u-boot/drivers/crypto/fsl/jobdesc.c

311 lines
9.1 KiB
C
Raw Normal View History

/*
* SEC Descriptor Construction Library
* Basic job descriptor construction
*
* Copyright 2014 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*
*/
#include <common.h>
#include <fsl_sec.h>
#include "desc_constr.h"
#include "jobdesc.h"
#include "rsa_caam.h"
#if defined(CONFIG_MX6) || defined(CONFIG_MX7)
/*!
* Secure memory run command
*
* @param sec_mem_cmd Secure memory command register
* @return cmd_status Secure memory command status register
*/
uint32_t secmem_set_cmd(uint32_t sec_mem_cmd)
{
uint32_t temp_reg;
ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
uint32_t jr_id = 0;
sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd);
do {
temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id));
} while (temp_reg & CMD_COMPLETE);
return temp_reg;
}
/*!
* CAAM page allocation:
* Allocates a partition from secure memory, with the id
* equal to partion_num. This will de-allocate the page
* if it is already allocated. The partition will have
* full access permissions. The permissions are set before,
* running a job descriptor. A memory page of secure RAM
* is allocated for the partition.
*
* @param page Number of the page to allocate.
* @param partition Number of the partition to allocate.
* @return 0 on success, ERROR_IN_PAGE_ALLOC otherwise
*/
int caam_page_alloc(uint8_t page_num, uint8_t partition_num)
{
uint32_t temp_reg;
ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
uint32_t jr_id = 0;
/*
* De-Allocate partition_num if already allocated to ARM core
*/
if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) {
temp_reg = secmem_set_cmd(PARTITION(partition_num) |
CMD_PART_DEALLOC);
if (temp_reg & SMCSJR_AERR) {
printf("Error: De-allocation status 0x%X\n", temp_reg);
return ERROR_IN_PAGE_ALLOC;
}
}
/* set the access rights to allow full access */
sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF);
sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF);
sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF);
/* Now need to allocate partition_num of secure RAM. */
/* De-Allocate page_num by starting with a page inquiry command */
temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
/* if the page is owned, de-allocate it */
if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) {
temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC);
if (temp_reg & SMCSJR_AERR) {
printf("Error: Allocation status 0x%X\n", temp_reg);
return ERROR_IN_PAGE_ALLOC;
}
}
/* Allocate page_num to partition_num */
temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num)
| CMD_PAGE_ALLOC);
if (temp_reg & SMCSJR_AERR) {
printf("Error: Allocation status 0x%X\n", temp_reg);
return ERROR_IN_PAGE_ALLOC;
}
/* page inquiry command to ensure that the page was allocated */
temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
/* if the page is not owned => problem */
if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) {
printf("Allocation of page %d in partition %d failed 0x%X\n",
temp_reg, page_num, partition_num);
return ERROR_IN_PAGE_ALLOC;
}
return 0;
}
int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt,
uint8_t *dek_blob, uint32_t in_sz)
{
ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
uint32_t jr_id = 0;
uint32_t ret = 0;
u32 aad_w1, aad_w2;
/* output blob will have 32 bytes key blob in beginning and
* 16 byte HMAC identifier at end of data blob */
uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
/* Setting HDR for blob */
uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz,
HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG};
/* initialize the blob array */
memset(dek_blob, 0, out_sz + 8);
/* Copy the header into the DEK blob buffer */
memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr));
/* allocating secure memory */
ret = caam_page_alloc(PAGE_1, PARTITION_1);
if (ret)
return ret;
/* Write DEK to secure memory */
memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz);
unsigned long start = (unsigned long)SEC_MEM_PAGE1 &
~(ARCH_DMA_MINALIGN - 1);
unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN);
flush_dcache_range(start, end);
/* Now configure the access rights of the partition */
sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1);
sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0);
sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM);
/* construct aad for AES */
aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE;
aad_w2 = 0x0;
init_job_desc(desc, 0);
append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC |
(0x0c << LDST_OFFSET_SHIFT) | 0x08);
append_u32(desc, aad_w1);
append_u32(desc, aad_w2);
append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR);
append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR);
append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB |
OP_PCLID_SECMEM);
return ret;
}
#endif
crypto/fsl: Add command for encapsulating/decapsulating blobs Freescale's SEC block has built-in Blob Protocol which provides a method for protecting user-defined data across system power cycles. SEC block protects data in a data structure called a Blob, which provides both confidentiality and integrity protection. Encapsulating data as a blob Each time that the Blob Protocol is used to protect data, a different randomly generated key is used to encrypt the data. This random key is itself encrypted using a key which is derived from SoC's non volatile secret key and a 16 bit Key identifier. The resulting encrypted key along with encrypted data is called a blob. The non volatile secure key is available for use only during secure boot. During decapsulation, the reverse process is performed to get back the original data. Commands added -------------- blob enc - encapsulating data as a cryptgraphic blob blob dec - decapsulating cryptgraphic blob to get the data Commands Syntax --------------- blob enc src dst len km Encapsulate and create blob of data $len bytes long at address $src and store the result at address $dst. $km is the 16 byte key modifier is also required for generation/use as key for cryptographic operation. Key modifier should be 16 byte long. blob dec src dst len km Decapsulate the blob of data at address $src and store result of $len byte at addr $dst. $km is the 16 byte key modifier is also required for generation/use as key for cryptographic operation. Key modifier should be 16 byte long. Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com> Reviewed-by: York Sun <yorksun@freescale.com>
2014-10-07 10:16:20 +00:00
void inline_cnstr_jobdesc_hash(uint32_t *desc,
const uint8_t *msg, uint32_t msgsz, uint8_t *digest,
u32 alg_type, uint32_t alg_size, int sg_tbl)
{
/* SHA 256 , output is of length 32 words */
uint32_t storelen = alg_size;
u32 options;
dma_addr_t dma_addr_in, dma_addr_out;
dma_addr_in = virt_to_phys((void *)msg);
dma_addr_out = virt_to_phys((void *)digest);
init_job_desc(desc, 0);
append_operation(desc, OP_TYPE_CLASS2_ALG |
OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL |
OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type);
options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2;
if (sg_tbl)
options |= FIFOLDST_SGF;
if (msgsz > 0xffff) {
options |= FIFOLDST_EXT;
append_fifo_load(desc, dma_addr_in, 0, options);
append_cmd(desc, msgsz);
} else {
append_fifo_load(desc, dma_addr_in, msgsz, options);
}
append_store(desc, dma_addr_out, storelen,
LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT);
}
crypto/fsl: Add command for encapsulating/decapsulating blobs Freescale's SEC block has built-in Blob Protocol which provides a method for protecting user-defined data across system power cycles. SEC block protects data in a data structure called a Blob, which provides both confidentiality and integrity protection. Encapsulating data as a blob Each time that the Blob Protocol is used to protect data, a different randomly generated key is used to encrypt the data. This random key is itself encrypted using a key which is derived from SoC's non volatile secret key and a 16 bit Key identifier. The resulting encrypted key along with encrypted data is called a blob. The non volatile secure key is available for use only during secure boot. During decapsulation, the reverse process is performed to get back the original data. Commands added -------------- blob enc - encapsulating data as a cryptgraphic blob blob dec - decapsulating cryptgraphic blob to get the data Commands Syntax --------------- blob enc src dst len km Encapsulate and create blob of data $len bytes long at address $src and store the result at address $dst. $km is the 16 byte key modifier is also required for generation/use as key for cryptographic operation. Key modifier should be 16 byte long. blob dec src dst len km Decapsulate the blob of data at address $src and store result of $len byte at addr $dst. $km is the 16 byte key modifier is also required for generation/use as key for cryptographic operation. Key modifier should be 16 byte long. Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com> Reviewed-by: York Sun <yorksun@freescale.com>
2014-10-07 10:16:20 +00:00
void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr,
uint8_t *plain_txt, uint8_t *enc_blob,
uint32_t in_sz)
{
dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
/* output blob will have 32 bytes key blob in beginning and
* 16 byte HMAC identifier at end of data blob */
uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
dma_addr_in = virt_to_phys((void *)plain_txt);
dma_addr_out = virt_to_phys((void *)enc_blob);
init_job_desc(desc, 0);
append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB);
}
void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr,
uint8_t *enc_blob, uint8_t *plain_txt,
uint32_t out_sz)
{
dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE;
dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
dma_addr_in = virt_to_phys((void *)enc_blob);
dma_addr_out = virt_to_phys((void *)plain_txt);
init_job_desc(desc, 0);
append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB);
}
/*
* Descriptor to instantiate RNG State Handle 0 in normal mode and
* load the JDKEK, TDKEK and TDSK registers
*/
void inline_cnstr_jobdesc_rng_instantiation(uint32_t *desc)
{
u32 *jump_cmd;
init_job_desc(desc, 0);
/* INIT RNG in non-test mode */
append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
OP_ALG_AS_INIT);
/* wait for done */
jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1);
set_jump_tgt_here(desc, jump_cmd);
/*
* load 1 to clear written reg:
* resets the done interrrupt and returns the RNG to idle.
*/
append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW);
/* generate secure keys (non-test) */
append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
OP_ALG_RNG4_SK);
}
/* Change key size to bytes form bits in calling function*/
void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc,
struct pk_in_params *pkin, uint8_t *out,
uint32_t out_siz)
{
dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out;
dma_addr_e = virt_to_phys((void *)pkin->e);
dma_addr_a = virt_to_phys((void *)pkin->a);
dma_addr_n = virt_to_phys((void *)pkin->n);
dma_addr_out = virt_to_phys((void *)out);
init_job_desc(desc, 0);
append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1);
append_fifo_load(desc, dma_addr_a,
pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A);
append_fifo_load(desc, dma_addr_n,
pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N);
append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO);
append_fifo_store(desc, dma_addr_out, out_siz,
LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B);
}