u-boot/drivers/rtc/date.c

141 lines
3.4 KiB
C
Raw Normal View History

2002-10-26 17:33:42 +00:00
/*
* (C) Copyright 2001
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* SPDX-License-Identifier: GPL-2.0+
2002-10-26 17:33:42 +00:00
*/
/*
* Date & Time support for Philips PCF8563 RTC
*/
#include <common.h>
#include <command.h>
#include <rtc.h>
#if defined(CONFIG_CMD_DATE) || defined(CONFIG_TIMESTAMP)
2002-10-26 17:33:42 +00:00
#define FEBRUARY 2
#define STARTOFTIME 1970
#define SECDAY 86400L
#define SECYR (SECDAY * 365)
#define leapyear(year) ((year) % 4 == 0)
#define days_in_year(a) (leapyear(a) ? 366 : 365)
#define days_in_month(a) (month_days[(a) - 1])
2002-10-26 17:33:42 +00:00
static int month_days[12] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
/*
* This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
*/
void GregorianDay(struct rtc_time * tm)
{
int leapsToDate;
int lastYear;
int day;
int MonthOffset[] = { 0,31,59,90,120,151,181,212,243,273,304,334 };
lastYear=tm->tm_year-1;
/*
* Number of leap corrections to apply up to end of last year
*/
leapsToDate = lastYear/4 - lastYear/100 + lastYear/400;
/*
* This year is a leap year if it is divisible by 4 except when it is
* divisible by 100 unless it is divisible by 400
*
* e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 will be
*/
if((tm->tm_year%4==0) &&
((tm->tm_year%100!=0) || (tm->tm_year%400==0)) &&
(tm->tm_mon>2)) {
/*
* We are past Feb. 29 in a leap year
*/
day=1;
} else {
day=0;
}
day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + tm->tm_mday;
tm->tm_wday=day%7;
}
void to_tm(int tim, struct rtc_time * tm)
{
register int i;
register long hms, day;
day = tim / SECDAY;
hms = tim % SECDAY;
/* Hours, minutes, seconds are easy */
tm->tm_hour = hms / 3600;
tm->tm_min = (hms % 3600) / 60;
tm->tm_sec = (hms % 3600) % 60;
/* Number of years in days */
for (i = STARTOFTIME; day >= days_in_year(i); i++) {
day -= days_in_year(i);
}
tm->tm_year = i;
/* Number of months in days left */
if (leapyear(tm->tm_year)) {
days_in_month(FEBRUARY) = 29;
}
for (i = 1; day >= days_in_month(i); i++) {
day -= days_in_month(i);
}
days_in_month(FEBRUARY) = 28;
tm->tm_mon = i;
/* Days are what is left over (+1) from all that. */
tm->tm_mday = day + 1;
/*
* Determine the day of week
*/
GregorianDay(tm);
}
/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
*
* [For the Julian calendar (which was used in Russia before 1917,
* Britain & colonies before 1752, anywhere else before 1582,
* and is still in use by some communities) leave out the
* -year/100+year/400 terms, and add 10.]
*
* This algorithm was first published by Gauss (I think).
*
* WARNING: this function will overflow on 2106-02-07 06:28:16 on
* machines were long is 32-bit! (However, as time_t is signed, we
* will already get problems at other places on 2038-01-19 03:14:08)
*/
unsigned long
mktime (unsigned int year, unsigned int mon,
unsigned int day, unsigned int hour,
unsigned int min, unsigned int sec)
{
if (0 >= (int) (mon -= 2)) { /* 1..12 -> 11,12,1..10 */
mon += 12; /* Puts Feb last since it has leap day */
year -= 1;
}
return (((
(unsigned long) (year/4 - year/100 + year/400 + 367*mon/12 + day) +
year*365 - 719499
)*24 + hour /* now have hours */
)*60 + min /* now have minutes */
)*60 + sec; /* finally seconds */
}
#endif