u-boot/drivers/video/rockchip/dw_mipi_dsi_rockchip.c

902 lines
25 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Author(s): Chris Morgan <macromorgan@hotmail.com>
*
* This MIPI DSI controller driver is heavily based on the Linux Kernel
* driver from drivers/gpu/drm/rockchip/dw-mipi-dsi-rockchip.c and the
* U-Boot driver from drivers/video/stm32/stm32_dsi.c.
*/
#define LOG_CATEGORY UCLASS_VIDEO_BRIDGE
#include <clk.h>
#include <dm.h>
#include <div64.h>
#include <dsi_host.h>
#include <generic-phy.h>
#include <mipi_dsi.h>
#include <panel.h>
#include <phy-mipi-dphy.h>
#include <reset.h>
#include <video_bridge.h>
#include <dm/device_compat.h>
#include <dm/lists.h>
#include <linux/iopoll.h>
#include <common.h>
#include <log.h>
#include <video.h>
#include <asm/io.h>
#include <dm/device-internal.h>
#include <linux/bitops.h>
#define USEC_PER_SEC 1000000L
/*
* DSI wrapper registers & bit definitions
* Note: registers are named as in the Reference Manual
*/
#define DSI_WCR 0x0404 /* Wrapper Control Reg */
#define WCR_DSIEN BIT(3) /* DSI ENable */
#define DSI_PHY_TST_CTRL0 0xb4
#define PHY_TESTCLK BIT(1)
#define PHY_UNTESTCLK 0
#define PHY_TESTCLR BIT(0)
#define PHY_UNTESTCLR 0
#define DSI_PHY_TST_CTRL1 0xb8
#define PHY_TESTEN BIT(16)
#define PHY_UNTESTEN 0
#define PHY_TESTDOUT(n) (((n) & 0xff) << 8)
#define PHY_TESTDIN(n) (((n) & 0xff) << 0)
#define BYPASS_VCO_RANGE BIT(7)
#define VCO_RANGE_CON_SEL(val) (((val) & 0x7) << 3)
#define VCO_IN_CAP_CON_DEFAULT (0x0 << 1)
#define VCO_IN_CAP_CON_LOW (0x1 << 1)
#define VCO_IN_CAP_CON_HIGH (0x2 << 1)
#define REF_BIAS_CUR_SEL BIT(0)
#define CP_CURRENT_3UA 0x1
#define CP_CURRENT_4_5UA 0x2
#define CP_CURRENT_7_5UA 0x6
#define CP_CURRENT_6UA 0x9
#define CP_CURRENT_12UA 0xb
#define CP_CURRENT_SEL(val) ((val) & 0xf)
#define CP_PROGRAM_EN BIT(7)
#define LPF_RESISTORS_15_5KOHM 0x1
#define LPF_RESISTORS_13KOHM 0x2
#define LPF_RESISTORS_11_5KOHM 0x4
#define LPF_RESISTORS_10_5KOHM 0x8
#define LPF_RESISTORS_8KOHM 0x10
#define LPF_PROGRAM_EN BIT(6)
#define LPF_RESISTORS_SEL(val) ((val) & 0x3f)
#define HSFREQRANGE_SEL(val) (((val) & 0x3f) << 1)
#define INPUT_DIVIDER(val) (((val) - 1) & 0x7f)
#define LOW_PROGRAM_EN 0
#define HIGH_PROGRAM_EN BIT(7)
#define LOOP_DIV_LOW_SEL(val) (((val) - 1) & 0x1f)
#define LOOP_DIV_HIGH_SEL(val) ((((val) - 1) >> 5) & 0xf)
#define PLL_LOOP_DIV_EN BIT(5)
#define PLL_INPUT_DIV_EN BIT(4)
#define POWER_CONTROL BIT(6)
#define INTERNAL_REG_CURRENT BIT(3)
#define BIAS_BLOCK_ON BIT(2)
#define BANDGAP_ON BIT(0)
#define TER_RESISTOR_HIGH BIT(7)
#define TER_RESISTOR_LOW 0
#define LEVEL_SHIFTERS_ON BIT(6)
#define TER_CAL_DONE BIT(5)
#define SETRD_MAX (0x7 << 2)
#define POWER_MANAGE BIT(1)
#define TER_RESISTORS_ON BIT(0)
#define BIASEXTR_SEL(val) ((val) & 0x7)
#define BANDGAP_SEL(val) ((val) & 0x7)
#define TLP_PROGRAM_EN BIT(7)
#define THS_PRE_PROGRAM_EN BIT(7)
#define THS_ZERO_PROGRAM_EN BIT(6)
#define PLL_BIAS_CUR_SEL_CAP_VCO_CONTROL 0x10
#define PLL_CP_CONTROL_PLL_LOCK_BYPASS 0x11
#define PLL_LPF_AND_CP_CONTROL 0x12
#define PLL_INPUT_DIVIDER_RATIO 0x17
#define PLL_LOOP_DIVIDER_RATIO 0x18
#define PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL 0x19
#define BANDGAP_AND_BIAS_CONTROL 0x20
#define TERMINATION_RESISTER_CONTROL 0x21
#define AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY 0x22
#define HS_RX_CONTROL_OF_LANE_CLK 0x34
#define HS_RX_CONTROL_OF_LANE_0 0x44
#define HS_RX_CONTROL_OF_LANE_1 0x54
#define HS_TX_CLOCK_LANE_REQUEST_STATE_TIME_CONTROL 0x60
#define HS_TX_CLOCK_LANE_PREPARE_STATE_TIME_CONTROL 0x61
#define HS_TX_CLOCK_LANE_HS_ZERO_STATE_TIME_CONTROL 0x62
#define HS_TX_CLOCK_LANE_TRAIL_STATE_TIME_CONTROL 0x63
#define HS_TX_CLOCK_LANE_EXIT_STATE_TIME_CONTROL 0x64
#define HS_TX_CLOCK_LANE_POST_TIME_CONTROL 0x65
#define HS_TX_DATA_LANE_REQUEST_STATE_TIME_CONTROL 0x70
#define HS_TX_DATA_LANE_PREPARE_STATE_TIME_CONTROL 0x71
#define HS_TX_DATA_LANE_HS_ZERO_STATE_TIME_CONTROL 0x72
#define HS_TX_DATA_LANE_TRAIL_STATE_TIME_CONTROL 0x73
#define HS_TX_DATA_LANE_EXIT_STATE_TIME_CONTROL 0x74
#define HS_RX_DATA_LANE_THS_SETTLE_CONTROL 0x75
#define HS_RX_CONTROL_OF_LANE_2 0x84
#define HS_RX_CONTROL_OF_LANE_3 0x94
#define RK3568_GRF_VO_CON2 0x0368
#define RK3568_DSI0_SKEWCALHS (0x1f << 11)
#define RK3568_DSI0_FORCETXSTOPMODE (0xf << 4)
#define RK3568_DSI0_TURNDISABLE BIT(2)
#define RK3568_DSI0_FORCERXMODE BIT(0)
/*
* Note these registers do not appear in the datasheet, they are
* however present in the BSP driver which is where these values
* come from. Name GRF_VO_CON3 is assumed.
*/
#define RK3568_GRF_VO_CON3 0x36c
#define RK3568_DSI1_SKEWCALHS (0x1f << 11)
#define RK3568_DSI1_FORCETXSTOPMODE (0xf << 4)
#define RK3568_DSI1_TURNDISABLE BIT(2)
#define RK3568_DSI1_FORCERXMODE BIT(0)
#define HIWORD_UPDATE(val, mask) (val | (mask) << 16)
/* Timeout for regulator on/off, pll lock/unlock & fifo empty */
#define TIMEOUT_US 200000
enum {
BANDGAP_97_07,
BANDGAP_98_05,
BANDGAP_99_02,
BANDGAP_100_00,
BANDGAP_93_17,
BANDGAP_94_15,
BANDGAP_95_12,
BANDGAP_96_10,
};
enum {
BIASEXTR_87_1,
BIASEXTR_91_5,
BIASEXTR_95_9,
BIASEXTR_100,
BIASEXTR_105_94,
BIASEXTR_111_88,
BIASEXTR_118_8,
BIASEXTR_127_7,
};
struct rockchip_dw_dsi_chip_data {
u32 reg;
u32 lcdsel_grf_reg;
u32 lcdsel_big;
u32 lcdsel_lit;
u32 enable_grf_reg;
u32 enable;
u32 lanecfg1_grf_reg;
u32 lanecfg1;
u32 lanecfg2_grf_reg;
u32 lanecfg2;
unsigned int flags;
unsigned int max_data_lanes;
};
struct dw_rockchip_dsi_priv {
struct mipi_dsi_device device;
void __iomem *base;
struct udevice *panel;
/* Optional external dphy */
struct phy phy;
struct phy_configure_opts_mipi_dphy phy_opts;
struct clk *pclk;
struct clk *ref;
struct reset_ctl *rst;
unsigned int lane_mbps; /* per lane */
u16 input_div;
u16 feedback_div;
const struct rockchip_dw_dsi_chip_data *cdata;
struct udevice *dsi_host;
};
static inline void dsi_write(struct dw_rockchip_dsi_priv *dsi, u32 reg, u32 val)
{
writel(val, dsi->base + reg);
}
static inline u32 dsi_read(struct dw_rockchip_dsi_priv *dsi, u32 reg)
{
return readl(dsi->base + reg);
}
static inline void dsi_set(struct dw_rockchip_dsi_priv *dsi, u32 reg, u32 mask)
{
dsi_write(dsi, reg, dsi_read(dsi, reg) | mask);
}
static inline void dsi_clear(struct dw_rockchip_dsi_priv *dsi, u32 reg, u32 mask)
{
dsi_write(dsi, reg, dsi_read(dsi, reg) & ~mask);
}
static inline void dsi_update_bits(struct dw_rockchip_dsi_priv *dsi, u32 reg,
u32 mask, u32 val)
{
dsi_write(dsi, reg, (dsi_read(dsi, reg) & ~mask) | val);
}
static void dw_mipi_dsi_phy_write(struct dw_rockchip_dsi_priv *dsi,
u8 test_code,
u8 test_data)
{
/*
* With the falling edge on TESTCLK, the TESTDIN[7:0] signal content
* is latched internally as the current test code. Test data is
* programmed internally by rising edge on TESTCLK.
*/
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR);
dsi_write(dsi, DSI_PHY_TST_CTRL1, PHY_TESTEN | PHY_TESTDOUT(0) |
PHY_TESTDIN(test_code));
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLK | PHY_UNTESTCLR);
dsi_write(dsi, DSI_PHY_TST_CTRL1, PHY_UNTESTEN | PHY_TESTDOUT(0) |
PHY_TESTDIN(test_data));
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR);
}
struct dphy_pll_parameter_map {
unsigned int max_mbps;
u8 hsfreqrange;
u8 icpctrl;
u8 lpfctrl;
};
/* The table is based on 27MHz DPHY pll reference clock. */
static const struct dphy_pll_parameter_map dppa_map[] = {
{ 89, 0x00, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM },
{ 99, 0x10, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM },
{ 109, 0x20, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM },
{ 129, 0x01, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM },
{ 139, 0x11, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM },
{ 149, 0x21, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM },
{ 169, 0x02, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM },
{ 179, 0x12, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM },
{ 199, 0x22, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM },
{ 219, 0x03, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM },
{ 239, 0x13, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM },
{ 249, 0x23, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM },
{ 269, 0x04, CP_CURRENT_6UA, LPF_RESISTORS_11_5KOHM },
{ 299, 0x14, CP_CURRENT_6UA, LPF_RESISTORS_11_5KOHM },
{ 329, 0x05, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM },
{ 359, 0x15, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM },
{ 399, 0x25, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM },
{ 449, 0x06, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 499, 0x16, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 549, 0x07, CP_CURRENT_7_5UA, LPF_RESISTORS_10_5KOHM },
{ 599, 0x17, CP_CURRENT_7_5UA, LPF_RESISTORS_10_5KOHM },
{ 649, 0x08, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 699, 0x18, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 749, 0x09, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 799, 0x19, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 849, 0x29, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 899, 0x39, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 949, 0x0a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM },
{ 999, 0x1a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM },
{1049, 0x2a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM },
{1099, 0x3a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM },
{1149, 0x0b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1199, 0x1b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1249, 0x2b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1299, 0x3b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1349, 0x0c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1399, 0x1c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1449, 0x2c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1500, 0x3c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }
};
static int max_mbps_to_parameter(unsigned int max_mbps)
{
int i;
for (i = 0; i < ARRAY_SIZE(dppa_map); i++)
if (dppa_map[i].max_mbps >= max_mbps)
return i;
return -EINVAL;
}
/*
* ns2bc - Nanoseconds to byte clock cycles
*/
static inline unsigned int ns2bc(struct dw_rockchip_dsi_priv *dsi, int ns)
{
return DIV_ROUND_UP(ns * dsi->lane_mbps / 8, 1000);
}
/*
* ns2ui - Nanoseconds to UI time periods
*/
static inline unsigned int ns2ui(struct dw_rockchip_dsi_priv *dsi, int ns)
{
return DIV_ROUND_UP(ns * dsi->lane_mbps, 1000);
}
static int dsi_phy_init(void *priv_data)
{
struct mipi_dsi_device *device = priv_data;
struct udevice *dev = device->dev;
struct dw_rockchip_dsi_priv *dsi = dev_get_priv(dev);
int ret, i, vco;
if (dsi->phy.dev) {
ret = generic_phy_configure(&dsi->phy, &dsi->phy_opts);
if (ret) {
dev_err(dsi->dsi_host,
"Configure external dphy fail %d\n",
ret);
return ret;
}
ret = generic_phy_power_on(&dsi->phy);
if (ret) {
dev_err(dsi->dsi_host,
"Generic phy power on fail %d\n", ret);
return ret;
}
return 0;
}
/*
* Get vco from frequency(lane_mbps)
* vco frequency table
* 000 - between 80 and 200 MHz
* 001 - between 200 and 300 MHz
* 010 - between 300 and 500 MHz
* 011 - between 500 and 700 MHz
* 100 - between 700 and 900 MHz
* 101 - between 900 and 1100 MHz
* 110 - between 1100 and 1300 MHz
* 111 - between 1300 and 1500 MHz
*/
vco = (dsi->lane_mbps < 200) ? 0 : (dsi->lane_mbps + 100) / 200;
i = max_mbps_to_parameter(dsi->lane_mbps);
if (i < 0) {
dev_err(dsi->dsi_host,
"failed to get parameter for %dmbps clock\n",
dsi->lane_mbps);
return i;
}
dw_mipi_dsi_phy_write(dsi, PLL_BIAS_CUR_SEL_CAP_VCO_CONTROL,
BYPASS_VCO_RANGE |
VCO_RANGE_CON_SEL(vco) |
VCO_IN_CAP_CON_LOW |
REF_BIAS_CUR_SEL);
dw_mipi_dsi_phy_write(dsi, PLL_CP_CONTROL_PLL_LOCK_BYPASS,
CP_CURRENT_SEL(dppa_map[i].icpctrl));
dw_mipi_dsi_phy_write(dsi, PLL_LPF_AND_CP_CONTROL,
CP_PROGRAM_EN | LPF_PROGRAM_EN |
LPF_RESISTORS_SEL(dppa_map[i].lpfctrl));
dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_0,
HSFREQRANGE_SEL(dppa_map[i].hsfreqrange));
dw_mipi_dsi_phy_write(dsi, PLL_INPUT_DIVIDER_RATIO,
INPUT_DIVIDER(dsi->input_div));
dw_mipi_dsi_phy_write(dsi, PLL_LOOP_DIVIDER_RATIO,
LOOP_DIV_LOW_SEL(dsi->feedback_div) |
LOW_PROGRAM_EN);
/*
* We need set PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL immediately
* to make the configured LSB effective according to IP simulation
* and lab test results.
* Only in this way can we get correct mipi phy pll frequency.
*/
dw_mipi_dsi_phy_write(dsi, PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL,
PLL_LOOP_DIV_EN | PLL_INPUT_DIV_EN);
dw_mipi_dsi_phy_write(dsi, PLL_LOOP_DIVIDER_RATIO,
LOOP_DIV_HIGH_SEL(dsi->feedback_div) |
HIGH_PROGRAM_EN);
dw_mipi_dsi_phy_write(dsi, PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL,
PLL_LOOP_DIV_EN | PLL_INPUT_DIV_EN);
dw_mipi_dsi_phy_write(dsi, AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY,
LOW_PROGRAM_EN | BIASEXTR_SEL(BIASEXTR_127_7));
dw_mipi_dsi_phy_write(dsi, AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY,
HIGH_PROGRAM_EN | BANDGAP_SEL(BANDGAP_96_10));
dw_mipi_dsi_phy_write(dsi, BANDGAP_AND_BIAS_CONTROL,
POWER_CONTROL | INTERNAL_REG_CURRENT |
BIAS_BLOCK_ON | BANDGAP_ON);
dw_mipi_dsi_phy_write(dsi, TERMINATION_RESISTER_CONTROL,
TER_RESISTOR_LOW | TER_CAL_DONE |
SETRD_MAX | TER_RESISTORS_ON);
dw_mipi_dsi_phy_write(dsi, TERMINATION_RESISTER_CONTROL,
TER_RESISTOR_HIGH | LEVEL_SHIFTERS_ON |
SETRD_MAX | POWER_MANAGE |
TER_RESISTORS_ON);
dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_REQUEST_STATE_TIME_CONTROL,
TLP_PROGRAM_EN | ns2bc(dsi, 500));
dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_PREPARE_STATE_TIME_CONTROL,
THS_PRE_PROGRAM_EN | ns2ui(dsi, 40));
dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_HS_ZERO_STATE_TIME_CONTROL,
THS_ZERO_PROGRAM_EN | ns2bc(dsi, 300));
dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_TRAIL_STATE_TIME_CONTROL,
THS_PRE_PROGRAM_EN | ns2ui(dsi, 100));
dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_EXIT_STATE_TIME_CONTROL,
BIT(5) | ns2bc(dsi, 100));
dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_POST_TIME_CONTROL,
BIT(5) | (ns2bc(dsi, 60) + 7));
dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_REQUEST_STATE_TIME_CONTROL,
TLP_PROGRAM_EN | ns2bc(dsi, 500));
dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_PREPARE_STATE_TIME_CONTROL,
THS_PRE_PROGRAM_EN | (ns2ui(dsi, 50) + 20));
dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_HS_ZERO_STATE_TIME_CONTROL,
THS_ZERO_PROGRAM_EN | (ns2bc(dsi, 140) + 2));
dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_TRAIL_STATE_TIME_CONTROL,
THS_PRE_PROGRAM_EN | (ns2ui(dsi, 60) + 8));
dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_EXIT_STATE_TIME_CONTROL,
BIT(5) | ns2bc(dsi, 100));
return 0;
}
static void dsi_phy_post_set_mode(void *priv_data, unsigned long mode_flags)
{
struct mipi_dsi_device *device = priv_data;
struct udevice *dev = device->dev;
struct dw_rockchip_dsi_priv *dsi = dev_get_priv(dev);
dev_dbg(dev, "Set mode %p enable %ld\n", dsi,
mode_flags & MIPI_DSI_MODE_VIDEO);
if (!dsi)
return;
/*
* DSI wrapper must be enabled in video mode & disabled in command mode.
* If wrapper is enabled in command mode, the display controller
* register access will hang. Note that this was carried over from the
* stm32 dsi driver and is unknown if necessary for Rockchip.
*/
if (mode_flags & MIPI_DSI_MODE_VIDEO)
dsi_set(dsi, DSI_WCR, WCR_DSIEN);
else
dsi_clear(dsi, DSI_WCR, WCR_DSIEN);
}
static int
dw_mipi_dsi_get_lane_mbps(void *priv_data, struct display_timing *timings,
u32 lanes, u32 format, unsigned int *lane_mbps)
{
struct mipi_dsi_device *device = priv_data;
struct udevice *dev = device->dev;
struct dw_rockchip_dsi_priv *dsi = dev_get_priv(dev);
int bpp;
unsigned long mpclk, tmp;
unsigned int target_mbps = 1000;
unsigned int max_mbps = dppa_map[ARRAY_SIZE(dppa_map) - 1].max_mbps;
unsigned long best_freq = 0;
unsigned long fvco_min, fvco_max, fin, fout;
unsigned int min_prediv, max_prediv;
unsigned int _prediv, best_prediv;
unsigned long _fbdiv, best_fbdiv;
unsigned long min_delta = ULONG_MAX;
unsigned int pllref_clk;
bpp = mipi_dsi_pixel_format_to_bpp(format);
if (bpp < 0) {
dev_err(dsi->dsi_host,
"failed to get bpp for pixel format %d\n",
format);
return bpp;
}
mpclk = DIV_ROUND_UP(timings->pixelclock.typ, 1000);
if (mpclk) {
/* take 1 / 0.8, since mbps must big than bandwidth of RGB */
tmp = (mpclk * (bpp / lanes) * 10 / 8) / 1000;
if (tmp < max_mbps)
target_mbps = tmp;
else
dev_err(dsi->dsi_host,
"DPHY clock frequency is out of range\n");
}
/* for external phy only the mipi_dphy_config is necessary */
if (dsi->phy.dev) {
phy_mipi_dphy_get_default_config(timings->pixelclock.typ * 10 / 8,
bpp, lanes,
&dsi->phy_opts);
dsi->lane_mbps = target_mbps;
*lane_mbps = dsi->lane_mbps;
return 0;
}
pllref_clk = clk_get_rate(dsi->ref);
fout = target_mbps * USEC_PER_SEC;
/* constraint: 5Mhz <= Fref / N <= 40MHz */
min_prediv = DIV_ROUND_UP(fin, 40 * USEC_PER_SEC);
max_prediv = fin / (5 * USEC_PER_SEC);
/* constraint: 80MHz <= Fvco <= 1500Mhz */
fvco_min = 80 * USEC_PER_SEC;
fvco_max = 1500 * USEC_PER_SEC;
for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
u64 tmp;
u32 delta;
/* Fvco = Fref * M / N */
tmp = (u64)fout * _prediv;
do_div(tmp, fin);
_fbdiv = tmp;
/*
* Due to the use of a "by 2 pre-scaler," the range of the
* feedback multiplication value M is limited to even division
* numbers, and m must be greater than 6, not bigger than 512.
*/
if (_fbdiv < 6 || _fbdiv > 512)
continue;
_fbdiv += _fbdiv % 2;
tmp = (u64)_fbdiv * fin;
do_div(tmp, _prediv);
if (tmp < fvco_min || tmp > fvco_max)
continue;
delta = abs(fout - tmp);
if (delta < min_delta) {
best_prediv = _prediv;
best_fbdiv = _fbdiv;
min_delta = delta;
best_freq = tmp;
}
}
if (best_freq) {
dsi->lane_mbps = DIV_ROUND_UP(best_freq, USEC_PER_SEC);
*lane_mbps = dsi->lane_mbps;
dsi->input_div = best_prediv;
dsi->feedback_div = best_fbdiv;
} else {
dev_err(dsi->dsi_host, "Can not find best_freq for DPHY\n");
return -EINVAL;
}
return 0;
}
struct hstt {
unsigned int maxfreq;
struct mipi_dsi_phy_timing timing;
};
#define HSTT(_maxfreq, _c_lp2hs, _c_hs2lp, _d_lp2hs, _d_hs2lp) \
{ \
.maxfreq = _maxfreq, \
.timing = { \
.clk_lp2hs = _c_lp2hs, \
.clk_hs2lp = _c_hs2lp, \
.data_lp2hs = _d_lp2hs, \
.data_hs2lp = _d_hs2lp, \
} \
}
/*
* Table A-3 High-Speed Transition Times
* (Note spacing is deliberate for readability).
*/
static struct hstt hstt_table[] = {
HSTT( 90, 32, 20, 26, 13),
HSTT( 100, 35, 23, 28, 14),
HSTT( 110, 32, 22, 26, 13),
HSTT( 130, 31, 20, 27, 13),
HSTT( 140, 33, 22, 26, 14),
HSTT( 150, 33, 21, 26, 14),
HSTT( 170, 32, 20, 27, 13),
HSTT( 180, 36, 23, 30, 15),
HSTT( 200, 40, 22, 33, 15),
HSTT( 220, 40, 22, 33, 15),
HSTT( 240, 44, 24, 36, 16),
HSTT( 250, 48, 24, 38, 17),
HSTT( 270, 48, 24, 38, 17),
HSTT( 300, 50, 27, 41, 18),
HSTT( 330, 56, 28, 45, 18),
HSTT( 360, 59, 28, 48, 19),
HSTT( 400, 61, 30, 50, 20),
HSTT( 450, 67, 31, 55, 21),
HSTT( 500, 73, 31, 59, 22),
HSTT( 550, 79, 36, 63, 24),
HSTT( 600, 83, 37, 68, 25),
HSTT( 650, 90, 38, 73, 27),
HSTT( 700, 95, 40, 77, 28),
HSTT( 750, 102, 40, 84, 28),
HSTT( 800, 106, 42, 87, 30),
HSTT( 850, 113, 44, 93, 31),
HSTT( 900, 118, 47, 98, 32),
HSTT( 950, 124, 47, 102, 34),
HSTT(1000, 130, 49, 107, 35),
HSTT(1050, 135, 51, 111, 37),
HSTT(1100, 139, 51, 114, 38),
HSTT(1150, 146, 54, 120, 40),
HSTT(1200, 153, 57, 125, 41),
HSTT(1250, 158, 58, 130, 42),
HSTT(1300, 163, 58, 135, 44),
HSTT(1350, 168, 60, 140, 45),
HSTT(1400, 172, 64, 144, 47),
HSTT(1450, 176, 65, 148, 48),
HSTT(1500, 181, 66, 153, 50)
};
static int dw_mipi_dsi_rockchip_get_timing(void *priv_data,
unsigned int lane_mbps,
struct mipi_dsi_phy_timing *timing)
{
int i;
for (i = 0; i < ARRAY_SIZE(hstt_table); i++)
if (lane_mbps < hstt_table[i].maxfreq)
break;
if (i == ARRAY_SIZE(hstt_table))
i--;
*timing = hstt_table[i].timing;
return 0;
}
static const struct mipi_dsi_phy_ops dsi_rockchip_phy_ops = {
.init = dsi_phy_init,
.get_lane_mbps = dw_mipi_dsi_get_lane_mbps,
.get_timing = dw_mipi_dsi_rockchip_get_timing,
.post_set_mode = dsi_phy_post_set_mode,
};
static int dw_mipi_dsi_rockchip_attach(struct udevice *dev)
{
struct dw_rockchip_dsi_priv *priv = dev_get_priv(dev);
struct mipi_dsi_device *device = &priv->device;
struct mipi_dsi_panel_plat *mplat;
struct display_timing timings;
int ret;
ret = uclass_first_device_err(UCLASS_PANEL, &priv->panel);
if (ret) {
dev_err(dev, "panel device error %d\n", ret);
return ret;
}
mplat = dev_get_plat(priv->panel);
mplat->device = &priv->device;
device->lanes = mplat->lanes;
device->format = mplat->format;
device->mode_flags = mplat->mode_flags;
ret = panel_get_display_timing(priv->panel, &timings);
if (ret) {
ret = ofnode_decode_display_timing(dev_ofnode(priv->panel),
0, &timings);
if (ret) {
dev_err(dev, "decode display timing error %d\n", ret);
return ret;
}
}
ret = uclass_get_device(UCLASS_DSI_HOST, 0, &priv->dsi_host);
if (ret) {
dev_err(dev, "No video dsi host detected %d\n", ret);
return ret;
}
ret = dsi_host_init(priv->dsi_host, device, &timings, 4,
&dsi_rockchip_phy_ops);
if (ret) {
dev_err(dev, "failed to initialize mipi dsi host\n");
return ret;
}
return 0;
}
static int dw_mipi_dsi_rockchip_set_bl(struct udevice *dev, int percent)
{
struct dw_rockchip_dsi_priv *priv = dev_get_priv(dev);
int ret;
/*
* Allow backlight to be optional, since this driver may be
* used to simply detect a panel rather than bring one up.
*/
ret = panel_enable_backlight(priv->panel);
if ((ret) && (ret != -ENOSYS)) {
dev_err(dev, "panel %s enable backlight error %d\n",
priv->panel->name, ret);
return ret;
}
ret = dsi_host_enable(priv->dsi_host);
if (ret) {
dev_err(dev, "failed to enable mipi dsi host\n");
return ret;
}
return 0;
}
static void dw_mipi_dsi_rockchip_config(struct dw_rockchip_dsi_priv *dsi)
{
if (dsi->cdata->lanecfg1_grf_reg)
dsi_write(dsi, dsi->cdata->lanecfg1_grf_reg,
dsi->cdata->lanecfg1);
if (dsi->cdata->lanecfg2_grf_reg)
dsi_write(dsi, dsi->cdata->lanecfg2_grf_reg,
dsi->cdata->lanecfg2);
if (dsi->cdata->enable_grf_reg)
dsi_write(dsi, dsi->cdata->enable_grf_reg,
dsi->cdata->enable);
}
static int dw_mipi_dsi_rockchip_bind(struct udevice *dev)
{
int ret;
ret = device_bind_driver_to_node(dev, "dw_mipi_dsi", "dsihost",
dev_ofnode(dev), NULL);
if (ret) {
dev_err(dev, "failed to bind driver to node\n");
return ret;
}
return dm_scan_fdt_dev(dev);
}
static int dw_mipi_dsi_rockchip_probe(struct udevice *dev)
{
struct dw_rockchip_dsi_priv *priv = dev_get_priv(dev);
struct mipi_dsi_device *device = &priv->device;
int ret, i;
const struct rockchip_dw_dsi_chip_data *cdata =
(const struct rockchip_dw_dsi_chip_data *)dev_get_driver_data(dev);
device->dev = dev;
priv->base = (void *)dev_read_addr(dev);
if ((fdt_addr_t)priv->base == FDT_ADDR_T_NONE) {
dev_err(dev, "dsi dt register address error\n");
return -EINVAL;
}
i = 0;
while (cdata[i].reg) {
if (cdata[i].reg == (fdt_addr_t)priv->base) {
priv->cdata = &cdata[i];
break;
}
i++;
}
if (!priv->cdata) {
dev_err(dev, "no dsi-config for %s node\n", dev->name);
return -EINVAL;
}
/*
* Get an optional external dphy. The external dphy stays as
* NULL if it's not initialized.
*/
ret = generic_phy_get_by_name(dev, "dphy", &priv->phy);
if ((ret) && (ret != -ENODEV)) {
dev_err(dev, "failed to get mipi dphy: %d\n", ret);
return -EINVAL;
}
priv->pclk = devm_clk_get(dev, "pclk");
if (IS_ERR(priv->pclk)) {
ret = PTR_ERR(priv->pclk);
dev_err(dev, "peripheral clock get error %d\n", ret);
return ret;
}
/* Get a ref clock only if not using an external phy. */
if (priv->phy.dev) {
dev_dbg(dev, "setting priv->ref to NULL\n");
priv->ref = NULL;
} else {
priv->ref = devm_clk_get(dev, "ref");
if (IS_ERR(priv->ref)) {
ret = PTR_ERR(priv->ref);
dev_err(dev, "pll reference clock get error %d\n", ret);
return ret;
}
}
priv->rst = devm_reset_control_get_by_index(device->dev, 0);
if (IS_ERR(priv->rst)) {
ret = PTR_ERR(priv->rst);
dev_err(dev, "missing dsi hardware reset %d\n", ret);
return ret;
}
/* Reset */
reset_deassert(priv->rst);
dw_mipi_dsi_rockchip_config(priv);
return 0;
}
struct video_bridge_ops dw_mipi_dsi_rockchip_ops = {
.attach = dw_mipi_dsi_rockchip_attach,
.set_backlight = dw_mipi_dsi_rockchip_set_bl,
};
static const struct rockchip_dw_dsi_chip_data rk3568_chip_data[] = {
{
.reg = 0xfe060000,
.lanecfg1_grf_reg = RK3568_GRF_VO_CON2,
.lanecfg1 = HIWORD_UPDATE(0, RK3568_DSI0_SKEWCALHS |
RK3568_DSI0_FORCETXSTOPMODE |
RK3568_DSI0_TURNDISABLE |
RK3568_DSI0_FORCERXMODE),
.max_data_lanes = 4,
},
{
.reg = 0xfe070000,
.lanecfg1_grf_reg = RK3568_GRF_VO_CON3,
.lanecfg1 = HIWORD_UPDATE(0, RK3568_DSI1_SKEWCALHS |
RK3568_DSI1_FORCETXSTOPMODE |
RK3568_DSI1_TURNDISABLE |
RK3568_DSI1_FORCERXMODE),
.max_data_lanes = 4,
},
{ /* sentinel */ }
};
static const struct udevice_id dw_mipi_dsi_rockchip_dt_ids[] = {
{ .compatible = "rockchip,rk3568-mipi-dsi",
.data = (long)&rk3568_chip_data,
},
{ /* sentinel */ }
};
U_BOOT_DRIVER(dw_mipi_dsi_rockchip) = {
.name = "dw-mipi-dsi-rockchip",
.id = UCLASS_VIDEO_BRIDGE,
.of_match = dw_mipi_dsi_rockchip_dt_ids,
.bind = dw_mipi_dsi_rockchip_bind,
.probe = dw_mipi_dsi_rockchip_probe,
.ops = &dw_mipi_dsi_rockchip_ops,
.priv_auto = sizeof(struct dw_rockchip_dsi_priv),
};