fdt_sfp_info *sfp_info;
int len;
int num_taps;
int i;
const u32 *tap_values;
int of_mac;
int xiface, index;
bool is_tx;
bool is_qsfp;
const char *mac_str;
debug("%s(%p, %d, %s)\n", __func__, fdt_addr, of_offset, vsc7224->name);
do {
/* Walk through all channels */
of_offset = fdt_node_offset_by_compatible(fdt_addr, of_offset,
"vitesse,vsc7224-channel");
if (of_offset == -FDT_ERR_NOTFOUND) {
break;
} else if (of_offset < 0) {
debug("%s: Failed finding compatible channel\n",
__func__);
err = -1;
break;
}
if (fdt_parent_offset(fdt_addr, of_offset) != parent_offset)
break;
reg = cvmx_fdt_get_int(fdt_addr, of_offset, "reg", -1);
if (reg < 0 || reg > 3) {
debug("%s: channel reg is either not present or out of range\n",
__func__);
err = -1;
break;
}
is_tx = cvmx_fdt_get_bool(fdt_addr, of_offset, "direction-tx");
debug("%s(%s): Adding %cx channel %d\n",
__func__, vsc7224->name, is_tx ? 't' : 'r',
reg);
tap_values = (const uint32_t *)fdt_getprop(fdt_addr, of_offset, "taps", &len);
if (!tap_values) {
debug("%s: Error: no taps defined for vsc7224 channel %d\n",
__func__, reg);
err = -1;
break;
}
if (vsc7224->channel[reg]) {
debug("%s: Error: channel %d already assigned at %p\n",
__func__, reg,
vsc7224->channel[reg]);
err = -1;
break;
}
if (len % 16) {
debug("%s: Error: tap format error for channel %d\n",
__func__, reg);
err = -1;
break;
}
num_taps = len / 16;
debug("%s: Adding %d taps\n", __func__, num_taps);
channel = __cvmx_fdt_alloc(sizeof(*channel) +
num_taps * sizeof(struct cvmx_vsc7224_tap));
if (!channel) {
debug("%s: Out of memory\n", __func__);
err = -1;
break;
}
vsc7224->channel[reg] = channel;
channel->num_taps = num_taps;
channel->lane = reg;
channel->of_offset = of_offset;
channel->is_tx = is_tx;
channel->pretap_disable = cvmx_fdt_get_bool(fdt_addr, of_offset, "pretap-disable");
channel->posttap_disable =
cvmx_fdt_get_bool(fdt_addr, of_offset, "posttap-disable");
channel->vsc7224 = vsc7224;
/* Read all the tap values */
for (i = 0; i < num_taps; i++) {
channel->taps[i].len = fdt32_to_cpu(tap_values[i * 4 + 0]);
channel->taps[i].main_tap = fdt32_to_cpu(tap_values[i * 4 + 1]);
channel->taps[i].pre_tap = fdt32_to_cpu(tap_values[i * 4 + 2]);
channel->taps[i].post_tap = fdt32_to_cpu(tap_values[i * 4 + 3]);
debug("%s: tap %d: len: %d, main_tap: 0x%x, pre_tap: 0x%x, post_tap: 0x%x\n",
__func__, i, channel->taps[i].len, channel->taps[i].main_tap,
channel->taps[i].pre_tap, channel->taps[i].post_tap);
}
/* Now find out which interface it's mapped to */
channel->ipd_port = -1;
mac_str = "sfp-mac";
if (fdt_getprop(fdt_addr, of_offset, mac_str, NULL)) {
is_qsfp = false;
} else if (fdt_getprop(fdt_addr, of_offset, "qsfp-mac", NULL)) {
is_qsfp = true;
mac_str = "qsfp-mac";
} else {
debug("%s: Error: MAC not found for %s channel %d\n", __func__,
vsc7224->name, reg);
return -1;
}
of_mac = cvmx_fdt_lookup_phandle(fdt_addr, of_offset, mac_str);
if (of_mac < 0) {
debug("%s: Error %d with MAC %s phandle for %s\n", __func__, of_mac,
mac_str, vsc7224->name);
return -1;
}
debug("%s: Found mac at offset %d\n", __func__, of_mac);
err = cvmx_helper_cfg_get_xiface_index_by_fdt_node_offset(of_mac, &xiface, &index);
if (!err) {
channel->xiface = xiface;
channel->index = index;
channel->ipd_port = cvmx_helper_get_ipd_port(xiface, index);
debug("%s: Found MAC, xiface: 0x%x, index: %d, ipd port: %d\n", __func__,
xiface, index, channel->ipd_port);
if (channel->ipd_port >= 0) {
cvmx_helper_cfg_set_vsc7224_chan_info(xiface, index, channel);
debug("%s: Storing config channel for xiface 0x%x, index %d\n",
__func__, xiface, index);
}
sfp_info = cvmx_helper_cfg_get_sfp_info(xiface, index);
if (!sfp_info) {
debug("%s: Warning: no (Q)SFP+ slot found for xinterface 0x%x, index %d for channel %d\n",
__func__, xiface, index, channel->lane);
continue;
}
/* Link it */
channel->next = sfp_info->vsc7224_chan;
if (sfp_info->vsc7224_chan)
sfp_info->vsc7224_chan->prev = channel;
sfp_info->vsc7224_chan = channel;
sfp_info->is_vsc7224 = true;
debug("%s: Registering VSC7224 %s channel %d with SFP %s\n", __func__,
vsc7224->name, channel->lane, sfp_info->name);
if (!sfp_info->mod_abs_changed) {
debug("%s: Registering cvmx_sfp_vsc7224_mod_abs_changed at %p for xinterface 0x%x, index %d\n",
__func__, &cvmx_sfp_vsc7224_mod_abs_changed, xiface, index);
cvmx_sfp_register_mod_abs_changed(
sfp_info,
&cvmx_sfp_vsc7224_mod_abs_changed,
NULL);
}
}
} while (!err && num_chan < 4);
return err;
}
/**
* @INTERNAL
* Parses all instances of the Vitesse VSC7224 reclocking chip
*
* @param[in] fdt_addr Address of flat device tree
*
* @return 0 for success, error otherwise
*/
int __cvmx_fdt_parse_vsc7224(const void *fdt_addr)
{
int of_offset = -1;
struct cvmx_vsc7224 *vsc7224 = NULL;
struct cvmx_fdt_gpio_info *gpio_info = NULL;
int err = 0;
int of_parent;
static bool parsed;
debug("%s(%p)\n", __func__, fdt_addr);
if (parsed) {
debug("%s: Already parsed\n", __func__);
return 0;
}
do {
of_offset = fdt_node_offset_by_compatible(fdt_addr, of_offset,
"vitesse,vsc7224");
debug("%s: of_offset: %d\n", __func__, of_offset);
if (of_offset == -FDT_ERR_NOTFOUND) {
break;
} else if (of_offset < 0) {
err = -1;
debug("%s: Error %d parsing FDT\n",
__func__, of_offset);
break;
}
vsc7224 = __cvmx_fdt_alloc(sizeof(*vsc7224));
if (!vsc7224) {
debug("%s: Out of memory!\n", __func__);
return -1;
}
vsc7224->of_offset = of_offset;
vsc7224->i2c_addr = cvmx_fdt_get_int(fdt_addr, of_offset,
"reg", -1);
of_parent = fdt_parent_offset(fdt_addr, of_offset);
vsc7224->i2c_bus = cvmx_fdt_get_i2c_bus(fdt_addr, of_parent);
if (vsc7224->i2c_addr < 0) {
debug("%s: Error: reg field missing\n", __func__);
err = -1;
break;
}
if (!vsc7224->i2c_bus) {
debug("%s: Error getting i2c bus\n", __func__);
err = -1;
break;
}
vsc7224->name = fdt_get_name(fdt_addr, of_offset, NULL);
debug("%s: Adding %s\n", __func__, vsc7224->name);
if (fdt_getprop(fdt_addr, of_offset, "reset", NULL)) {
gpio_info = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "reset");
vsc7224->reset_gpio = gpio_info;
}
if (fdt_getprop(fdt_addr, of_offset, "los", NULL)) {
gpio_info = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "los");
vsc7224->los_gpio = gpio_info;
}
debug("%s: Parsing channels\n", __func__);
err = cvmx_fdt_parse_vsc7224_channels(fdt_addr, of_offset, vsc7224);
if (err) {
debug("%s: Error parsing VSC7224 channels\n", __func__);
break;
}
} while (of_offset > 0);
if (err) {
debug("%s(): Error\n", __func__);
if (vsc7224) {
if (vsc7224->reset_gpio)
__cvmx_fdt_free(vsc7224->reset_gpio, sizeof(*vsc7224->reset_gpio));
if (vsc7224->los_gpio)
__cvmx_fdt_free(vsc7224->los_gpio, sizeof(*vsc7224->los_gpio));
if (vsc7224->i2c_bus)
cvmx_fdt_free_i2c_bus(vsc7224->i2c_bus);
__cvmx_fdt_free(vsc7224, sizeof(*vsc7224));
}
}
if (!err)
parsed = true;
return err;
}
/**
* @INTERNAL
* Parses all instances of the Avago AVSP5410 gearbox phy
*
* @param[in] fdt_addr Address of flat device tree
*
* @return 0 for success, error otherwise
*/
int __cvmx_fdt_parse_avsp5410(const void *fdt_addr)
{
int of_offset = -1;
struct cvmx_avsp5410 *avsp5410 = NULL;
struct cvmx_fdt_sfp_info *sfp_info;
int err = 0;
int of_parent;
static bool parsed;
int of_mac;
int xiface, index;
bool is_qsfp;
const char *mac_str;
debug("%s(%p)\n", __func__, fdt_addr);
if (parsed) {
debug("%s: Already parsed\n", __func__);
return 0;
}
do {
of_offset = fdt_node_offset_by_compatible(fdt_addr, of_offset,
"avago,avsp-5410");
debug("%s: of_offset: %d\n", __func__, of_offset);
if (of_offset == -FDT_ERR_NOTFOUND) {
break;
} else if (of_offset < 0) {
err = -1;
debug("%s: Error %d parsing FDT\n", __func__, of_offset);
break;
}
avsp5410 = __cvmx_fdt_alloc(sizeof(*avsp5410));
if (!avsp5410) {
debug("%s: Out of memory!\n", __func__);
return -1;
}
avsp5410->of_offset = of_offset;
avsp5410->i2c_addr = cvmx_fdt_get_int(fdt_addr, of_offset,
"reg", -1);
of_parent = fdt_parent_offset(fdt_addr, of_offset);
avsp5410->i2c_bus = cvmx_fdt_get_i2c_bus(fdt_addr, of_parent);
if (avsp5410->i2c_addr < 0) {
debug("%s: Error: reg field missing\n", __func__);
err = -1;
break;
}
if (!avsp5410->i2c_bus) {
debug("%s: Error getting i2c bus\n", __func__);
err = -1;
break;
}
avsp5410->name = fdt_get_name(fdt_addr, of_offset, NULL);
debug("%s: Adding %s\n", __func__, avsp5410->name);
/* Now find out which interface it's mapped to */
avsp5410->ipd_port = -1;
mac_str = "sfp-mac";
if (fdt_getprop(fdt_addr, of_offset, mac_str, NULL)) {
is_qsfp = false;
} else if (fdt_getprop(fdt_addr, of_offset, "qsfp-mac", NULL)) {
is_qsfp = true;
mac_str = "qsfp-mac";
} else {
debug("%s: Error: MAC not found for %s\n", __func__, avsp5410->name);
return -1;
}
of_mac = cvmx_fdt_lookup_phandle(fdt_addr, of_offset, mac_str);
if (of_mac < 0) {
debug("%s: Error %d with MAC %s phandle for %s\n", __func__, of_mac,
mac_str, avsp5410->name);
return -1;
}
debug("%s: Found mac at offset %d\n", __func__, of_mac);
err = cvmx_helper_cfg_get_xiface_index_by_fdt_node_offset(of_mac, &xiface, &index);
if (!err) {
avsp5410->xiface = xiface;
avsp5410->index = index;
avsp5410->ipd_port = cvmx_helper_get_ipd_port(xiface, index);
debug("%s: Found MAC, xiface: 0x%x, index: %d, ipd port: %d\n", __func__,
xiface, index, avsp5410->ipd_port);
if (avsp5410->ipd_port >= 0) {
cvmx_helper_cfg_set_avsp5410_info(xiface, index, avsp5410);
debug("%s: Storing config phy for xiface 0x%x, index %d\n",
__func__, xiface, index);
}
sfp_info = cvmx_helper_cfg_get_sfp_info(xiface, index);
if (!sfp_info) {
debug("%s: Warning: no (Q)SFP+ slot found for xinterface 0x%x, index %d\n",
__func__, xiface, index);
continue;
}
sfp_info->is_avsp5410 = true;
sfp_info->avsp5410 = avsp5410;
debug("%s: Registering AVSP5410 %s with SFP %s\n", __func__, avsp5410->name,
sfp_info->name);
if (!sfp_info->mod_abs_changed) {
debug("%s: Registering cvmx_sfp_avsp5410_mod_abs_changed at %p for xinterface 0x%x, index %d\n",
__func__, &cvmx_sfp_avsp5410_mod_abs_changed, xiface, index);
cvmx_sfp_register_mod_abs_changed(
sfp_info,
&cvmx_sfp_avsp5410_mod_abs_changed,
NULL);
}
}
} while (of_offset > 0);
if (err) {
debug("%s(): Error\n", __func__);
if (avsp5410) {
if (avsp5410->i2c_bus)
cvmx_fdt_free_i2c_bus(avsp5410->i2c_bus);
__cvmx_fdt_free(avsp5410, sizeof(*avsp5410));
}
}
if (!err)
parsed = true;
return err;
}
/**
* Parse QSFP GPIOs for SFP
*
* @param[in] fdt_addr Pointer to flat device tree
* @param of_offset Offset of QSFP node
* @param[out] sfp_info Pointer to sfp info to fill in
*
* @return 0 for success
*/
static int cvmx_parse_qsfp(const void *fdt_addr, int of_offset, struct cvmx_fdt_sfp_info *sfp_info)
{
sfp_info->select = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "select");
sfp_info->mod_abs = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "mod_prs");
sfp_info->reset = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "reset");
sfp_info->interrupt = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "interrupt");
sfp_info->lp_mode = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "lp_mode");
return 0;
}
/**
* Parse SFP GPIOs for SFP
*
* @param[in] fdt_addr Pointer to flat device tree
* @param of_offset Offset of SFP node
* @param[out] sfp_info Pointer to sfp info to fill in
*
* @return 0 for success
*/
static int cvmx_parse_sfp(const void *fdt_addr, int of_offset, struct cvmx_fdt_sfp_info *sfp_info)
{
sfp_info->mod_abs = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "mod_abs");
sfp_info->rx_los = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "rx_los");
sfp_info->tx_disable = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "tx_disable");
sfp_info->tx_error = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "tx_error");
return 0;
}
/**
* Parse SFP/QSFP EEPROM and diag
*
* @param[in] fdt_addr Pointer to flat device tree
* @param of_offset Offset of SFP node
* @param[out] sfp_info Pointer to sfp info to fill in
*
* @return 0 for success, -1 on error
*/
static int cvmx_parse_sfp_eeprom(const void *fdt_addr, int of_offset,
struct cvmx_fdt_sfp_info *sfp_info)
{
int of_eeprom;
int of_diag;
debug("%s(%p, %d, %s)\n", __func__, fdt_addr, of_offset, sfp_info->name);
of_eeprom = cvmx_fdt_lookup_phandle(fdt_addr, of_offset, "eeprom");
if (of_eeprom < 0) {
debug("%s: Missing \"eeprom\" from device tree for %s\n", __func__, sfp_info->name);
return -1;
}
sfp_info->i2c_bus = cvmx_fdt_get_i2c_bus(fdt_addr, fdt_parent_offset(fdt_addr, of_eeprom));
sfp_info->i2c_eeprom_addr = cvmx_fdt_get_int(fdt_addr, of_eeprom, "reg", 0x50);
debug("%s(%p, %d, %s, %d)\n", __func__, fdt_addr, of_offset, sfp_info->name,
sfp_info->i2c_eeprom_addr);
if (!sfp_info->i2c_bus) {
debug("%s: Error: could not determine i2c bus for eeprom for %s\n", __func__,
sfp_info->name);
return -1;
}
of_diag = cvmx_fdt_lookup_phandle(fdt_addr, of_offset, "diag");
if (of_diag >= 0)
sfp_info->i2c_diag_addr = cvmx_fdt_get_int(fdt_addr, of_diag, "reg", 0x51);
else
sfp_info->i2c_diag_addr = 0x51;
return 0;
}
/**
* Parse SFP information from device tree
*
* @param[in] fdt_addr Address of flat device tree
*
* @return pointer to sfp info or NULL if error
*/
struct cvmx_fdt_sfp_info *cvmx_helper_fdt_parse_sfp_info(const void *fdt_addr, int of_offset)
{
struct cvmx_fdt_sfp_info *sfp_info = NULL;
int err = -1;
bool is_qsfp;
if (!fdt_node_check_compatible(fdt_addr, of_offset, "ethernet,sfp-slot")) {
is_qsfp = false;
} else if (!fdt_node_check_compatible(fdt_addr, of_offset, "ethernet,qsfp-slot")) {
is_qsfp = true;
} else {
debug("%s: Error: incompatible sfp/qsfp slot, compatible=%s\n", __func__,
(char *)fdt_getprop(fdt_addr, of_offset, "compatible", NULL));
goto error_exit;
}
debug("%s: %ssfp module found at offset %d\n", __func__, is_qsfp ? "q" : "", of_offset);
sfp_info = __cvmx_fdt_alloc(sizeof(*sfp_info));
if (!sfp_info) {
debug("%s: Error: out of memory\n", __func__);
goto error_exit;
}
sfp_info->name = fdt_get_name(fdt_addr, of_offset, NULL);
sfp_info->of_offset = of_offset;
sfp_info->is_qsfp = is_qsfp;
sfp_info->last_mod_abs = -1;
sfp_info->last_rx_los = -1;
if (is_qsfp)
err = cvmx_parse_qsfp(fdt_addr, of_offset, sfp_info);
else
err = cvmx_parse_sfp(fdt_addr, of_offset, sfp_info);
if (err) {
debug("%s: Error in %s parsing %ssfp GPIO info\n", __func__, sfp_info->name,
is_qsfp ? "q" : "");
goto error_exit;
}
debug("%s: Parsing %ssfp module eeprom\n", __func__, is_qsfp ? "q" : "");
err = cvmx_parse_sfp_eeprom(fdt_addr, of_offset, sfp_info);
if (err) {
debug("%s: Error parsing eeprom info for %s\n", __func__, sfp_info->name);
goto error_exit;
}
/* Register default check for mod_abs changed */
if (!err)
cvmx_sfp_register_check_mod_abs(sfp_info, cvmx_sfp_check_mod_abs, NULL);
error_exit:
/* Note: we don't free any data structures on error since it gets
* rather complicated with i2c buses and whatnot.
*/
return err ? NULL : sfp_info;
}
/**
* @INTERNAL
* Parse a slice of the Inphi/Cortina CS4343 in the device tree
*
* @param[in] fdt_addr Address of flat device tree
* @param of_offset fdt offset of slice
* @param phy_info phy_info data structure
*
* @return slice number if non-negative, otherwise error
*/
static int cvmx_fdt_parse_cs4343_slice(const void *fdt_addr, int of_offset,
struct cvmx_phy_info *phy_info)
{
struct cvmx_cs4343_slice_info *slice;
int reg;
int reg_offset;
reg = cvmx_fdt_get_int(fdt_addr, of_offset, "reg", -1);
reg_offset = cvmx_fdt_get_int(fdt_addr, of_offset, "slice_offset", -1);
if (reg < 0 || reg >= 4) {
debug("%s(%p, %d, %p): Error: reg %d undefined or out of range\n", __func__,
fdt_addr, of_offset, phy_info, reg);
return -1;
}
if (reg_offset % 0x1000 || reg_offset > 0x3000 || reg_offset < 0) {
debug("%s(%p, %d, %p): Error: reg_offset 0x%x undefined or out of range\n",
__func__, fdt_addr, of_offset, phy_info, reg_offset);
return -1;
}
if (!phy_info->cs4343_info) {
debug("%s: Error: phy info cs4343 datastructure is NULL\n", __func__);
return -1;
}
debug("%s(%p, %d, %p): %s, reg: %d, slice offset: 0x%x\n", __func__, fdt_addr, of_offset,
phy_info, fdt_get_name(fdt_addr, of_offset, NULL), reg, reg_offset);
slice = &phy_info->cs4343_info->slice[reg];
slice->name = fdt_get_name(fdt_addr, of_offset, NULL);
slice->mphy = phy_info->cs4343_info;
slice->phy_info = phy_info;
slice->of_offset = of_offset;
slice->slice_no = reg;
slice->reg_offset = reg_offset;
/* SR settings */
slice->sr_stx_cmode_res = cvmx_fdt_get_int(fdt_addr, of_offset, "sr-stx-cmode-res", 3);
slice->sr_stx_drv_lower_cm =
cvmx_fdt_get_int(fdt_addr, of_offset, "sr-stx-drv-lower-cm", 8);
slice->sr_stx_level = cvmx_fdt_get_int(fdt_addr, of_offset, "sr-stx-level", 0x1c);
slice->sr_stx_pre_peak = cvmx_fdt_get_int(fdt_addr, of_offset, "sr-stx-pre-peak", 1);
slice->sr_stx_muxsubrate_sel =
cvmx_fdt_get_int(fdt_addr, of_offset, "sr-stx-muxsubrate-sel", 0);
slice->sr_stx_post_peak = cvmx_fdt_get_int(fdt_addr, of_offset, "sr-stx-post-peak", 8);
/* CX settings */
slice->cx_stx_cmode_res = cvmx_fdt_get_int(fdt_addr, of_offset, "cx-stx-cmode-res", 3);
slice->cx_stx_drv_lower_cm =
cvmx_fdt_get_int(fdt_addr, of_offset, "cx-stx-drv-lower-cm", 8);
slice->cx_stx_level = cvmx_fdt_get_int(fdt_addr, of_offset, "cx-stx-level", 0x1c);
slice->cx_stx_pre_peak = cvmx_fdt_get_int(fdt_addr, of_offset, "cx-stx-pre-peak", 1);
slice->cx_stx_muxsubrate_sel =
cvmx_fdt_get_int(fdt_addr, of_offset, "cx-stx-muxsubrate-sel", 0);
slice->cx_stx_post_peak = cvmx_fdt_get_int(fdt_addr, of_offset, "cx-stx-post-peak", 0xC);
/* 1000Base-X settings */
/* CX settings */
slice->basex_stx_cmode_res =
cvmx_fdt_get_int(fdt_addr, of_offset, "basex-stx-cmode-res", 3);
slice->basex_stx_drv_lower_cm =
cvmx_fdt_get_int(fdt_addr, of_offset, "basex-stx-drv-lower-cm", 8);
slice->basex_stx_level = cvmx_fdt_get_int(fdt_addr, of_offset,
"basex-stx-level", 0x1c);
slice->basex_stx_pre_peak = cvmx_fdt_get_int(fdt_addr, of_offset,
"basex-stx-pre-peak", 1);
slice->basex_stx_muxsubrate_sel =
cvmx_fdt_get_int(fdt_addr, of_offset,
"basex-stx-muxsubrate-sel", 0);
slice->basex_stx_post_peak =
cvmx_fdt_get_int(fdt_addr, of_offset, "basex-stx-post-peak", 8);
/* Get the link LED gpio pin */
slice->link_gpio = cvmx_fdt_get_int(fdt_addr, of_offset,
"link-led-gpio", -1);
slice->error_gpio = cvmx_fdt_get_int(fdt_addr, of_offset,
"error-led-gpio", -1);
slice->los_gpio = cvmx_fdt_get_int(fdt_addr, of_offset,
"los-input-gpio", -1);
slice->link_inverted = cvmx_fdt_get_bool(fdt_addr, of_offset,
"link-led-gpio-inverted");
slice->error_inverted = cvmx_fdt_get_bool(fdt_addr, of_offset,
"error-led-gpio-inverted");
slice->los_inverted = cvmx_fdt_get_bool(fdt_addr, of_offset,
"los-input-gpio-inverted");
/* Convert GPIOs to be die based if they're not already */
if (slice->link_gpio > 4 && slice->link_gpio <= 8)
slice->link_gpio -= 4;
if (slice->error_gpio > 4 && slice->error_gpio <= 8)
slice->error_gpio -= 4;
if (slice->los_gpio > 4 && slice->los_gpio <= 8)
slice->los_gpio -= 4;
return reg;
}
/**
* @INTERNAL
* Parses either a CS4343 phy or a slice of the phy from the device tree
* @param[in] fdt_addr Address of FDT
* @param of_offset offset of slice or phy in device tree
* @param phy_info phy_info data structure to fill in
*
* @return 0 for success, -1 on error
*/
int cvmx_fdt_parse_cs4343(const void *fdt_addr, int of_offset, struct cvmx_phy_info *phy_info)
{
int of_slice = -1;
struct cvmx_cs4343_info *cs4343;
int err = -1;
int reg;
debug("%s(%p, %d, %p): %s (%s)\n", __func__,
fdt_addr, of_offset, phy_info,
fdt_get_name(fdt_addr, of_offset, NULL),
(const char *)fdt_getprop(fdt_addr, of_offset, "compatible", NULL));
if (!phy_info->cs4343_info)
phy_info->cs4343_info = __cvmx_fdt_alloc(sizeof(struct cvmx_cs4343_info));
if (!phy_info->cs4343_info) {
debug("%s: Error: out of memory!\n", __func__);
return -1;
}
cs4343 = phy_info->cs4343_info;
/* If we're passed to a slice then process only that slice */
if (!fdt_node_check_compatible(fdt_addr, of_offset, "cortina,cs4343-slice")) {
err = 0;
of_slice = of_offset;
of_offset = fdt_parent_offset(fdt_addr, of_offset);
reg = cvmx_fdt_parse_cs4343_slice(fdt_addr, of_slice, phy_info);
if (reg >= 0)
phy_info->cs4343_slice_info = &cs4343->slice[reg];
else
err = reg;
} else if (!fdt_node_check_compatible(fdt_addr, of_offset,
"cortina,cs4343")) {
/* Walk through and process all of the slices */
of_slice =
fdt_node_offset_by_compatible(fdt_addr, of_offset, "cortina,cs4343-slice");
while (of_slice > 0 && fdt_parent_offset(fdt_addr, of_slice) ==
of_offset) {
debug("%s: Parsing slice %s\n", __func__,
fdt_get_name(fdt_addr, of_slice, NULL));
err = cvmx_fdt_parse_cs4343_slice(fdt_addr, of_slice,
phy_info);
if (err < 0)
break;
of_slice = fdt_node_offset_by_compatible(fdt_addr,
of_slice,
"cortina,cs4343-slice");
}
} else {
debug("%s: Error: unknown compatible string %s for %s\n", __func__,
(const char *)fdt_getprop(fdt_addr, of_offset,
"compatible", NULL),
fdt_get_name(fdt_addr, of_offset, NULL));
}
if (err >= 0) {
cs4343->name = fdt_get_name(fdt_addr, of_offset, NULL);
cs4343->phy_info = phy_info;
cs4343->of_offset = of_offset;
}
return err < 0 ? -1 : 0;
}