u-boot/arch/arm/cpu/armv7/omap-common/clocks-common.c

787 lines
21 KiB
C
Raw Normal View History

/*
*
* Clock initialization for OMAP4
*
* (C) Copyright 2010
* Texas Instruments, <www.ti.com>
*
* Aneesh V <aneesh@ti.com>
*
* Based on previous work by:
* Santosh Shilimkar <santosh.shilimkar@ti.com>
* Rajendra Nayak <rnayak@ti.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <i2c.h>
#include <asm/omap_common.h>
#include <asm/gpio.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <asm/utils.h>
#include <asm/omap_gpio.h>
#include <asm/emif.h>
#ifndef CONFIG_SPL_BUILD
/*
* printing to console doesn't work unless
* this code is executed from SPL
*/
#define printf(fmt, args...)
#define puts(s)
#endif
const u32 sys_clk_array[8] = {
12000000, /* 12 MHz */
20000000, /* 20 MHz */
16800000, /* 16.8 MHz */
19200000, /* 19.2 MHz */
26000000, /* 26 MHz */
27000000, /* 27 MHz */
38400000, /* 38.4 MHz */
};
static inline u32 __get_sys_clk_index(void)
{
s8 ind;
/*
* For ES1 the ROM code calibration of sys clock is not reliable
* due to hw issue. So, use hard-coded value. If this value is not
* correct for any board over-ride this function in board file
* From ES2.0 onwards you will get this information from
* CM_SYS_CLKSEL
*/
if (omap_revision() == OMAP4430_ES1_0)
ind = OMAP_SYS_CLK_IND_38_4_MHZ;
else {
/* SYS_CLKSEL - 1 to match the dpll param array indices */
ind = (readl((*prcm)->cm_sys_clksel) &
CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1;
}
return ind;
}
u32 get_sys_clk_index(void)
__attribute__ ((weak, alias("__get_sys_clk_index")));
u32 get_sys_clk_freq(void)
{
u8 index = get_sys_clk_index();
return sys_clk_array[index];
}
void setup_post_dividers(u32 const base, const struct dpll_params *params)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
/* Setup post-dividers */
if (params->m2 >= 0)
writel(params->m2, &dpll_regs->cm_div_m2_dpll);
if (params->m3 >= 0)
writel(params->m3, &dpll_regs->cm_div_m3_dpll);
if (params->m4_h11 >= 0)
writel(params->m4_h11, &dpll_regs->cm_div_m4_h11_dpll);
if (params->m5_h12 >= 0)
writel(params->m5_h12, &dpll_regs->cm_div_m5_h12_dpll);
if (params->m6_h13 >= 0)
writel(params->m6_h13, &dpll_regs->cm_div_m6_h13_dpll);
if (params->m7_h14 >= 0)
writel(params->m7_h14, &dpll_regs->cm_div_m7_h14_dpll);
if (params->h21 >= 0)
writel(params->h21, &dpll_regs->cm_div_h21_dpll);
if (params->h22 >= 0)
writel(params->h22, &dpll_regs->cm_div_h22_dpll);
if (params->h23 >= 0)
writel(params->h23, &dpll_regs->cm_div_h23_dpll);
if (params->h24 >= 0)
writel(params->h24, &dpll_regs->cm_div_h24_dpll);
}
static inline void do_bypass_dpll(u32 const base)
{
struct dpll_regs *dpll_regs = (struct dpll_regs *)base;
clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
CM_CLKMODE_DPLL_DPLL_EN_MASK,
DPLL_EN_FAST_RELOCK_BYPASS <<
CM_CLKMODE_DPLL_EN_SHIFT);
}
static inline void wait_for_bypass(u32 const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll,
LDELAY)) {
printf("Bypassing DPLL failed %x\n", base);
}
}
static inline void do_lock_dpll(u32 const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
CM_CLKMODE_DPLL_DPLL_EN_MASK,
DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT);
}
static inline void wait_for_lock(u32 const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK,
&dpll_regs->cm_idlest_dpll, LDELAY)) {
printf("DPLL locking failed for %x\n", base);
hang();
}
}
inline u32 check_for_lock(u32 const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
u32 lock = readl(&dpll_regs->cm_idlest_dpll) & ST_DPLL_CLK_MASK;
return lock;
}
const struct dpll_params *get_mpu_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->mpu[sysclk_ind];
}
const struct dpll_params *get_core_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->core[sysclk_ind];
}
const struct dpll_params *get_per_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->per[sysclk_ind];
}
const struct dpll_params *get_iva_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->iva[sysclk_ind];
}
const struct dpll_params *get_usb_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->usb[sysclk_ind];
}
const struct dpll_params *get_abe_dpll_params(struct dplls const *dpll_data)
{
#ifdef CONFIG_SYS_OMAP_ABE_SYSCK
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->abe[sysclk_ind];
#else
return dpll_data->abe;
#endif
}
static const struct dpll_params *get_ddr_dpll_params
(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
if (!dpll_data->ddr)
return NULL;
return &dpll_data->ddr[sysclk_ind];
}
#ifdef CONFIG_DRIVER_TI_CPSW
static const struct dpll_params *get_gmac_dpll_params
(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
if (!dpll_data->gmac)
return NULL;
return &dpll_data->gmac[sysclk_ind];
}
#endif
static void do_setup_dpll(u32 const base, const struct dpll_params *params,
u8 lock, char *dpll)
{
u32 temp, M, N;
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
if (!params)
return;
temp = readl(&dpll_regs->cm_clksel_dpll);
if (check_for_lock(base)) {
/*
* The Dpll has already been locked by rom code using CH.
* Check if M,N are matching with Ideal nominal opp values.
* If matches, skip the rest otherwise relock.
*/
M = (temp & CM_CLKSEL_DPLL_M_MASK) >> CM_CLKSEL_DPLL_M_SHIFT;
N = (temp & CM_CLKSEL_DPLL_N_MASK) >> CM_CLKSEL_DPLL_N_SHIFT;
if ((M != (params->m)) || (N != (params->n))) {
debug("\n %s Dpll locked, but not for ideal M = %d,"
"N = %d values, current values are M = %d,"
"N= %d" , dpll, params->m, params->n,
M, N);
} else {
/* Dpll locked with ideal values for nominal opps. */
debug("\n %s Dpll already locked with ideal"
"nominal opp values", dpll);
goto setup_post_dividers;
}
}
bypass_dpll(base);
/* Set M & N */
temp &= ~CM_CLKSEL_DPLL_M_MASK;
temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK;
temp &= ~CM_CLKSEL_DPLL_N_MASK;
temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK;
writel(temp, &dpll_regs->cm_clksel_dpll);
/* Lock */
if (lock)
do_lock_dpll(base);
setup_post_dividers:
setup_post_dividers(base, params);
/* Wait till the DPLL locks */
if (lock)
wait_for_lock(base);
}
u32 omap_ddr_clk(void)
{
u32 ddr_clk, sys_clk_khz, omap_rev, divider;
const struct dpll_params *core_dpll_params;
omap_rev = omap_revision();
sys_clk_khz = get_sys_clk_freq() / 1000;
core_dpll_params = get_core_dpll_params(*dplls_data);
debug("sys_clk %d\n ", sys_clk_khz * 1000);
/* Find Core DPLL locked frequency first */
ddr_clk = sys_clk_khz * 2 * core_dpll_params->m /
(core_dpll_params->n + 1);
if (omap_rev < OMAP5430_ES1_0) {
/*
* DDR frequency is PHY_ROOT_CLK/2
* PHY_ROOT_CLK = Fdpll/2/M2
*/
divider = 4;
} else {
/*
* DDR frequency is PHY_ROOT_CLK
* PHY_ROOT_CLK = Fdpll/2/M2
*/
divider = 2;
}
ddr_clk = ddr_clk / divider / core_dpll_params->m2;
ddr_clk *= 1000; /* convert to Hz */
debug("ddr_clk %d\n ", ddr_clk);
return ddr_clk;
}
/*
* Lock MPU dpll
*
* Resulting MPU frequencies:
* 4430 ES1.0 : 600 MHz
* 4430 ES2.x : 792 MHz (OPP Turbo)
* 4460 : 920 MHz (OPP Turbo) - DCC disabled
*/
void configure_mpu_dpll(void)
{
const struct dpll_params *params;
struct dpll_regs *mpu_dpll_regs;
u32 omap_rev;
omap_rev = omap_revision();
/*
* DCC and clock divider settings for 4460.
* DCC is required, if more than a certain frequency is required.
* For, 4460 > 1GHZ.
* 5430 > 1.4GHZ.
*/
if ((omap_rev >= OMAP4460_ES1_0) && (omap_rev < OMAP5430_ES1_0)) {
mpu_dpll_regs =
(struct dpll_regs *)((*prcm)->cm_clkmode_dpll_mpu);
bypass_dpll((*prcm)->cm_clkmode_dpll_mpu);
clrbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK);
setbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK);
clrbits_le32(&mpu_dpll_regs->cm_clksel_dpll,
CM_CLKSEL_DCC_EN_MASK);
}
params = get_mpu_dpll_params(*dplls_data);
do_setup_dpll((*prcm)->cm_clkmode_dpll_mpu, params, DPLL_LOCK, "mpu");
debug("MPU DPLL locked\n");
}
#if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP)
static void setup_usb_dpll(void)
{
const struct dpll_params *params;
u32 sys_clk_khz, sd_div, num, den;
sys_clk_khz = get_sys_clk_freq() / 1000;
/*
* USB:
* USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction
* DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250)
* - where CLKINP is sys_clk in MHz
* Use CLKINP in KHz and adjust the denominator accordingly so
* that we have enough accuracy and at the same time no overflow
*/
params = get_usb_dpll_params(*dplls_data);
num = params->m * sys_clk_khz;
den = (params->n + 1) * 250 * 1000;
num += den - 1;
sd_div = num / den;
clrsetbits_le32((*prcm)->cm_clksel_dpll_usb,
CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK,
sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT);
/* Now setup the dpll with the regular function */
do_setup_dpll((*prcm)->cm_clkmode_dpll_usb, params, DPLL_LOCK, "usb");
}
#endif
static void setup_dplls(void)
{
u32 temp;
const struct dpll_params *params;
debug("setup_dplls\n");
/* CORE dpll */
params = get_core_dpll_params(*dplls_data); /* default - safest */
/*
* Do not lock the core DPLL now. Just set it up.
* Core DPLL will be locked after setting up EMIF
* using the FREQ_UPDATE method(freq_update_core())
*/
if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
DPLL_NO_LOCK, "core");
else
do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
DPLL_LOCK, "core");
/* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */
temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) |
(CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) |
(CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT);
writel(temp, (*prcm)->cm_clksel_core);
debug("Core DPLL configured\n");
/* lock PER dpll */
params = get_per_dpll_params(*dplls_data);
do_setup_dpll((*prcm)->cm_clkmode_dpll_per,
params, DPLL_LOCK, "per");
debug("PER DPLL locked\n");
/* MPU dpll */
configure_mpu_dpll();
#if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP)
setup_usb_dpll();
#endif
params = get_ddr_dpll_params(*dplls_data);
do_setup_dpll((*prcm)->cm_clkmode_dpll_ddrphy,
params, DPLL_LOCK, "ddr");
#ifdef CONFIG_DRIVER_TI_CPSW
params = get_gmac_dpll_params(*dplls_data);
do_setup_dpll((*prcm)->cm_clkmode_dpll_gmac, params,
DPLL_LOCK, "gmac");
#endif
}
#ifdef CONFIG_SYS_CLOCKS_ENABLE_ALL
static void setup_non_essential_dplls(void)
{
u32 abe_ref_clk;
const struct dpll_params *params;
/* IVA */
clrsetbits_le32((*prcm)->cm_bypclk_dpll_iva,
CM_BYPCLK_DPLL_IVA_CLKSEL_MASK, DPLL_IVA_CLKSEL_CORE_X2_DIV_2);
params = get_iva_dpll_params(*dplls_data);
do_setup_dpll((*prcm)->cm_clkmode_dpll_iva, params, DPLL_LOCK, "iva");
/* Configure ABE dpll */
params = get_abe_dpll_params(*dplls_data);
#ifdef CONFIG_SYS_OMAP_ABE_SYSCK
abe_ref_clk = CM_ABE_PLL_REF_CLKSEL_CLKSEL_SYSCLK;
if (omap_revision() == DRA752_ES1_0)
/* Select the sys clk for dpll_abe */
clrsetbits_le32((*prcm)->cm_abe_pll_sys_clksel,
CM_CLKSEL_ABE_PLL_SYS_CLKSEL_MASK,
CM_ABE_PLL_SYS_CLKSEL_SYSCLK2);
#else
abe_ref_clk = CM_ABE_PLL_REF_CLKSEL_CLKSEL_32KCLK;
/*
* We need to enable some additional options to achieve
* 196.608MHz from 32768 Hz
*/
setbits_le32((*prcm)->cm_clkmode_dpll_abe,
CM_CLKMODE_DPLL_DRIFTGUARD_EN_MASK|
CM_CLKMODE_DPLL_RELOCK_RAMP_EN_MASK|
CM_CLKMODE_DPLL_LPMODE_EN_MASK|
CM_CLKMODE_DPLL_REGM4XEN_MASK);
/* Spend 4 REFCLK cycles at each stage */
clrsetbits_le32((*prcm)->cm_clkmode_dpll_abe,
CM_CLKMODE_DPLL_RAMP_RATE_MASK,
1 << CM_CLKMODE_DPLL_RAMP_RATE_SHIFT);
#endif
/* Select the right reference clk */
clrsetbits_le32((*prcm)->cm_abe_pll_ref_clksel,
CM_ABE_PLL_REF_CLKSEL_CLKSEL_MASK,
abe_ref_clk << CM_ABE_PLL_REF_CLKSEL_CLKSEL_SHIFT);
/* Lock the dpll */
do_setup_dpll((*prcm)->cm_clkmode_dpll_abe, params, DPLL_LOCK, "abe");
}
#endif
u32 get_offset_code(u32 volt_offset, struct pmic_data *pmic)
{
u32 offset_code;
volt_offset -= pmic->base_offset;
offset_code = (volt_offset + pmic->step - 1) / pmic->step;
/*
* Offset codes 1-6 all give the base voltage in Palmas
* Offset code 0 switches OFF the SMPS
*/
return offset_code + pmic->start_code;
}
void do_scale_vcore(u32 vcore_reg, u32 volt_mv, struct pmic_data *pmic)
{
u32 offset_code;
u32 offset = volt_mv;
int ret = 0;
if (!volt_mv)
return;
pmic->pmic_bus_init();
/* See if we can first get the GPIO if needed */
if (pmic->gpio_en)
ret = gpio_request(pmic->gpio, "PMIC_GPIO");
if (ret < 0) {
printf("%s: gpio %d request failed %d\n", __func__,
pmic->gpio, ret);
return;
}
/* Pull the GPIO low to select SET0 register, while we program SET1 */
if (pmic->gpio_en)
gpio_direction_output(pmic->gpio, 0);
/* convert to uV for better accuracy in the calculations */
offset *= 1000;
offset_code = get_offset_code(offset, pmic);
debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv,
offset_code);
if (pmic->pmic_write(pmic->i2c_slave_addr, vcore_reg, offset_code))
printf("Scaling voltage failed for 0x%x\n", vcore_reg);
if (pmic->gpio_en)
gpio_direction_output(pmic->gpio, 1);
}
static u32 optimize_vcore_voltage(struct volts const *v)
{
u32 val;
if (!v->value)
return 0;
if (!v->efuse.reg)
return v->value;
switch (v->efuse.reg_bits) {
case 16:
val = readw(v->efuse.reg);
break;
case 32:
val = readl(v->efuse.reg);
break;
default:
printf("Error: efuse 0x%08x bits=%d unknown\n",
v->efuse.reg, v->efuse.reg_bits);
return v->value;
}
if (!val) {
printf("Error: efuse 0x%08x bits=%d val=0, using %d\n",
v->efuse.reg, v->efuse.reg_bits, v->value);
return v->value;
}
debug("%s:efuse 0x%08x bits=%d Vnom=%d, using efuse value %d\n",
__func__, v->efuse.reg, v->efuse.reg_bits, v->value, val);
return val;
}
/*
* Setup the voltages for vdd_mpu, vdd_core, and vdd_iva
* We set the maximum voltages allowed here because Smart-Reflex is not
* enabled in bootloader. Voltage initialization in the kernel will set
* these to the nominal values after enabling Smart-Reflex
*/
void scale_vcores(struct vcores_data const *vcores)
{
u32 val;
val = optimize_vcore_voltage(&vcores->core);
do_scale_vcore(vcores->core.addr, val, vcores->core.pmic);
val = optimize_vcore_voltage(&vcores->mpu);
do_scale_vcore(vcores->mpu.addr, val, vcores->mpu.pmic);
/* Configure MPU ABB LDO after scale */
abb_setup((*ctrl)->control_std_fuse_opp_vdd_mpu_2,
(*ctrl)->control_wkup_ldovbb_mpu_voltage_ctrl,
(*prcm)->prm_abbldo_mpu_setup,
(*prcm)->prm_abbldo_mpu_ctrl,
(*prcm)->prm_irqstatus_mpu_2,
OMAP_ABB_MPU_TXDONE_MASK,
OMAP_ABB_FAST_OPP);
val = optimize_vcore_voltage(&vcores->mm);
do_scale_vcore(vcores->mm.addr, val, vcores->mm.pmic);
val = optimize_vcore_voltage(&vcores->gpu);
do_scale_vcore(vcores->gpu.addr, val, vcores->gpu.pmic);
val = optimize_vcore_voltage(&vcores->eve);
do_scale_vcore(vcores->eve.addr, val, vcores->eve.pmic);
val = optimize_vcore_voltage(&vcores->iva);
do_scale_vcore(vcores->iva.addr, val, vcores->iva.pmic);
}
static inline void enable_clock_domain(u32 const clkctrl_reg, u32 enable_mode)
{
clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT);
debug("Enable clock domain - %x\n", clkctrl_reg);
}
static inline void wait_for_clk_enable(u32 clkctrl_addr)
{
u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED;
u32 bound = LDELAY;
while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) ||
(idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) {
clkctrl = readl(clkctrl_addr);
idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
MODULE_CLKCTRL_IDLEST_SHIFT;
if (--bound == 0) {
printf("Clock enable failed for 0x%x idlest 0x%x\n",
clkctrl_addr, clkctrl);
return;
}
}
}
static inline void enable_clock_module(u32 const clkctrl_addr, u32 enable_mode,
u32 wait_for_enable)
{
clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT);
debug("Enable clock module - %x\n", clkctrl_addr);
if (wait_for_enable)
wait_for_clk_enable(clkctrl_addr);
}
void freq_update_core(void)
{
u32 freq_config1 = 0;
const struct dpll_params *core_dpll_params;
u32 omap_rev = omap_revision();
core_dpll_params = get_core_dpll_params(*dplls_data);
/* Put EMIF clock domain in sw wakeup mode */
enable_clock_domain((*prcm)->cm_memif_clkstctrl,
CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK |
SHADOW_FREQ_CONFIG1_DLL_RESET_MASK;
freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) &
SHADOW_FREQ_CONFIG1_DPLL_EN_MASK;
freq_config1 |= (core_dpll_params->m2 <<
SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) &
SHADOW_FREQ_CONFIG1_M2_DIV_MASK;
writel(freq_config1, (*prcm)->cm_shadow_freq_config1);
if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0,
(u32 *) (*prcm)->cm_shadow_freq_config1, LDELAY)) {
puts("FREQ UPDATE procedure failed!!");
hang();
}
/*
* Putting EMIF in HW_AUTO is seen to be causing issues with
* EMIF clocks and the master DLL. Keep EMIF in SW_WKUP
* in OMAP5430 ES1.0 silicon
*/
if (omap_rev != OMAP5430_ES1_0) {
/* Put EMIF clock domain back in hw auto mode */
enable_clock_domain((*prcm)->cm_memif_clkstctrl,
CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
}
}
void bypass_dpll(u32 const base)
{
do_bypass_dpll(base);
wait_for_bypass(base);
}
void lock_dpll(u32 const base)
{
do_lock_dpll(base);
wait_for_lock(base);
}
void setup_clocks_for_console(void)
{
/* Do not add any spl_debug prints in this function */
clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
CD_CLKCTRL_CLKTRCTRL_SHIFT);
/* Enable all UARTs - console will be on one of them */
clrsetbits_le32((*prcm)->cm_l4per_uart1_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32((*prcm)->cm_l4per_uart2_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32((*prcm)->cm_l4per_uart3_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32((*prcm)->cm_l4per_uart4_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
CD_CLKCTRL_CLKTRCTRL_HW_AUTO <<
CD_CLKCTRL_CLKTRCTRL_SHIFT);
}
void do_enable_clocks(u32 const *clk_domains,
u32 const *clk_modules_hw_auto,
u32 const *clk_modules_explicit_en,
u8 wait_for_enable)
{
u32 i, max = 100;
/* Put the clock domains in SW_WKUP mode */
for (i = 0; (i < max) && clk_domains[i]; i++) {
enable_clock_domain(clk_domains[i],
CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
}
/* Clock modules that need to be put in HW_AUTO */
for (i = 0; (i < max) && clk_modules_hw_auto[i]; i++) {
enable_clock_module(clk_modules_hw_auto[i],
MODULE_CLKCTRL_MODULEMODE_HW_AUTO,
wait_for_enable);
};
/* Clock modules that need to be put in SW_EXPLICIT_EN mode */
for (i = 0; (i < max) && clk_modules_explicit_en[i]; i++) {
enable_clock_module(clk_modules_explicit_en[i],
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN,
wait_for_enable);
};
/* Put the clock domains in HW_AUTO mode now */
for (i = 0; (i < max) && clk_domains[i]; i++) {
enable_clock_domain(clk_domains[i],
CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
}
}
void prcm_init(void)
{
switch (omap_hw_init_context()) {
case OMAP_INIT_CONTEXT_SPL:
case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
enable_basic_clocks();
timer_init();
scale_vcores(*omap_vcores);
setup_dplls();
#ifdef CONFIG_SYS_CLOCKS_ENABLE_ALL
setup_non_essential_dplls();
enable_non_essential_clocks();
#endif
ARM: OMAP5: Fix warm reset with USB cable connected Warm reset on OMAP5 freezes when USB cable is connected. Fix requires PRM_RSTTIME.RSTTIME1 to be programmed with the time for which reset should be held low for the voltages and the oscillator to reach stable state. There are 3 parameters to be considered for calculating the time, which are mostly board and PMIC dependent. -1- Time taken by the Oscillator to shut + restart -2- PMIC OTP times -3- Voltage rail ramp times, which inturn depends on the PMIC slew rate and value of the voltage ramp needed. In order to keep the code in u-boot simple, have a way for boards to specify a pre computed time directly using the 'CONFIG_OMAP_PLATFORM_RESET_TIME_MAX_USEC' option. If boards fail to specify the time, use a default as specified by 'CONFIG_DEFAULT_OMAP_RESET_TIME_MAX_USEC' instead. Using the default value translates into some ~22ms and should work in all cases. However in order to avoid this large delay hiding other bugs, its recommended that all boards look at their respective data sheets and specify a pre computed and optimal value using 'CONFIG_OMAP_PLATFORM_RESET_TIME_MAX_USEC' In order to help future board additions to compute this config option value, add a README at doc/README.omap-reset-time which explains how to compute the value. Also update the toplevel README with the additional option and pointers to doc/README.omap-reset-time. Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com> [rnayak@ti.com: Updated changelog and added the README] Signed-off-by: Rajendra Nayak <rnayak@ti.com>
2013-04-17 20:49:40 +00:00
setup_warmreset_time();
break;
default:
break;
}
if (OMAP_INIT_CONTEXT_SPL != omap_hw_init_context())
enable_basic_uboot_clocks();
}
void gpi2c_init(void)
{
static int gpi2c = 1;
if (gpi2c) {
i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED,
CONFIG_SYS_OMAP24_I2C_SLAVE);
gpi2c = 0;
}
}