2018-05-07 21:02:21 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0+
|
2016-03-04 00:10:01 +00:00
|
|
|
/*
|
|
|
|
* EFI application runtime services
|
|
|
|
*
|
|
|
|
* Copyright (c) 2016 Alexander Graf
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <common.h>
|
|
|
|
#include <command.h>
|
|
|
|
#include <dm.h>
|
|
|
|
#include <efi_loader.h>
|
|
|
|
#include <rtc.h>
|
|
|
|
#include <asm/global_data.h>
|
|
|
|
|
|
|
|
/* For manual relocation support */
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
|
2016-08-16 19:08:45 +00:00
|
|
|
struct efi_runtime_mmio_list {
|
|
|
|
struct list_head link;
|
|
|
|
void **ptr;
|
|
|
|
u64 paddr;
|
|
|
|
u64 len;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* This list contains all runtime available mmio regions */
|
|
|
|
LIST_HEAD(efi_runtime_mmio);
|
|
|
|
|
2016-10-14 11:45:30 +00:00
|
|
|
static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void);
|
|
|
|
static efi_status_t __efi_runtime EFIAPI efi_device_error(void);
|
|
|
|
static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void);
|
2016-03-04 00:10:01 +00:00
|
|
|
|
2016-04-11 21:20:39 +00:00
|
|
|
#ifdef CONFIG_SYS_CACHELINE_SIZE
|
|
|
|
#define EFI_CACHELINE_SIZE CONFIG_SYS_CACHELINE_SIZE
|
|
|
|
#else
|
|
|
|
/* Just use the greatest cache flush alignment requirement I'm aware of */
|
|
|
|
#define EFI_CACHELINE_SIZE 128
|
|
|
|
#endif
|
|
|
|
|
2016-03-04 00:10:01 +00:00
|
|
|
#if defined(CONFIG_ARM64)
|
|
|
|
#define R_RELATIVE 1027
|
|
|
|
#define R_MASK 0xffffffffULL
|
|
|
|
#define IS_RELA 1
|
|
|
|
#elif defined(CONFIG_ARM)
|
|
|
|
#define R_RELATIVE 23
|
|
|
|
#define R_MASK 0xffULL
|
2016-09-25 21:27:35 +00:00
|
|
|
#elif defined(CONFIG_X86)
|
|
|
|
#include <asm/elf.h>
|
|
|
|
#define R_RELATIVE R_386_RELATIVE
|
|
|
|
#define R_MASK 0xffULL
|
2016-03-04 00:10:01 +00:00
|
|
|
#else
|
|
|
|
#error Need to add relocation awareness
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct elf_rel {
|
|
|
|
ulong *offset;
|
|
|
|
ulong info;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct elf_rela {
|
|
|
|
ulong *offset;
|
|
|
|
ulong info;
|
|
|
|
long addend;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* EFI Runtime code lives in 2 stages. In the first stage, U-Boot and an EFI
|
|
|
|
* payload are running concurrently at the same time. In this mode, we can
|
|
|
|
* handle a good number of runtime callbacks
|
|
|
|
*/
|
|
|
|
|
2016-08-16 19:08:45 +00:00
|
|
|
static void EFIAPI efi_reset_system_boottime(
|
|
|
|
enum efi_reset_type reset_type,
|
|
|
|
efi_status_t reset_status,
|
|
|
|
unsigned long data_size, void *reset_data)
|
2016-03-04 00:10:01 +00:00
|
|
|
{
|
2018-02-18 14:17:52 +00:00
|
|
|
struct efi_event *evt;
|
|
|
|
|
2016-03-04 00:10:01 +00:00
|
|
|
EFI_ENTRY("%d %lx %lx %p", reset_type, reset_status, data_size,
|
|
|
|
reset_data);
|
|
|
|
|
2018-02-18 14:17:52 +00:00
|
|
|
/* Notify reset */
|
|
|
|
list_for_each_entry(evt, &efi_events, link) {
|
|
|
|
if (evt->group &&
|
|
|
|
!guidcmp(evt->group,
|
|
|
|
&efi_guid_event_group_reset_system)) {
|
|
|
|
efi_signal_event(evt, false);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2016-03-04 00:10:01 +00:00
|
|
|
switch (reset_type) {
|
|
|
|
case EFI_RESET_COLD:
|
|
|
|
case EFI_RESET_WARM:
|
2018-02-06 21:00:22 +00:00
|
|
|
case EFI_RESET_PLATFORM_SPECIFIC:
|
2016-03-04 00:10:01 +00:00
|
|
|
do_reset(NULL, 0, 0, NULL);
|
|
|
|
break;
|
|
|
|
case EFI_RESET_SHUTDOWN:
|
|
|
|
/* We don't have anything to map this to */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2016-08-16 19:08:45 +00:00
|
|
|
while (1) { }
|
2016-03-04 00:10:01 +00:00
|
|
|
}
|
|
|
|
|
2016-08-16 19:08:45 +00:00
|
|
|
static efi_status_t EFIAPI efi_get_time_boottime(
|
|
|
|
struct efi_time *time,
|
|
|
|
struct efi_time_cap *capabilities)
|
2016-03-04 00:10:01 +00:00
|
|
|
{
|
|
|
|
#if defined(CONFIG_CMD_DATE) && defined(CONFIG_DM_RTC)
|
|
|
|
struct rtc_time tm;
|
|
|
|
int r;
|
|
|
|
struct udevice *dev;
|
|
|
|
|
|
|
|
EFI_ENTRY("%p %p", time, capabilities);
|
|
|
|
|
|
|
|
r = uclass_get_device(UCLASS_RTC, 0, &dev);
|
|
|
|
if (r)
|
|
|
|
return EFI_EXIT(EFI_DEVICE_ERROR);
|
|
|
|
|
|
|
|
r = dm_rtc_get(dev, &tm);
|
|
|
|
if (r)
|
|
|
|
return EFI_EXIT(EFI_DEVICE_ERROR);
|
|
|
|
|
|
|
|
memset(time, 0, sizeof(*time));
|
|
|
|
time->year = tm.tm_year;
|
|
|
|
time->month = tm.tm_mon;
|
|
|
|
time->day = tm.tm_mday;
|
|
|
|
time->hour = tm.tm_hour;
|
|
|
|
time->minute = tm.tm_min;
|
|
|
|
time->daylight = tm.tm_isdst;
|
|
|
|
|
|
|
|
return EFI_EXIT(EFI_SUCCESS);
|
|
|
|
#else
|
|
|
|
return EFI_DEVICE_ERROR;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2016-08-16 19:08:45 +00:00
|
|
|
/* Boards may override the helpers below to implement RTS functionality */
|
|
|
|
|
2016-10-14 11:45:30 +00:00
|
|
|
void __weak __efi_runtime EFIAPI efi_reset_system(
|
2016-08-16 19:08:45 +00:00
|
|
|
enum efi_reset_type reset_type,
|
|
|
|
efi_status_t reset_status,
|
|
|
|
unsigned long data_size, void *reset_data)
|
|
|
|
{
|
|
|
|
/* Nothing we can do */
|
|
|
|
while (1) { }
|
|
|
|
}
|
|
|
|
|
2018-03-03 14:28:59 +00:00
|
|
|
efi_status_t __weak efi_reset_system_init(void)
|
2016-08-16 19:08:45 +00:00
|
|
|
{
|
2018-03-03 14:28:59 +00:00
|
|
|
return EFI_SUCCESS;
|
2016-08-16 19:08:45 +00:00
|
|
|
}
|
|
|
|
|
2016-10-14 11:45:30 +00:00
|
|
|
efi_status_t __weak __efi_runtime EFIAPI efi_get_time(
|
2016-08-16 19:08:45 +00:00
|
|
|
struct efi_time *time,
|
|
|
|
struct efi_time_cap *capabilities)
|
|
|
|
{
|
|
|
|
/* Nothing we can do */
|
|
|
|
return EFI_DEVICE_ERROR;
|
|
|
|
}
|
|
|
|
|
2018-03-03 14:29:00 +00:00
|
|
|
efi_status_t __weak efi_get_time_init(void)
|
2016-08-16 19:08:45 +00:00
|
|
|
{
|
2018-03-03 14:29:00 +00:00
|
|
|
return EFI_SUCCESS;
|
2016-08-16 19:08:45 +00:00
|
|
|
}
|
|
|
|
|
2016-03-04 00:10:01 +00:00
|
|
|
struct efi_runtime_detach_list_struct {
|
|
|
|
void *ptr;
|
|
|
|
void *patchto;
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct efi_runtime_detach_list_struct efi_runtime_detach_list[] = {
|
|
|
|
{
|
|
|
|
/* do_reset is gone */
|
|
|
|
.ptr = &efi_runtime_services.reset_system,
|
2016-08-16 19:08:45 +00:00
|
|
|
.patchto = efi_reset_system,
|
2016-03-04 00:10:01 +00:00
|
|
|
}, {
|
|
|
|
/* invalidate_*cache_all are gone */
|
|
|
|
.ptr = &efi_runtime_services.set_virtual_address_map,
|
|
|
|
.patchto = &efi_invalid_parameter,
|
|
|
|
}, {
|
|
|
|
/* RTC accessors are gone */
|
|
|
|
.ptr = &efi_runtime_services.get_time,
|
2016-08-16 19:08:45 +00:00
|
|
|
.patchto = &efi_get_time,
|
2016-05-17 22:54:47 +00:00
|
|
|
}, {
|
|
|
|
/* Clean up system table */
|
|
|
|
.ptr = &systab.con_in,
|
|
|
|
.patchto = NULL,
|
|
|
|
}, {
|
|
|
|
/* Clean up system table */
|
|
|
|
.ptr = &systab.con_out,
|
|
|
|
.patchto = NULL,
|
|
|
|
}, {
|
|
|
|
/* Clean up system table */
|
|
|
|
.ptr = &systab.std_err,
|
|
|
|
.patchto = NULL,
|
|
|
|
}, {
|
|
|
|
/* Clean up system table */
|
|
|
|
.ptr = &systab.boottime,
|
|
|
|
.patchto = NULL,
|
efi_loader: efi variable support
Add EFI variable support, mapping to u-boot environment variables.
Variables are pretty important for setting up boot order, among other
things. If the board supports saveenv, then it will be called in
ExitBootServices() to persist variables set by the efi payload. (For
example, fallback.efi configuring BootOrder and BootXXXX load-option
variables.)
Variables are *not* currently exposed at runtime, post ExitBootServices.
On boards without a dedicated device for storage, which the loaded OS
is not trying to also use, this is rather tricky. One idea, at least
for boards that can persist RAM across reboot, is to keep a "journal"
of modified variables in RAM, and then turn halt into a reboot into
u-boot, plus store variables, plus halt. Whatever the solution, it
likely involves some per-board support.
Mapping between EFI variables and u-boot variables:
efi_$guid_$varname = {attributes}(type)value
For example:
efi_8be4df61-93ca-11d2-aa0d-00e098032b8c_OsIndicationsSupported=
"{ro,boot,run}(blob)0000000000000000"
efi_8be4df61-93ca-11d2-aa0d-00e098032b8c_BootOrder=
"(blob)00010000"
The attributes are a comma separated list of these possible
attributes:
+ ro - read-only
+ boot - boot-services access
+ run - runtime access
NOTE: with current implementation, no variables are available after
ExitBootServices, and all are persisted (if possible).
If not specified, the attributes default to "{boot}".
The required type is one of:
+ utf8 - raw utf8 string
+ blob - arbitrary length hex string
Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2017-09-13 22:05:37 +00:00
|
|
|
}, {
|
|
|
|
.ptr = &efi_runtime_services.get_variable,
|
|
|
|
.patchto = &efi_device_error,
|
|
|
|
}, {
|
|
|
|
.ptr = &efi_runtime_services.get_next_variable,
|
|
|
|
.patchto = &efi_device_error,
|
|
|
|
}, {
|
|
|
|
.ptr = &efi_runtime_services.set_variable,
|
|
|
|
.patchto = &efi_device_error,
|
|
|
|
}
|
2016-03-04 00:10:01 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static bool efi_runtime_tobedetached(void *p)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++)
|
|
|
|
if (efi_runtime_detach_list[i].ptr == p)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void efi_runtime_detach(ulong offset)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
ulong patchoff = offset - (ulong)gd->relocaddr;
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++) {
|
|
|
|
ulong patchto = (ulong)efi_runtime_detach_list[i].patchto;
|
|
|
|
ulong *p = efi_runtime_detach_list[i].ptr;
|
|
|
|
ulong newaddr = patchto ? (patchto + patchoff) : 0;
|
|
|
|
|
2016-06-02 09:38:27 +00:00
|
|
|
debug("%s: Setting %p to %lx\n", __func__, p, newaddr);
|
2016-03-04 00:10:01 +00:00
|
|
|
*p = newaddr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Relocate EFI runtime to uboot_reloc_base = offset */
|
|
|
|
void efi_runtime_relocate(ulong offset, struct efi_mem_desc *map)
|
|
|
|
{
|
|
|
|
#ifdef IS_RELA
|
|
|
|
struct elf_rela *rel = (void*)&__efi_runtime_rel_start;
|
|
|
|
#else
|
|
|
|
struct elf_rel *rel = (void*)&__efi_runtime_rel_start;
|
|
|
|
static ulong lastoff = CONFIG_SYS_TEXT_BASE;
|
|
|
|
#endif
|
|
|
|
|
2016-06-02 09:38:27 +00:00
|
|
|
debug("%s: Relocating to offset=%lx\n", __func__, offset);
|
2016-03-04 00:10:01 +00:00
|
|
|
for (; (ulong)rel < (ulong)&__efi_runtime_rel_stop; rel++) {
|
|
|
|
ulong base = CONFIG_SYS_TEXT_BASE;
|
|
|
|
ulong *p;
|
|
|
|
ulong newaddr;
|
|
|
|
|
|
|
|
p = (void*)((ulong)rel->offset - base) + gd->relocaddr;
|
|
|
|
|
|
|
|
if ((rel->info & R_MASK) != R_RELATIVE) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef IS_RELA
|
|
|
|
newaddr = rel->addend + offset - CONFIG_SYS_TEXT_BASE;
|
|
|
|
#else
|
|
|
|
newaddr = *p - lastoff + offset;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Check if the relocation is inside bounds */
|
|
|
|
if (map && ((newaddr < map->virtual_start) ||
|
2017-09-18 20:11:34 +00:00
|
|
|
newaddr > (map->virtual_start +
|
|
|
|
(map->num_pages << EFI_PAGE_SHIFT)))) {
|
2016-03-04 00:10:01 +00:00
|
|
|
if (!efi_runtime_tobedetached(p))
|
|
|
|
printf("U-Boot EFI: Relocation at %p is out of "
|
|
|
|
"range (%lx)\n", p, newaddr);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2016-06-02 09:38:27 +00:00
|
|
|
debug("%s: Setting %p to %lx\n", __func__, p, newaddr);
|
2016-03-04 00:10:01 +00:00
|
|
|
*p = newaddr;
|
2016-04-11 21:20:39 +00:00
|
|
|
flush_dcache_range((ulong)p & ~(EFI_CACHELINE_SIZE - 1),
|
|
|
|
ALIGN((ulong)&p[1], EFI_CACHELINE_SIZE));
|
2016-03-04 00:10:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef IS_RELA
|
|
|
|
lastoff = offset;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
invalidate_icache_all();
|
|
|
|
}
|
|
|
|
|
|
|
|
static efi_status_t EFIAPI efi_set_virtual_address_map(
|
|
|
|
unsigned long memory_map_size,
|
|
|
|
unsigned long descriptor_size,
|
|
|
|
uint32_t descriptor_version,
|
|
|
|
struct efi_mem_desc *virtmap)
|
|
|
|
{
|
2017-09-18 20:11:34 +00:00
|
|
|
ulong runtime_start = (ulong)&__efi_runtime_start &
|
|
|
|
~(ulong)EFI_PAGE_MASK;
|
2016-03-04 00:10:01 +00:00
|
|
|
int n = memory_map_size / descriptor_size;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
EFI_ENTRY("%lx %lx %x %p", memory_map_size, descriptor_size,
|
|
|
|
descriptor_version, virtmap);
|
|
|
|
|
2016-08-16 19:08:45 +00:00
|
|
|
/* Rebind mmio pointers */
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
struct efi_mem_desc *map = (void*)virtmap +
|
|
|
|
(descriptor_size * i);
|
|
|
|
struct list_head *lhandle;
|
|
|
|
efi_physical_addr_t map_start = map->physical_start;
|
|
|
|
efi_physical_addr_t map_len = map->num_pages << EFI_PAGE_SHIFT;
|
|
|
|
efi_physical_addr_t map_end = map_start + map_len;
|
|
|
|
|
|
|
|
/* Adjust all mmio pointers in this region */
|
|
|
|
list_for_each(lhandle, &efi_runtime_mmio) {
|
|
|
|
struct efi_runtime_mmio_list *lmmio;
|
|
|
|
|
|
|
|
lmmio = list_entry(lhandle,
|
|
|
|
struct efi_runtime_mmio_list,
|
|
|
|
link);
|
|
|
|
if ((map_start <= lmmio->paddr) &&
|
|
|
|
(map_end >= lmmio->paddr)) {
|
|
|
|
u64 off = map->virtual_start - map_start;
|
|
|
|
uintptr_t new_addr = lmmio->paddr + off;
|
|
|
|
*lmmio->ptr = (void *)new_addr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Move the actual runtime code over */
|
2016-03-04 00:10:01 +00:00
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
struct efi_mem_desc *map;
|
|
|
|
|
|
|
|
map = (void*)virtmap + (descriptor_size * i);
|
|
|
|
if (map->type == EFI_RUNTIME_SERVICES_CODE) {
|
2016-08-16 19:08:45 +00:00
|
|
|
ulong new_offset = map->virtual_start -
|
|
|
|
(runtime_start - gd->relocaddr);
|
2016-03-04 00:10:01 +00:00
|
|
|
|
|
|
|
efi_runtime_relocate(new_offset, map);
|
|
|
|
/* Once we're virtual, we can no longer handle
|
|
|
|
complex callbacks */
|
|
|
|
efi_runtime_detach(new_offset);
|
|
|
|
return EFI_EXIT(EFI_SUCCESS);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return EFI_EXIT(EFI_INVALID_PARAMETER);
|
|
|
|
}
|
|
|
|
|
2018-03-03 14:28:59 +00:00
|
|
|
efi_status_t efi_add_runtime_mmio(void *mmio_ptr, u64 len)
|
2016-08-16 19:08:45 +00:00
|
|
|
{
|
|
|
|
struct efi_runtime_mmio_list *newmmio;
|
2017-08-11 19:19:37 +00:00
|
|
|
u64 pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
|
2018-03-15 14:08:16 +00:00
|
|
|
uint64_t addr = *(uintptr_t *)mmio_ptr;
|
|
|
|
uint64_t retaddr;
|
|
|
|
|
|
|
|
retaddr = efi_add_memory_map(addr, pages, EFI_MMAP_IO, false);
|
|
|
|
if (retaddr != addr)
|
|
|
|
return EFI_OUT_OF_RESOURCES;
|
2016-08-16 19:08:45 +00:00
|
|
|
|
|
|
|
newmmio = calloc(1, sizeof(*newmmio));
|
2018-03-03 14:28:59 +00:00
|
|
|
if (!newmmio)
|
|
|
|
return EFI_OUT_OF_RESOURCES;
|
2016-08-16 19:08:45 +00:00
|
|
|
newmmio->ptr = mmio_ptr;
|
|
|
|
newmmio->paddr = *(uintptr_t *)mmio_ptr;
|
|
|
|
newmmio->len = len;
|
|
|
|
list_add_tail(&newmmio->link, &efi_runtime_mmio);
|
2018-03-03 14:28:59 +00:00
|
|
|
|
2018-03-15 14:08:16 +00:00
|
|
|
return EFI_SUCCESS;
|
2016-08-16 19:08:45 +00:00
|
|
|
}
|
|
|
|
|
2016-03-04 00:10:01 +00:00
|
|
|
/*
|
|
|
|
* In the second stage, U-Boot has disappeared. To isolate our runtime code
|
|
|
|
* that at this point still exists from the rest, we put it into a special
|
|
|
|
* section.
|
|
|
|
*
|
|
|
|
* !!WARNING!!
|
|
|
|
*
|
|
|
|
* This means that we can not rely on any code outside of this file in any
|
|
|
|
* function or variable below this line.
|
|
|
|
*
|
|
|
|
* Please keep everything fully self-contained and annotated with
|
2016-10-14 11:45:30 +00:00
|
|
|
* __efi_runtime and __efi_runtime_data markers.
|
2016-03-04 00:10:01 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Relocate the EFI runtime stub to a different place. We need to call this
|
|
|
|
* the first time we expose the runtime interface to a user and on set virtual
|
|
|
|
* address map calls.
|
|
|
|
*/
|
|
|
|
|
2016-10-14 11:45:30 +00:00
|
|
|
static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void)
|
2016-03-04 00:10:01 +00:00
|
|
|
{
|
|
|
|
return EFI_UNSUPPORTED;
|
|
|
|
}
|
|
|
|
|
2016-10-14 11:45:30 +00:00
|
|
|
static efi_status_t __efi_runtime EFIAPI efi_device_error(void)
|
2016-03-04 00:10:01 +00:00
|
|
|
{
|
|
|
|
return EFI_DEVICE_ERROR;
|
|
|
|
}
|
|
|
|
|
2016-10-14 11:45:30 +00:00
|
|
|
static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void)
|
2016-03-04 00:10:01 +00:00
|
|
|
{
|
|
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
}
|
|
|
|
|
2018-02-09 19:41:21 +00:00
|
|
|
efi_status_t __efi_runtime EFIAPI efi_update_capsule(
|
|
|
|
struct efi_capsule_header **capsule_header_array,
|
|
|
|
efi_uintn_t capsule_count,
|
|
|
|
u64 scatter_gather_list)
|
|
|
|
{
|
|
|
|
return EFI_UNSUPPORTED;
|
|
|
|
}
|
|
|
|
|
|
|
|
efi_status_t __efi_runtime EFIAPI efi_query_capsule_caps(
|
|
|
|
struct efi_capsule_header **capsule_header_array,
|
|
|
|
efi_uintn_t capsule_count,
|
|
|
|
u64 maximum_capsule_size,
|
|
|
|
u32 reset_type)
|
|
|
|
{
|
|
|
|
return EFI_UNSUPPORTED;
|
|
|
|
}
|
|
|
|
|
|
|
|
efi_status_t __efi_runtime EFIAPI efi_query_variable_info(
|
|
|
|
u32 attributes,
|
|
|
|
u64 maximum_variable_storage_size,
|
|
|
|
u64 remaining_variable_storage_size,
|
|
|
|
u64 maximum_variable_size)
|
|
|
|
{
|
|
|
|
return EFI_UNSUPPORTED;
|
|
|
|
}
|
|
|
|
|
2016-10-14 11:45:30 +00:00
|
|
|
struct efi_runtime_services __efi_runtime_data efi_runtime_services = {
|
2016-03-04 00:10:01 +00:00
|
|
|
.hdr = {
|
|
|
|
.signature = EFI_RUNTIME_SERVICES_SIGNATURE,
|
|
|
|
.revision = EFI_RUNTIME_SERVICES_REVISION,
|
|
|
|
.headersize = sizeof(struct efi_table_hdr),
|
|
|
|
},
|
2016-08-16 19:08:45 +00:00
|
|
|
.get_time = &efi_get_time_boottime,
|
2016-03-04 00:10:01 +00:00
|
|
|
.set_time = (void *)&efi_device_error,
|
|
|
|
.get_wakeup_time = (void *)&efi_unimplemented,
|
|
|
|
.set_wakeup_time = (void *)&efi_unimplemented,
|
|
|
|
.set_virtual_address_map = &efi_set_virtual_address_map,
|
|
|
|
.convert_pointer = (void *)&efi_invalid_parameter,
|
efi_loader: efi variable support
Add EFI variable support, mapping to u-boot environment variables.
Variables are pretty important for setting up boot order, among other
things. If the board supports saveenv, then it will be called in
ExitBootServices() to persist variables set by the efi payload. (For
example, fallback.efi configuring BootOrder and BootXXXX load-option
variables.)
Variables are *not* currently exposed at runtime, post ExitBootServices.
On boards without a dedicated device for storage, which the loaded OS
is not trying to also use, this is rather tricky. One idea, at least
for boards that can persist RAM across reboot, is to keep a "journal"
of modified variables in RAM, and then turn halt into a reboot into
u-boot, plus store variables, plus halt. Whatever the solution, it
likely involves some per-board support.
Mapping between EFI variables and u-boot variables:
efi_$guid_$varname = {attributes}(type)value
For example:
efi_8be4df61-93ca-11d2-aa0d-00e098032b8c_OsIndicationsSupported=
"{ro,boot,run}(blob)0000000000000000"
efi_8be4df61-93ca-11d2-aa0d-00e098032b8c_BootOrder=
"(blob)00010000"
The attributes are a comma separated list of these possible
attributes:
+ ro - read-only
+ boot - boot-services access
+ run - runtime access
NOTE: with current implementation, no variables are available after
ExitBootServices, and all are persisted (if possible).
If not specified, the attributes default to "{boot}".
The required type is one of:
+ utf8 - raw utf8 string
+ blob - arbitrary length hex string
Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2017-09-13 22:05:37 +00:00
|
|
|
.get_variable = efi_get_variable,
|
|
|
|
.get_next_variable = efi_get_next_variable,
|
|
|
|
.set_variable = efi_set_variable,
|
2016-03-04 00:10:01 +00:00
|
|
|
.get_next_high_mono_count = (void *)&efi_device_error,
|
2016-08-16 19:08:45 +00:00
|
|
|
.reset_system = &efi_reset_system_boottime,
|
2018-02-09 19:41:21 +00:00
|
|
|
.update_capsule = efi_update_capsule,
|
|
|
|
.query_capsule_caps = efi_query_capsule_caps,
|
|
|
|
.query_variable_info = efi_query_variable_info,
|
2016-03-04 00:10:01 +00:00
|
|
|
};
|