u-boot/drivers/net/sun8i_emac.c

934 lines
24 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2016
* Author: Amit Singh Tomar, amittomer25@gmail.com
*
* Ethernet driver for H3/A64/A83T based SoC's
*
* It is derived from the work done by
* LABBE Corentin & Chen-Yu Tsai for Linux, THANKS!
*
*/
#include <cpu_func.h>
#include <log.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <fdt_support.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <malloc.h>
#include <miiphy.h>
#include <net.h>
#include <reset.h>
#include <wait_bit.h>
#include <power/regulator.h>
#define MDIO_CMD_MII_BUSY BIT(0)
#define MDIO_CMD_MII_WRITE BIT(1)
#define MDIO_CMD_MII_PHY_REG_ADDR_MASK 0x000001f0
#define MDIO_CMD_MII_PHY_REG_ADDR_SHIFT 4
#define MDIO_CMD_MII_PHY_ADDR_MASK 0x0001f000
#define MDIO_CMD_MII_PHY_ADDR_SHIFT 12
#define MDIO_CMD_MII_CLK_CSR_DIV_16 0x0
#define MDIO_CMD_MII_CLK_CSR_DIV_32 0x1
#define MDIO_CMD_MII_CLK_CSR_DIV_64 0x2
#define MDIO_CMD_MII_CLK_CSR_DIV_128 0x3
#define MDIO_CMD_MII_CLK_CSR_SHIFT 20
#define CFG_TX_DESCR_NUM 32
#define CFG_RX_DESCR_NUM 32
#define CFG_ETH_BUFSIZE 2048 /* Note must be dma aligned */
/*
* The datasheet says that each descriptor can transfers up to 4096 bytes
* But later, the register documentation reduces that value to 2048,
* using 2048 cause strange behaviours and even BSP driver use 2047
*/
#define CFG_ETH_RXSIZE 2044 /* Note must fit in ETH_BUFSIZE */
#define TX_TOTAL_BUFSIZE (CFG_ETH_BUFSIZE * CFG_TX_DESCR_NUM)
#define RX_TOTAL_BUFSIZE (CFG_ETH_BUFSIZE * CFG_RX_DESCR_NUM)
#define H3_EPHY_DEFAULT_VALUE 0x58000
#define H3_EPHY_DEFAULT_MASK GENMASK(31, 15)
#define H3_EPHY_ADDR_SHIFT 20
#define REG_PHY_ADDR_MASK GENMASK(4, 0)
#define H3_EPHY_LED_POL BIT(17) /* 1: active low, 0: active high */
#define H3_EPHY_SHUTDOWN BIT(16) /* 1: shutdown, 0: power up */
#define H3_EPHY_SELECT BIT(15) /* 1: internal PHY, 0: external PHY */
#define SC_RMII_EN BIT(13)
#define SC_EPIT BIT(2) /* 1: RGMII, 0: MII */
#define SC_ETCS_MASK GENMASK(1, 0)
#define SC_ETCS_EXT_GMII 0x1
#define SC_ETCS_INT_GMII 0x2
#define SC_ETXDC_MASK GENMASK(12, 10)
#define SC_ETXDC_OFFSET 10
#define SC_ERXDC_MASK GENMASK(9, 5)
#define SC_ERXDC_OFFSET 5
#define CFG_MDIO_TIMEOUT (3 * CONFIG_SYS_HZ)
#define AHB_GATE_OFFSET_EPHY 0
/* H3/A64 EMAC Register's offset */
#define EMAC_CTL0 0x00
#define EMAC_CTL0_FULL_DUPLEX BIT(0)
#define EMAC_CTL0_SPEED_MASK GENMASK(3, 2)
#define EMAC_CTL0_SPEED_10 (0x2 << 2)
#define EMAC_CTL0_SPEED_100 (0x3 << 2)
#define EMAC_CTL0_SPEED_1000 (0x0 << 2)
#define EMAC_CTL1 0x04
#define EMAC_CTL1_SOFT_RST BIT(0)
#define EMAC_CTL1_BURST_LEN_SHIFT 24
#define EMAC_INT_STA 0x08
#define EMAC_INT_EN 0x0c
#define EMAC_TX_CTL0 0x10
#define EMAC_TX_CTL0_TX_EN BIT(31)
#define EMAC_TX_CTL1 0x14
#define EMAC_TX_CTL1_TX_MD BIT(1)
#define EMAC_TX_CTL1_TX_DMA_EN BIT(30)
#define EMAC_TX_CTL1_TX_DMA_START BIT(31)
#define EMAC_TX_FLOW_CTL 0x1c
#define EMAC_TX_DMA_DESC 0x20
#define EMAC_RX_CTL0 0x24
#define EMAC_RX_CTL0_RX_EN BIT(31)
#define EMAC_RX_CTL1 0x28
#define EMAC_RX_CTL1_RX_MD BIT(1)
#define EMAC_RX_CTL1_RX_RUNT_FRM BIT(2)
#define EMAC_RX_CTL1_RX_ERR_FRM BIT(3)
#define EMAC_RX_CTL1_RX_DMA_EN BIT(30)
#define EMAC_RX_CTL1_RX_DMA_START BIT(31)
#define EMAC_RX_DMA_DESC 0x34
#define EMAC_MII_CMD 0x48
#define EMAC_MII_DATA 0x4c
#define EMAC_ADDR0_HIGH 0x50
#define EMAC_ADDR0_LOW 0x54
#define EMAC_TX_DMA_STA 0xb0
#define EMAC_TX_CUR_DESC 0xb4
#define EMAC_TX_CUR_BUF 0xb8
#define EMAC_RX_DMA_STA 0xc0
#define EMAC_RX_CUR_DESC 0xc4
#define EMAC_DESC_OWN_DMA BIT(31)
#define EMAC_DESC_LAST_DESC BIT(30)
#define EMAC_DESC_FIRST_DESC BIT(29)
#define EMAC_DESC_CHAIN_SECOND BIT(24)
#define EMAC_DESC_RX_ERROR_MASK 0x400068db
DECLARE_GLOBAL_DATA_PTR;
struct emac_variant {
uint syscon_offset;
bool soc_has_internal_phy;
bool support_rmii;
};
struct emac_dma_desc {
u32 status;
u32 ctl_size;
u32 buf_addr;
u32 next;
} __aligned(ARCH_DMA_MINALIGN);
struct emac_eth_dev {
struct emac_dma_desc rx_chain[CFG_TX_DESCR_NUM];
struct emac_dma_desc tx_chain[CFG_RX_DESCR_NUM];
char rxbuffer[RX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
char txbuffer[TX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
u32 interface;
u32 phyaddr;
u32 link;
u32 speed;
u32 duplex;
u32 phy_configured;
u32 tx_currdescnum;
u32 rx_currdescnum;
u32 addr;
u32 tx_slot;
bool use_internal_phy;
const struct emac_variant *variant;
void *mac_reg;
void *sysctl_reg;
struct phy_device *phydev;
struct mii_dev *bus;
struct clk tx_clk;
struct clk ephy_clk;
struct reset_ctl tx_rst;
struct reset_ctl ephy_rst;
struct gpio_desc reset_gpio;
struct udevice *phy_reg;
};
struct sun8i_eth_pdata {
struct eth_pdata eth_pdata;
u32 reset_delays[3];
int tx_delay_ps;
int rx_delay_ps;
};
static int sun8i_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
struct udevice *dev = bus->priv;
struct emac_eth_dev *priv = dev_get_priv(dev);
u32 mii_cmd;
int ret;
mii_cmd = (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) &
MDIO_CMD_MII_PHY_REG_ADDR_MASK;
mii_cmd |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) &
MDIO_CMD_MII_PHY_ADDR_MASK;
/*
* The EMAC clock is either 200 or 300 MHz, so we need a divider
* of 128 to get the MDIO frequency below the required 2.5 MHz.
*/
if (!priv->use_internal_phy)
mii_cmd |= MDIO_CMD_MII_CLK_CSR_DIV_128 <<
MDIO_CMD_MII_CLK_CSR_SHIFT;
mii_cmd |= MDIO_CMD_MII_BUSY;
writel(mii_cmd, priv->mac_reg + EMAC_MII_CMD);
ret = wait_for_bit_le32(priv->mac_reg + EMAC_MII_CMD,
MDIO_CMD_MII_BUSY, false,
CFG_MDIO_TIMEOUT, true);
if (ret < 0)
return ret;
return readl(priv->mac_reg + EMAC_MII_DATA);
}
static int sun8i_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
struct udevice *dev = bus->priv;
struct emac_eth_dev *priv = dev_get_priv(dev);
u32 mii_cmd;
mii_cmd = (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) &
MDIO_CMD_MII_PHY_REG_ADDR_MASK;
mii_cmd |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) &
MDIO_CMD_MII_PHY_ADDR_MASK;
/*
* The EMAC clock is either 200 or 300 MHz, so we need a divider
* of 128 to get the MDIO frequency below the required 2.5 MHz.
*/
if (!priv->use_internal_phy)
mii_cmd |= MDIO_CMD_MII_CLK_CSR_DIV_128 <<
MDIO_CMD_MII_CLK_CSR_SHIFT;
mii_cmd |= MDIO_CMD_MII_WRITE;
mii_cmd |= MDIO_CMD_MII_BUSY;
writel(val, priv->mac_reg + EMAC_MII_DATA);
writel(mii_cmd, priv->mac_reg + EMAC_MII_CMD);
return wait_for_bit_le32(priv->mac_reg + EMAC_MII_CMD,
MDIO_CMD_MII_BUSY, false,
CFG_MDIO_TIMEOUT, true);
}
static int sun8i_eth_write_hwaddr(struct udevice *dev)
{
struct emac_eth_dev *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
uchar *mac_id = pdata->enetaddr;
u32 macid_lo, macid_hi;
macid_lo = mac_id[0] + (mac_id[1] << 8) + (mac_id[2] << 16) +
(mac_id[3] << 24);
macid_hi = mac_id[4] + (mac_id[5] << 8);
writel(macid_hi, priv->mac_reg + EMAC_ADDR0_HIGH);
writel(macid_lo, priv->mac_reg + EMAC_ADDR0_LOW);
return 0;
}
static void sun8i_adjust_link(struct emac_eth_dev *priv,
struct phy_device *phydev)
{
u32 v;
v = readl(priv->mac_reg + EMAC_CTL0);
if (phydev->duplex)
v |= EMAC_CTL0_FULL_DUPLEX;
else
v &= ~EMAC_CTL0_FULL_DUPLEX;
v &= ~EMAC_CTL0_SPEED_MASK;
switch (phydev->speed) {
case 1000:
v |= EMAC_CTL0_SPEED_1000;
break;
case 100:
v |= EMAC_CTL0_SPEED_100;
break;
case 10:
v |= EMAC_CTL0_SPEED_10;
break;
}
writel(v, priv->mac_reg + EMAC_CTL0);
}
static u32 sun8i_emac_set_syscon_ephy(struct emac_eth_dev *priv, u32 reg)
{
if (priv->use_internal_phy) {
/* H3 based SoC's that has an Internal 100MBit PHY
* needs to be configured and powered up before use
*/
reg &= ~H3_EPHY_DEFAULT_MASK;
reg |= H3_EPHY_DEFAULT_VALUE;
reg |= priv->phyaddr << H3_EPHY_ADDR_SHIFT;
reg &= ~H3_EPHY_SHUTDOWN;
return reg | H3_EPHY_SELECT;
}
/* This is to select External Gigabit PHY on those boards with
* an internal PHY. Does not hurt on other SoCs. Linux does
* it as well.
*/
return reg & ~H3_EPHY_SELECT;
}
static int sun8i_emac_set_syscon(struct sun8i_eth_pdata *pdata,
struct emac_eth_dev *priv)
{
u32 reg;
reg = readl(priv->sysctl_reg);
reg = sun8i_emac_set_syscon_ephy(priv, reg);
reg &= ~(SC_ETCS_MASK | SC_EPIT);
if (priv->variant->support_rmii)
reg &= ~SC_RMII_EN;
switch (priv->interface) {
case PHY_INTERFACE_MODE_MII:
/* default */
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
reg |= SC_EPIT | SC_ETCS_INT_GMII;
break;
case PHY_INTERFACE_MODE_RMII:
if (priv->variant->support_rmii) {
reg |= SC_RMII_EN | SC_ETCS_EXT_GMII;
break;
}
default:
debug("%s: Invalid PHY interface\n", __func__);
return -EINVAL;
}
if (pdata->tx_delay_ps)
reg |= ((pdata->tx_delay_ps / 100) << SC_ETXDC_OFFSET)
& SC_ETXDC_MASK;
if (pdata->rx_delay_ps)
reg |= ((pdata->rx_delay_ps / 100) << SC_ERXDC_OFFSET)
& SC_ERXDC_MASK;
writel(reg, priv->sysctl_reg);
return 0;
}
static int sun8i_phy_init(struct emac_eth_dev *priv, void *dev)
{
struct phy_device *phydev;
phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface);
if (!phydev)
return -ENODEV;
priv->phydev = phydev;
phy_config(priv->phydev);
return 0;
}
#define cache_clean_descriptor(desc) \
flush_dcache_range((uintptr_t)(desc), \
(uintptr_t)(desc) + sizeof(struct emac_dma_desc))
#define cache_inv_descriptor(desc) \
invalidate_dcache_range((uintptr_t)(desc), \
(uintptr_t)(desc) + sizeof(struct emac_dma_desc))
static void rx_descs_init(struct emac_eth_dev *priv)
{
struct emac_dma_desc *desc_table_p = &priv->rx_chain[0];
char *rxbuffs = &priv->rxbuffer[0];
struct emac_dma_desc *desc_p;
int i;
/*
* Make sure we don't have dirty cache lines around, which could
* be cleaned to DRAM *after* the MAC has already written data to it.
*/
invalidate_dcache_range((uintptr_t)desc_table_p,
(uintptr_t)desc_table_p + sizeof(priv->rx_chain));
invalidate_dcache_range((uintptr_t)rxbuffs,
(uintptr_t)rxbuffs + sizeof(priv->rxbuffer));
for (i = 0; i < CFG_RX_DESCR_NUM; i++) {
desc_p = &desc_table_p[i];
desc_p->buf_addr = (uintptr_t)&rxbuffs[i * CFG_ETH_BUFSIZE];
desc_p->next = (uintptr_t)&desc_table_p[i + 1];
desc_p->ctl_size = CFG_ETH_RXSIZE;
desc_p->status = EMAC_DESC_OWN_DMA;
}
/* Correcting the last pointer of the chain */
desc_p->next = (uintptr_t)&desc_table_p[0];
flush_dcache_range((uintptr_t)priv->rx_chain,
(uintptr_t)priv->rx_chain +
sizeof(priv->rx_chain));
writel((uintptr_t)&desc_table_p[0], (priv->mac_reg + EMAC_RX_DMA_DESC));
priv->rx_currdescnum = 0;
}
static void tx_descs_init(struct emac_eth_dev *priv)
{
struct emac_dma_desc *desc_table_p = &priv->tx_chain[0];
char *txbuffs = &priv->txbuffer[0];
struct emac_dma_desc *desc_p;
int i;
for (i = 0; i < CFG_TX_DESCR_NUM; i++) {
desc_p = &desc_table_p[i];
desc_p->buf_addr = (uintptr_t)&txbuffs[i * CFG_ETH_BUFSIZE];
desc_p->next = (uintptr_t)&desc_table_p[i + 1];
desc_p->ctl_size = 0;
desc_p->status = 0;
}
/* Correcting the last pointer of the chain */
desc_p->next = (uintptr_t)&desc_table_p[0];
/* Flush the first TX buffer descriptor we will tell the MAC about. */
cache_clean_descriptor(desc_table_p);
writel((uintptr_t)&desc_table_p[0], priv->mac_reg + EMAC_TX_DMA_DESC);
priv->tx_currdescnum = 0;
}
static int sun8i_emac_eth_start(struct udevice *dev)
{
struct emac_eth_dev *priv = dev_get_priv(dev);
int ret;
/* Soft reset MAC */
writel(EMAC_CTL1_SOFT_RST, priv->mac_reg + EMAC_CTL1);
ret = wait_for_bit_le32(priv->mac_reg + EMAC_CTL1,
EMAC_CTL1_SOFT_RST, false, 10, true);
if (ret) {
printf("%s: Timeout\n", __func__);
return ret;
}
/* Rewrite mac address after reset */
sun8i_eth_write_hwaddr(dev);
/* transmission starts after the full frame arrived in TX DMA FIFO */
setbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_MD);
/*
* RX DMA reads data from RX DMA FIFO to host memory after a
* complete frame has been written to RX DMA FIFO
*/
setbits_le32(priv->mac_reg + EMAC_RX_CTL1, EMAC_RX_CTL1_RX_MD);
/* DMA burst length */
writel(8 << EMAC_CTL1_BURST_LEN_SHIFT, priv->mac_reg + EMAC_CTL1);
/* Initialize rx/tx descriptors */
rx_descs_init(priv);
tx_descs_init(priv);
/* PHY Start Up */
ret = phy_startup(priv->phydev);
if (ret)
return ret;
sun8i_adjust_link(priv, priv->phydev);
/* Start RX/TX DMA */
setbits_le32(priv->mac_reg + EMAC_RX_CTL1, EMAC_RX_CTL1_RX_DMA_EN |
EMAC_RX_CTL1_RX_ERR_FRM | EMAC_RX_CTL1_RX_RUNT_FRM);
setbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_DMA_EN);
/* Enable RX/TX */
setbits_le32(priv->mac_reg + EMAC_RX_CTL0, EMAC_RX_CTL0_RX_EN);
setbits_le32(priv->mac_reg + EMAC_TX_CTL0, EMAC_TX_CTL0_TX_EN);
return 0;
}
static int sun8i_emac_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct emac_eth_dev *priv = dev_get_priv(dev);
u32 status, desc_num = priv->rx_currdescnum;
struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num];
uintptr_t data_start = (uintptr_t)desc_p->buf_addr;
int length;
/* Invalidate entire buffer descriptor */
cache_inv_descriptor(desc_p);
status = desc_p->status;
/* Check for DMA own bit */
if (status & EMAC_DESC_OWN_DMA)
return -EAGAIN;
length = (status >> 16) & 0x3fff;
/* make sure we read from DRAM, not our cache */
invalidate_dcache_range(data_start,
data_start + roundup(length, ARCH_DMA_MINALIGN));
if (status & EMAC_DESC_RX_ERROR_MASK) {
debug("RX: packet error: 0x%x\n",
status & EMAC_DESC_RX_ERROR_MASK);
return 0;
}
if (length < 0x40) {
debug("RX: Bad Packet (runt)\n");
return 0;
}
if (length > CFG_ETH_RXSIZE) {
debug("RX: Too large packet (%d bytes)\n", length);
return 0;
}
*packetp = (uchar *)(ulong)desc_p->buf_addr;
return length;
}
static int sun8i_emac_eth_send(struct udevice *dev, void *packet, int length)
{
struct emac_eth_dev *priv = dev_get_priv(dev);
u32 desc_num = priv->tx_currdescnum;
struct emac_dma_desc *desc_p = &priv->tx_chain[desc_num];
uintptr_t data_start = (uintptr_t)desc_p->buf_addr;
uintptr_t data_end = data_start +
roundup(length, ARCH_DMA_MINALIGN);
desc_p->ctl_size = length | EMAC_DESC_CHAIN_SECOND;
memcpy((void *)data_start, packet, length);
/* Flush data to be sent */
flush_dcache_range(data_start, data_end);
/* frame begin and end */
desc_p->ctl_size |= EMAC_DESC_LAST_DESC | EMAC_DESC_FIRST_DESC;
desc_p->status = EMAC_DESC_OWN_DMA;
/* make sure the MAC reads the actual data from DRAM */
cache_clean_descriptor(desc_p);
/* Move to next Descriptor and wrap around */
if (++desc_num >= CFG_TX_DESCR_NUM)
desc_num = 0;
priv->tx_currdescnum = desc_num;
/* Start the DMA */
setbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_DMA_START);
/*
* Since we copied the data above, we return here without waiting
* for the packet to be actually send out.
*/
return 0;
}
static int sun8i_emac_board_setup(struct udevice *dev,
struct emac_eth_dev *priv)
{
int ret;
ret = clk_enable(&priv->tx_clk);
if (ret) {
dev_err(dev, "failed to enable TX clock\n");
return ret;
}
if (reset_valid(&priv->tx_rst)) {
ret = reset_deassert(&priv->tx_rst);
if (ret) {
dev_err(dev, "failed to deassert TX reset\n");
goto err_tx_clk;
}
}
/* Only H3/H5 have clock controls for internal EPHY */
if (clk_valid(&priv->ephy_clk)) {
ret = clk_enable(&priv->ephy_clk);
if (ret) {
dev_err(dev, "failed to enable EPHY TX clock\n");
return ret;
}
}
if (reset_valid(&priv->ephy_rst)) {
ret = reset_deassert(&priv->ephy_rst);
if (ret) {
dev_err(dev, "failed to deassert EPHY TX clock\n");
return ret;
}
}
return 0;
err_tx_clk:
clk_disable(&priv->tx_clk);
return ret;
}
static int sun8i_mdio_reset(struct mii_dev *bus)
{
struct udevice *dev = bus->priv;
struct emac_eth_dev *priv = dev_get_priv(dev);
struct sun8i_eth_pdata *pdata = dev_get_plat(dev);
int ret;
if (!dm_gpio_is_valid(&priv->reset_gpio))
return 0;
/* reset the phy */
ret = dm_gpio_set_value(&priv->reset_gpio, 0);
if (ret)
return ret;
udelay(pdata->reset_delays[0]);
ret = dm_gpio_set_value(&priv->reset_gpio, 1);
if (ret)
return ret;
udelay(pdata->reset_delays[1]);
ret = dm_gpio_set_value(&priv->reset_gpio, 0);
if (ret)
return ret;
udelay(pdata->reset_delays[2]);
return 0;
}
static int sun8i_mdio_init(const char *name, struct udevice *priv)
{
struct mii_dev *bus = mdio_alloc();
if (!bus) {
debug("Failed to allocate MDIO bus\n");
return -ENOMEM;
}
bus->read = sun8i_mdio_read;
bus->write = sun8i_mdio_write;
snprintf(bus->name, sizeof(bus->name), name);
bus->priv = (void *)priv;
bus->reset = sun8i_mdio_reset;
return mdio_register(bus);
}
static int sun8i_eth_free_pkt(struct udevice *dev, uchar *packet,
int length)
{
struct emac_eth_dev *priv = dev_get_priv(dev);
u32 desc_num = priv->rx_currdescnum;
struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num];
/* give the current descriptor back to the MAC */
desc_p->status |= EMAC_DESC_OWN_DMA;
/* Flush Status field of descriptor */
cache_clean_descriptor(desc_p);
/* Move to next desc and wrap-around condition. */
if (++desc_num >= CFG_RX_DESCR_NUM)
desc_num = 0;
priv->rx_currdescnum = desc_num;
return 0;
}
static void sun8i_emac_eth_stop(struct udevice *dev)
{
struct emac_eth_dev *priv = dev_get_priv(dev);
/* Stop Rx/Tx transmitter */
clrbits_le32(priv->mac_reg + EMAC_RX_CTL0, EMAC_RX_CTL0_RX_EN);
clrbits_le32(priv->mac_reg + EMAC_TX_CTL0, EMAC_TX_CTL0_TX_EN);
/* Stop RX/TX DMA */
clrbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_DMA_EN);
clrbits_le32(priv->mac_reg + EMAC_RX_CTL1, EMAC_RX_CTL1_RX_DMA_EN);
phy_shutdown(priv->phydev);
}
static int sun8i_emac_eth_probe(struct udevice *dev)
{
struct sun8i_eth_pdata *sun8i_pdata = dev_get_plat(dev);
struct eth_pdata *pdata = &sun8i_pdata->eth_pdata;
struct emac_eth_dev *priv = dev_get_priv(dev);
int ret;
priv->mac_reg = (void *)pdata->iobase;
ret = sun8i_emac_board_setup(dev, priv);
if (ret)
return ret;
sun8i_emac_set_syscon(sun8i_pdata, priv);
if (priv->phy_reg)
regulator_set_enable(priv->phy_reg, true);
sun8i_mdio_init(dev->name, dev);
priv->bus = miiphy_get_dev_by_name(dev->name);
return sun8i_phy_init(priv, dev);
}
static const struct eth_ops sun8i_emac_eth_ops = {
.start = sun8i_emac_eth_start,
.write_hwaddr = sun8i_eth_write_hwaddr,
.send = sun8i_emac_eth_send,
.recv = sun8i_emac_eth_recv,
.free_pkt = sun8i_eth_free_pkt,
.stop = sun8i_emac_eth_stop,
};
static int sun8i_handle_internal_phy(struct udevice *dev, struct emac_eth_dev *priv)
{
struct ofnode_phandle_args phandle;
int ret;
ret = ofnode_parse_phandle_with_args(dev_ofnode(dev), "phy-handle",
NULL, 0, 0, &phandle);
if (ret)
return ret;
/* If the PHY node is not a child of the internal MDIO bus, we are
* using some external PHY.
*/
if (!ofnode_device_is_compatible(ofnode_get_parent(phandle.node),
"allwinner,sun8i-h3-mdio-internal"))
return 0;
ret = clk_get_by_index_nodev(phandle.node, 0, &priv->ephy_clk);
if (ret) {
dev_err(dev, "failed to get EPHY TX clock\n");
return ret;
}
ret = reset_get_by_index_nodev(phandle.node, 0, &priv->ephy_rst);
if (ret) {
dev_err(dev, "failed to get EPHY TX reset\n");
return ret;
}
priv->use_internal_phy = true;
return 0;
}
static int sun8i_emac_eth_of_to_plat(struct udevice *dev)
{
struct sun8i_eth_pdata *sun8i_pdata = dev_get_plat(dev);
struct eth_pdata *pdata = &sun8i_pdata->eth_pdata;
struct emac_eth_dev *priv = dev_get_priv(dev);
phys_addr_t syscon_base;
const fdt32_t *reg;
int node = dev_of_offset(dev);
int offset = 0;
int reset_flags = GPIOD_IS_OUT;
int ret;
pdata->iobase = dev_read_addr(dev);
if (pdata->iobase == FDT_ADDR_T_NONE) {
debug("%s: Cannot find MAC base address\n", __func__);
return -EINVAL;
}
priv->variant = (const void *)dev_get_driver_data(dev);
if (!priv->variant) {
printf("%s: Missing variant\n", __func__);
return -EINVAL;
}
ret = clk_get_by_name(dev, "stmmaceth", &priv->tx_clk);
if (ret) {
dev_err(dev, "failed to get TX clock\n");
return ret;
}
ret = reset_get_by_name(dev, "stmmaceth", &priv->tx_rst);
if (ret && ret != -ENOENT) {
dev_err(dev, "failed to get TX reset\n");
return ret;
}
offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "syscon");
if (offset < 0) {
debug("%s: cannot find syscon node\n", __func__);
return -EINVAL;
}
reg = fdt_getprop(gd->fdt_blob, offset, "reg", NULL);
if (!reg) {
debug("%s: cannot find reg property in syscon node\n",
__func__);
return -EINVAL;
}
syscon_base = fdt_translate_address((void *)gd->fdt_blob, offset, reg);
if (syscon_base == FDT_ADDR_T_NONE) {
debug("%s: Cannot find syscon base address\n", __func__);
return -EINVAL;
}
priv->sysctl_reg = (void *)syscon_base + priv->variant->syscon_offset;
device_get_supply_regulator(dev, "phy-supply", &priv->phy_reg);
pdata->phy_interface = -1;
priv->phyaddr = -1;
priv->use_internal_phy = false;
offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "phy-handle");
if (offset < 0) {
debug("%s: Cannot find PHY address\n", __func__);
return -EINVAL;
}
priv->phyaddr = fdtdec_get_int(gd->fdt_blob, offset, "reg", -1);
pdata->phy_interface = dev_read_phy_mode(dev);
debug("phy interface %d\n", pdata->phy_interface);
if (pdata->phy_interface == PHY_INTERFACE_MODE_NA)
return -EINVAL;
if (priv->variant->soc_has_internal_phy) {
ret = sun8i_handle_internal_phy(dev, priv);
if (ret)
return ret;
}
priv->interface = pdata->phy_interface;
sun8i_pdata->tx_delay_ps = fdtdec_get_int(gd->fdt_blob, node,
"allwinner,tx-delay-ps", 0);
if (sun8i_pdata->tx_delay_ps < 0 || sun8i_pdata->tx_delay_ps > 700)
printf("%s: Invalid TX delay value %d\n", __func__,
sun8i_pdata->tx_delay_ps);
sun8i_pdata->rx_delay_ps = fdtdec_get_int(gd->fdt_blob, node,
"allwinner,rx-delay-ps", 0);
if (sun8i_pdata->rx_delay_ps < 0 || sun8i_pdata->rx_delay_ps > 3100)
printf("%s: Invalid RX delay value %d\n", __func__,
sun8i_pdata->rx_delay_ps);
if (fdtdec_get_bool(gd->fdt_blob, dev_of_offset(dev),
"snps,reset-active-low"))
reset_flags |= GPIOD_ACTIVE_LOW;
ret = gpio_request_by_name(dev, "snps,reset-gpio", 0,
&priv->reset_gpio, reset_flags);
if (ret == 0) {
ret = fdtdec_get_int_array(gd->fdt_blob, dev_of_offset(dev),
"snps,reset-delays-us",
sun8i_pdata->reset_delays, 3);
} else if (ret == -ENOENT) {
ret = 0;
}
return 0;
}
static const struct emac_variant emac_variant_a83t = {
.syscon_offset = 0x30,
};
static const struct emac_variant emac_variant_h3 = {
.syscon_offset = 0x30,
.soc_has_internal_phy = true,
.support_rmii = true,
};
static const struct emac_variant emac_variant_r40 = {
.syscon_offset = 0x164,
};
static const struct emac_variant emac_variant_a64 = {
.syscon_offset = 0x30,
.support_rmii = true,
};
static const struct emac_variant emac_variant_h6 = {
.syscon_offset = 0x30,
.support_rmii = true,
};
static const struct udevice_id sun8i_emac_eth_ids[] = {
{ .compatible = "allwinner,sun8i-a83t-emac",
.data = (ulong)&emac_variant_a83t },
{ .compatible = "allwinner,sun8i-h3-emac",
.data = (ulong)&emac_variant_h3 },
{ .compatible = "allwinner,sun8i-r40-gmac",
.data = (ulong)&emac_variant_r40 },
{ .compatible = "allwinner,sun50i-a64-emac",
.data = (ulong)&emac_variant_a64 },
{ .compatible = "allwinner,sun50i-h6-emac",
.data = (ulong)&emac_variant_h6 },
{ }
};
U_BOOT_DRIVER(eth_sun8i_emac) = {
.name = "eth_sun8i_emac",
.id = UCLASS_ETH,
.of_match = sun8i_emac_eth_ids,
.of_to_plat = sun8i_emac_eth_of_to_plat,
.probe = sun8i_emac_eth_probe,
.ops = &sun8i_emac_eth_ops,
.priv_auto = sizeof(struct emac_eth_dev),
.plat_auto = sizeof(struct sun8i_eth_pdata),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};