u-boot/drivers/mtd/nand/raw/davinci_nand.c

795 lines
21 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* NAND driver for TI DaVinci based boards.
*
* Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
*
* Based on Linux DaVinci NAND driver by TI. Original copyright follows:
*/
/*
*
* linux/drivers/mtd/nand/raw/nand_davinci.c
*
* NAND Flash Driver
*
* Copyright (C) 2006 Texas Instruments.
*
* ----------------------------------------------------------------------------
*
* ----------------------------------------------------------------------------
*
* Overview:
* This is a device driver for the NAND flash device found on the
* DaVinci board which utilizes the Samsung k9k2g08 part.
*
Modifications:
ver. 1.0: Feb 2005, Vinod/Sudhakar
-
*/
#include <common.h>
#include <asm/io.h>
#include <nand.h>
#include <asm/ti-common/davinci_nand.h>
/* Definitions for 4-bit hardware ECC */
#define NAND_TIMEOUT 10240
#define NAND_ECC_BUSY 0xC
#define NAND_4BITECC_MASK 0x03FF03FF
#define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
#define ECC_STATE_NO_ERR 0x0
#define ECC_STATE_TOO_MANY_ERRS 0x1
#define ECC_STATE_ERR_CORR_COMP_P 0x2
#define ECC_STATE_ERR_CORR_COMP_N 0x3
/*
* Exploit the little endianness of the ARM to do multi-byte transfers
* per device read. This can perform over twice as quickly as individual
* byte transfers when buffer alignment is conducive.
*
* NOTE: This only works if the NAND is not connected to the 2 LSBs of
* the address bus. On Davinci EVM platforms this has always been true.
*/
static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
const u32 *nand = chip->IO_ADDR_R;
/* Make sure that buf is 32 bit aligned */
if (((int)buf & 0x3) != 0) {
if (((int)buf & 0x1) != 0) {
if (len) {
*buf = readb(nand);
buf += 1;
len--;
}
}
if (((int)buf & 0x3) != 0) {
if (len >= 2) {
*(u16 *)buf = readw(nand);
buf += 2;
len -= 2;
}
}
}
/* copy aligned data */
while (len >= 4) {
*(u32 *)buf = __raw_readl(nand);
buf += 4;
len -= 4;
}
/* mop up any remaining bytes */
if (len) {
if (len >= 2) {
*(u16 *)buf = readw(nand);
buf += 2;
len -= 2;
}
if (len)
*buf = readb(nand);
}
}
static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
const u32 *nand = chip->IO_ADDR_W;
/* Make sure that buf is 32 bit aligned */
if (((int)buf & 0x3) != 0) {
if (((int)buf & 0x1) != 0) {
if (len) {
writeb(*buf, nand);
buf += 1;
len--;
}
}
if (((int)buf & 0x3) != 0) {
if (len >= 2) {
writew(*(u16 *)buf, nand);
buf += 2;
len -= 2;
}
}
}
/* copy aligned data */
while (len >= 4) {
__raw_writel(*(u32 *)buf, nand);
buf += 4;
len -= 4;
}
/* mop up any remaining bytes */
if (len) {
if (len >= 2) {
writew(*(u16 *)buf, nand);
buf += 2;
len -= 2;
}
if (len)
writeb(*buf, nand);
}
}
static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct nand_chip *this = mtd_to_nand(mtd);
u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
if (ctrl & NAND_CTRL_CHANGE) {
IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
if (ctrl & NAND_CLE)
IO_ADDR_W |= MASK_CLE;
if (ctrl & NAND_ALE)
IO_ADDR_W |= MASK_ALE;
this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
}
if (cmd != NAND_CMD_NONE)
writeb(cmd, IO_ADDR_W);
}
#ifdef CONFIG_SYS_NAND_HW_ECC
static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
{
u_int32_t ecc = 0;
ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
CONFIG_SYS_NAND_CS - 2]));
return ecc;
}
static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
{
u_int32_t val;
/* reading the ECC result register resets the ECC calculation */
nand_davinci_readecc(mtd);
val = __raw_readl(&davinci_emif_regs->nandfcr);
val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
__raw_writel(val, &davinci_emif_regs->nandfcr);
}
static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
u_int32_t tmp;
tmp = nand_davinci_readecc(mtd);
/* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
* and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
/* Invert so that erased block ECC is correct */
tmp = ~tmp;
*ecc_code++ = tmp;
*ecc_code++ = tmp >> 8;
*ecc_code++ = tmp >> 16;
/* NOTE: the above code matches mainline Linux:
* .PQR.stu ==> ~PQRstu
*
* MontaVista/TI kernels encode those bytes differently, use
* complicated (and allegedly sometimes-wrong) correction code,
* and usually shipped with U-Boot that uses software ECC:
* .PQR.stu ==> PsQRtu
*
* If you need MV/TI compatible NAND I/O in U-Boot, it should
* be possible to (a) change the mangling above, (b) reverse
* that mangling in nand_davinci_correct_data() below.
*/
return 0;
}
static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *this = mtd_to_nand(mtd);
u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
(read_ecc[2] << 16);
u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
(calc_ecc[2] << 16);
u_int32_t diff = ecc_calc ^ ecc_nand;
if (diff) {
if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
/* Correctable error */
if ((diff >> (12 + 3)) < this->ecc.size) {
uint8_t find_bit = 1 << ((diff >> 12) & 7);
uint32_t find_byte = diff >> (12 + 3);
dat[find_byte] ^= find_bit;
pr_debug("Correcting single "
"bit ECC error at offset: %d, bit: "
"%d\n", find_byte, find_bit);
return 1;
} else {
return -EBADMSG;
}
} else if (!(diff & (diff - 1))) {
/* Single bit ECC error in the ECC itself,
nothing to fix */
pr_debug("Single bit ECC error in " "ECC.\n");
return 1;
} else {
/* Uncorrectable error */
pr_debug("ECC UNCORRECTED_ERROR 1\n");
return -EBADMSG;
}
}
return 0;
}
#endif /* CONFIG_SYS_NAND_HW_ECC */
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
#if defined(CONFIG_SYS_NAND_PAGE_2K)
.eccbytes = 40,
#ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC
.eccpos = {
6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
},
.oobfree = {
{2, 4}, {16, 6}, {32, 6}, {48, 6},
},
#else
.eccpos = {
24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63,
},
.oobfree = {
{.offset = 2, .length = 22, },
},
#endif /* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */
#elif defined(CONFIG_SYS_NAND_PAGE_4K)
.eccbytes = 80,
.eccpos = {
48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
},
.oobfree = {
{.offset = 2, .length = 46, },
},
#endif
};
#if defined CONFIG_KEYSTONE_RBL_NAND
static struct nand_ecclayout nand_keystone_rbl_4bit_layout_oobfirst = {
#if defined(CONFIG_SYS_NAND_PAGE_2K)
.eccbytes = 40,
.eccpos = {
6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
},
.oobfree = {
{.offset = 2, .length = 4, },
{.offset = 16, .length = 6, },
{.offset = 32, .length = 6, },
{.offset = 48, .length = 6, },
},
#elif defined(CONFIG_SYS_NAND_PAGE_4K)
.eccbytes = 80,
.eccpos = {
6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
},
.oobfree = {
{.offset = 2, .length = 4, },
{.offset = 16, .length = 6, },
{.offset = 32, .length = 6, },
{.offset = 48, .length = 6, },
{.offset = 64, .length = 6, },
{.offset = 80, .length = 6, },
{.offset = 96, .length = 6, },
{.offset = 112, .length = 6, },
},
#endif
};
#ifdef CONFIG_SYS_NAND_PAGE_2K
#define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 11
#elif defined(CONFIG_SYS_NAND_PAGE_4K)
#define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 12
#endif
/**
* nand_davinci_write_page - write one page
* @mtd: MTD device structure
* @chip: NAND chip descriptor
* @buf: the data to write
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
* @raw: use _raw version of write_page
*/
static int nand_davinci_write_page(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t offset, int data_len,
const uint8_t *buf, int oob_required,
int page, int raw)
{
int status;
int ret = 0;
struct nand_ecclayout *saved_ecc_layout;
/* save current ECC layout and assign Keystone RBL ECC layout */
if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
saved_ecc_layout = chip->ecc.layout;
chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
mtd->oobavail = chip->ecc.layout->oobavail;
}
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
if (unlikely(raw)) {
status = chip->ecc.write_page_raw(mtd, chip, buf,
oob_required, page);
} else {
status = chip->ecc.write_page(mtd, chip, buf,
oob_required, page);
}
if (status < 0) {
ret = status;
goto err;
}
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
if (status & NAND_STATUS_FAIL) {
ret = -EIO;
goto err;
}
err:
/* restore ECC layout */
if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
chip->ecc.layout = saved_ecc_layout;
mtd->oobavail = saved_ecc_layout->oobavail;
}
return ret;
}
/**
* nand_davinci_read_page_hwecc - hardware ECC based page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Not for syndrome calculating ECC controllers which need a special oob layout.
*/
static int nand_davinci_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint32_t *eccpos;
uint8_t *p = buf;
uint8_t *ecc_code = chip->buffers->ecccode;
uint8_t *ecc_calc = chip->buffers->ecccalc;
struct nand_ecclayout *saved_ecc_layout = chip->ecc.layout;
/* save current ECC layout and assign Keystone RBL ECC layout */
if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
mtd->oobavail = chip->ecc.layout->oobavail;
}
eccpos = chip->ecc.layout->eccpos;
/* Read the OOB area first */
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(mtd, NAND_ECC_READ);
chip->read_buf(mtd, p, eccsize);
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
}
/* restore ECC layout */
if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
chip->ecc.layout = saved_ecc_layout;
mtd->oobavail = saved_ecc_layout->oobavail;
}
return 0;
}
#endif /* CONFIG_KEYSTONE_RBL_NAND */
static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
{
u32 val;
switch (mode) {
case NAND_ECC_WRITE:
case NAND_ECC_READ:
/*
* Start a new ECC calculation for reading or writing 512 bytes
* of data.
*/
val = __raw_readl(&davinci_emif_regs->nandfcr);
val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
val |= DAVINCI_NANDFCR_4BIT_ECC_START;
__raw_writel(val, &davinci_emif_regs->nandfcr);
break;
case NAND_ECC_READSYN:
val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
break;
default:
break;
}
}
static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
{
int i;
for (i = 0; i < 4; i++) {
ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
NAND_4BITECC_MASK;
}
return 0;
}
static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
const uint8_t *dat,
uint8_t *ecc_code)
{
unsigned int hw_4ecc[4];
unsigned int i;
nand_davinci_4bit_readecc(mtd, hw_4ecc);
/*Convert 10 bit ecc value to 8 bit */
for (i = 0; i < 2; i++) {
unsigned int hw_ecc_low = hw_4ecc[i * 2];
unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
*ecc_code++ = hw_ecc_low & 0xFF;
/*
* Take 2 bits as LSB bits from val1 (count1=0) or val5
* (count1=1) and 6 bits from val2 (count1=0) or
* val5 (count1=1)
*/
*ecc_code++ =
((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
/*
* Take 4 bits from val2 (count1=0) or val5 (count1=1) and
* 4 bits from val3 (count1=0) or val6 (count1=1)
*/
*ecc_code++ =
((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
/*
* Take 6 bits from val3(count1=0) or val6 (count1=1) and
* 2 bits from val4 (count1=0) or val7 (count1=1)
*/
*ecc_code++ =
((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
*ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
}
return 0;
}
static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
int i;
unsigned int hw_4ecc[4];
unsigned int iserror;
unsigned short *ecc16;
unsigned int numerrors, erroraddress, errorvalue;
u32 val;
/*
* Check for an ECC where all bytes are 0xFF. If this is the case, we
* will assume we are looking at an erased page and we should ignore
* the ECC.
*/
for (i = 0; i < 10; i++) {
if (read_ecc[i] != 0xFF)
break;
}
if (i == 10)
return 0;
/* Convert 8 bit in to 10 bit */
ecc16 = (unsigned short *)&read_ecc[0];
/*
* Write the parity values in the NAND Flash 4-bit ECC Load register.
* Write each parity value one at a time starting from 4bit_ecc_val8
* to 4bit_ecc_val1.
*/
/*Take 2 bits from 8th byte and 8 bits from 9th byte */
__raw_writel(((ecc16[4]) >> 6) & 0x3FF,
&davinci_emif_regs->nand4biteccload);
/* Take 4 bits from 7th byte and 6 bits from 8th byte */
__raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
&davinci_emif_regs->nand4biteccload);
/* Take 6 bits from 6th byte and 4 bits from 7th byte */
__raw_writel((ecc16[3] >> 2) & 0x3FF,
&davinci_emif_regs->nand4biteccload);
/* Take 8 bits from 5th byte and 2 bits from 6th byte */
__raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
&davinci_emif_regs->nand4biteccload);
/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
__raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
&davinci_emif_regs->nand4biteccload);
/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
__raw_writel(((ecc16[1]) >> 4) & 0x3FF,
&davinci_emif_regs->nand4biteccload);
/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
__raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
&davinci_emif_regs->nand4biteccload);
/* Take 10 bits from 0th and 1st bytes */
__raw_writel((ecc16[0]) & 0x3FF,
&davinci_emif_regs->nand4biteccload);
/*
* Perform a dummy read to the EMIF Revision Code and Status register.
* This is required to ensure time for syndrome calculation after
* writing the ECC values in previous step.
*/
val = __raw_readl(&davinci_emif_regs->nandfsr);
/*
* Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
* A syndrome value of 0 means no bit errors. If the syndrome is
* non-zero then go further otherwise return.
*/
nand_davinci_4bit_readecc(mtd, hw_4ecc);
if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
return 0;
/*
* Clear any previous address calculation by doing a dummy read of an
* error address register.
*/
val = __raw_readl(&davinci_emif_regs->nanderradd1);
/*
* Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
* register to 1.
*/
__raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
&davinci_emif_regs->nandfcr);
/*
* Wait for the corr_state field (bits 8 to 11) in the
* NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
* Otherwise ECC calculation has not even begun and the next loop might
* fail because of a false positive!
*/
i = NAND_TIMEOUT;
do {
val = __raw_readl(&davinci_emif_regs->nandfsr);
val &= 0xc00;
i--;
} while ((i > 0) && !val);
/*
* Wait for the corr_state field (bits 8 to 11) in the
* NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
*/
i = NAND_TIMEOUT;
do {
val = __raw_readl(&davinci_emif_regs->nandfsr);
val &= 0xc00;
i--;
} while ((i > 0) && val);
iserror = __raw_readl(&davinci_emif_regs->nandfsr);
iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
iserror = iserror >> 8;
/*
* ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
* corrected (five or more errors). The number of errors
* calculated (err_num field) differs from the number of errors
* searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
* correction complete (errors on bit 8 or 9).
* ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
* complete (error exists).
*/
if (iserror == ECC_STATE_NO_ERR) {
val = __raw_readl(&davinci_emif_regs->nanderrval1);
return 0;
} else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
val = __raw_readl(&davinci_emif_regs->nanderrval1);
return -EBADMSG;
}
numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
& 0x3) + 1;
/* Read the error address, error value and correct */
for (i = 0; i < numerrors; i++) {
if (i > 1) {
erroraddress =
((__raw_readl(&davinci_emif_regs->nanderradd2) >>
(16 * (i & 1))) & 0x3FF);
erroraddress = ((512 + 7) - erroraddress);
errorvalue =
((__raw_readl(&davinci_emif_regs->nanderrval2) >>
(16 * (i & 1))) & 0xFF);
} else {
erroraddress =
((__raw_readl(&davinci_emif_regs->nanderradd1) >>
(16 * (i & 1))) & 0x3FF);
erroraddress = ((512 + 7) - erroraddress);
errorvalue =
((__raw_readl(&davinci_emif_regs->nanderrval1) >>
(16 * (i & 1))) & 0xFF);
}
/* xor the corrupt data with error value */
if (erroraddress < 512)
dat[erroraddress] ^= errorvalue;
}
return numerrors;
}
#endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
static int nand_davinci_dev_ready(struct mtd_info *mtd)
{
return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
}
void davinci_nand_init(struct nand_chip *nand)
{
#if defined CONFIG_KEYSTONE_RBL_NAND
int i;
struct nand_ecclayout *layout;
layout = &nand_keystone_rbl_4bit_layout_oobfirst;
layout->oobavail = 0;
for (i = 0; layout->oobfree[i].length &&
i < ARRAY_SIZE(layout->oobfree); i++)
layout->oobavail += layout->oobfree[i].length;
nand->write_page = nand_davinci_write_page;
nand->ecc.read_page = nand_davinci_read_page_hwecc;
#endif
nand->chip_delay = 0;
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
nand->bbt_options |= NAND_BBT_USE_FLASH;
#endif
#ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
nand->options |= NAND_NO_SUBPAGE_WRITE;
#endif
#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
nand->options |= NAND_BUSWIDTH_16;
#endif
#ifdef CONFIG_SYS_NAND_HW_ECC
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.size = 512;
nand->ecc.bytes = 3;
nand->ecc.strength = 1;
nand->ecc.calculate = nand_davinci_calculate_ecc;
nand->ecc.correct = nand_davinci_correct_data;
nand->ecc.hwctl = nand_davinci_enable_hwecc;
#else
nand->ecc.mode = NAND_ECC_SOFT;
#endif /* CONFIG_SYS_NAND_HW_ECC */
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
nand->ecc.size = 512;
nand->ecc.bytes = 10;
nand->ecc.strength = 4;
nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
nand->ecc.correct = nand_davinci_4bit_correct_data;
nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
#endif
/* Set address of hardware control function */
nand->cmd_ctrl = nand_davinci_hwcontrol;
nand->read_buf = nand_davinci_read_buf;
nand->write_buf = nand_davinci_write_buf;
nand->dev_ready = nand_davinci_dev_ready;
}
int board_nand_init(struct nand_chip *chip) __attribute__((weak));
int board_nand_init(struct nand_chip *chip)
{
davinci_nand_init(chip);
return 0;
}