u-boot/arch/arm/mach-tegra/cboot.c

622 lines
15 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2016-2018, NVIDIA CORPORATION.
*/
#include <common.h>
#include <env.h>
#include <fdt_support.h>
#include <fdtdec.h>
#include <hang.h>
#include <stdlib.h>
#include <string.h>
#include <linux/ctype.h>
#include <linux/sizes.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/cboot.h>
#include <asm/armv8/mmu.h>
/*
* Size of a region that's large enough to hold the relocated U-Boot and all
* other allocations made around it (stack, heap, page tables, etc.)
* In practice, running "bdinfo" at the shell prompt, the stack reaches about
* 5MB from the address selected for ram_top as of the time of writing,
* so a 16MB region should be plenty.
*/
#define MIN_USABLE_RAM_SIZE SZ_16M
/*
* The amount of space we expect to require for stack usage. Used to validate
* that all reservations fit into the region selected for the relocation target
*/
#define MIN_USABLE_STACK_SIZE SZ_1M
DECLARE_GLOBAL_DATA_PTR;
extern struct mm_region tegra_mem_map[];
/*
* These variables are written to before relocation, and hence cannot be
* in.bss, since .bss overlaps the DTB that's appended to the U-Boot binary.
* The section attribute forces this into .data and avoids this issue. This
* also has the nice side-effect of the content being valid after relocation.
*/
/* The number of valid entries in ram_banks[] */
static int ram_bank_count __attribute__((section(".data")));
/*
* The usable top-of-RAM for U-Boot. This is both:
* a) Below 4GB to avoid issues with peripherals that use 32-bit addressing.
* b) At the end of a region that has enough space to hold the relocated U-Boot
* and all other allocations made around it (stack, heap, page tables, etc.)
*/
static u64 ram_top __attribute__((section(".data")));
/* The base address of the region of RAM that ends at ram_top */
static u64 region_base __attribute__((section(".data")));
/*
* Explicitly put this in the .data section because it is written before the
* .bss section is zeroed out but it needs to persist.
*/
unsigned long cboot_boot_x0 __attribute__((section(".data")));
void cboot_save_boot_params(unsigned long x0, unsigned long x1,
unsigned long x2, unsigned long x3)
{
cboot_boot_x0 = x0;
}
int cboot_dram_init(void)
{
unsigned int na, ns;
const void *cboot_blob = (void *)cboot_boot_x0;
int node, len, i;
const u32 *prop;
if (!cboot_blob)
return -EINVAL;
na = fdtdec_get_uint(cboot_blob, 0, "#address-cells", 2);
ns = fdtdec_get_uint(cboot_blob, 0, "#size-cells", 2);
node = fdt_path_offset(cboot_blob, "/memory");
if (node < 0) {
pr_err("Can't find /memory node in cboot DTB");
hang();
}
prop = fdt_getprop(cboot_blob, node, "reg", &len);
if (!prop) {
pr_err("Can't find /memory/reg property in cboot DTB");
hang();
}
/* Calculate the true # of base/size pairs to read */
len /= 4; /* Convert bytes to number of cells */
len /= (na + ns); /* Convert cells to number of banks */
if (len > CONFIG_NR_DRAM_BANKS)
len = CONFIG_NR_DRAM_BANKS;
/* Parse the /memory node, and save useful entries */
gd->ram_size = 0;
ram_bank_count = 0;
for (i = 0; i < len; i++) {
u64 bank_start, bank_end, bank_size, usable_bank_size;
/* Extract raw memory region data from DTB */
bank_start = fdt_read_number(prop, na);
prop += na;
bank_size = fdt_read_number(prop, ns);
prop += ns;
gd->ram_size += bank_size;
bank_end = bank_start + bank_size;
debug("Bank %d: %llx..%llx (+%llx)\n", i,
bank_start, bank_end, bank_size);
/*
* Align the bank to MMU section size. This is not strictly
* necessary, since the translation table construction code
* handles page granularity without issue. However, aligning
* the MMU entries reduces the size and number of levels in the
* page table, so is worth it.
*/
bank_start = ROUND(bank_start, SZ_2M);
bank_end = bank_end & ~(SZ_2M - 1);
bank_size = bank_end - bank_start;
debug(" aligned: %llx..%llx (+%llx)\n",
bank_start, bank_end, bank_size);
if (bank_end <= bank_start)
continue;
/* Record data used to create MMU translation tables */
ram_bank_count++;
/* Index below is deliberately 1-based to skip MMIO entry */
tegra_mem_map[ram_bank_count].virt = bank_start;
tegra_mem_map[ram_bank_count].phys = bank_start;
tegra_mem_map[ram_bank_count].size = bank_size;
tegra_mem_map[ram_bank_count].attrs =
PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_INNER_SHARE;
/* Determine best bank to relocate U-Boot into */
if (bank_end > SZ_4G)
bank_end = SZ_4G;
debug(" end %llx (usable)\n", bank_end);
usable_bank_size = bank_end - bank_start;
debug(" size %llx (usable)\n", usable_bank_size);
if ((usable_bank_size >= MIN_USABLE_RAM_SIZE) &&
(bank_end > ram_top)) {
ram_top = bank_end;
region_base = bank_start;
debug("ram top now %llx\n", ram_top);
}
}
/* Ensure memory map contains the desired sentinel entry */
tegra_mem_map[ram_bank_count + 1].virt = 0;
tegra_mem_map[ram_bank_count + 1].phys = 0;
tegra_mem_map[ram_bank_count + 1].size = 0;
tegra_mem_map[ram_bank_count + 1].attrs = 0;
/* Error out if a relocation target couldn't be found */
if (!ram_top) {
pr_err("Can't find a usable RAM top");
hang();
}
return 0;
}
int cboot_dram_init_banksize(void)
{
int i;
if (ram_bank_count == 0)
return -EINVAL;
if ((gd->start_addr_sp - region_base) < MIN_USABLE_STACK_SIZE) {
pr_err("Reservations exceed chosen region size");
hang();
}
for (i = 0; i < ram_bank_count; i++) {
gd->bd->bi_dram[i].start = tegra_mem_map[1 + i].virt;
gd->bd->bi_dram[i].size = tegra_mem_map[1 + i].size;
}
#ifdef CONFIG_PCI
gd->pci_ram_top = ram_top;
#endif
return 0;
}
ulong cboot_get_usable_ram_top(ulong total_size)
{
return ram_top;
}
/*
* The following few functions run late during the boot process and dynamically
* calculate the load address of various binaries. To keep track of multiple
* allocations, some writable list of RAM banks must be used. tegra_mem_map[]
* is used for this purpose to avoid making yet another copy of the list of RAM
* banks. This is safe because tegra_mem_map[] is only used once during very
* early boot to create U-Boot's page tables, long before this code runs. If
* this assumption becomes invalid later, we can just fix the code to copy the
* list of RAM banks into some private data structure before running.
*/
static char *gen_varname(const char *var, const char *ext)
{
size_t len_var = strlen(var);
size_t len_ext = strlen(ext);
size_t len = len_var + len_ext + 1;
char *varext = malloc(len);
if (!varext)
return 0;
strcpy(varext, var);
strcpy(varext + len_var, ext);
return varext;
}
static void mark_ram_allocated(int bank, u64 allocated_start, u64 allocated_end)
{
u64 bank_start = tegra_mem_map[bank].virt;
u64 bank_size = tegra_mem_map[bank].size;
u64 bank_end = bank_start + bank_size;
bool keep_front = allocated_start != bank_start;
bool keep_tail = allocated_end != bank_end;
if (keep_front && keep_tail) {
/*
* There are CONFIG_NR_DRAM_BANKS DRAM entries in the array,
* starting at index 1 (index 0 is MMIO). So, we are at DRAM
* entry "bank" not "bank - 1" as for a typical 0-base array.
* The number of remaining DRAM entries is therefore
* "CONFIG_NR_DRAM_BANKS - bank". We want to duplicate the
* current entry and shift up the remaining entries, dropping
* the last one. Thus, we must copy one fewer entry than the
* number remaining.
*/
memmove(&tegra_mem_map[bank + 1], &tegra_mem_map[bank],
CONFIG_NR_DRAM_BANKS - bank - 1);
tegra_mem_map[bank].size = allocated_start - bank_start;
bank++;
tegra_mem_map[bank].virt = allocated_end;
tegra_mem_map[bank].phys = allocated_end;
tegra_mem_map[bank].size = bank_end - allocated_end;
} else if (keep_front) {
tegra_mem_map[bank].size = allocated_start - bank_start;
} else if (keep_tail) {
tegra_mem_map[bank].virt = allocated_end;
tegra_mem_map[bank].phys = allocated_end;
tegra_mem_map[bank].size = bank_end - allocated_end;
} else {
/*
* We could move all subsequent banks down in the array but
* that's not necessary for subsequent allocations to work, so
* we skip doing so.
*/
tegra_mem_map[bank].size = 0;
}
}
static void reserve_ram(u64 start, u64 size)
{
int bank;
u64 end = start + size;
for (bank = 1; bank <= CONFIG_NR_DRAM_BANKS; bank++) {
u64 bank_start = tegra_mem_map[bank].virt;
u64 bank_size = tegra_mem_map[bank].size;
u64 bank_end = bank_start + bank_size;
if (end <= bank_start || start > bank_end)
continue;
mark_ram_allocated(bank, start, end);
break;
}
}
static u64 alloc_ram(u64 size, u64 align, u64 offset)
{
int bank;
for (bank = 1; bank <= CONFIG_NR_DRAM_BANKS; bank++) {
u64 bank_start = tegra_mem_map[bank].virt;
u64 bank_size = tegra_mem_map[bank].size;
u64 bank_end = bank_start + bank_size;
u64 allocated = ROUND(bank_start, align) + offset;
u64 allocated_end = allocated + size;
if (allocated_end > bank_end)
continue;
mark_ram_allocated(bank, allocated, allocated_end);
return allocated;
}
return 0;
}
static void set_calculated_aliases(char *aliases, u64 address)
{
char *tmp, *alias;
int err;
aliases = strdup(aliases);
if (!aliases) {
pr_err("strdup(aliases) failed");
return;
}
tmp = aliases;
while (true) {
alias = strsep(&tmp, " ");
if (!alias)
break;
debug("%s: alias: %s\n", __func__, alias);
err = env_set_hex(alias, address);
if (err)
pr_err("Could not set %s\n", alias);
}
free(aliases);
}
static void set_calculated_env_var(const char *var)
{
char *var_size;
char *var_align;
char *var_offset;
char *var_aliases;
u64 size;
u64 align;
u64 offset;
char *aliases;
u64 address;
int err;
var_size = gen_varname(var, "_size");
if (!var_size)
return;
var_align = gen_varname(var, "_align");
if (!var_align)
goto out_free_var_size;
var_offset = gen_varname(var, "_offset");
if (!var_offset)
goto out_free_var_align;
var_aliases = gen_varname(var, "_aliases");
if (!var_aliases)
goto out_free_var_offset;
size = env_get_hex(var_size, 0);
if (!size) {
pr_err("%s not set or zero\n", var_size);
goto out_free_var_aliases;
}
align = env_get_hex(var_align, 1);
/* Handle extant variables, but with a value of 0 */
if (!align)
align = 1;
offset = env_get_hex(var_offset, 0);
aliases = env_get(var_aliases);
debug("%s: Calc var %s; size=%llx, align=%llx, offset=%llx\n",
__func__, var, size, align, offset);
if (aliases)
debug("%s: Aliases: %s\n", __func__, aliases);
address = alloc_ram(size, align, offset);
if (!address) {
pr_err("Could not allocate %s\n", var);
goto out_free_var_aliases;
}
debug("%s: Address %llx\n", __func__, address);
err = env_set_hex(var, address);
if (err)
pr_err("Could not set %s\n", var);
if (aliases)
set_calculated_aliases(aliases, address);
out_free_var_aliases:
free(var_aliases);
out_free_var_offset:
free(var_offset);
out_free_var_align:
free(var_align);
out_free_var_size:
free(var_size);
}
#ifdef DEBUG
static void dump_ram_banks(void)
{
int bank;
for (bank = 1; bank <= CONFIG_NR_DRAM_BANKS; bank++) {
u64 bank_start = tegra_mem_map[bank].virt;
u64 bank_size = tegra_mem_map[bank].size;
u64 bank_end = bank_start + bank_size;
if (!bank_size)
continue;
printf("%d: %010llx..%010llx (+%010llx)\n", bank - 1,
bank_start, bank_end, bank_size);
}
}
#endif
static void set_calculated_env_vars(void)
{
char *vars, *tmp, *var;
#ifdef DEBUG
printf("RAM banks before any calculated env. var.s:\n");
dump_ram_banks();
#endif
reserve_ram(cboot_boot_x0, fdt_totalsize(cboot_boot_x0));
#ifdef DEBUG
printf("RAM after reserving cboot DTB:\n");
dump_ram_banks();
#endif
vars = env_get("calculated_vars");
if (!vars) {
debug("%s: No env var calculated_vars\n", __func__);
return;
}
vars = strdup(vars);
if (!vars) {
pr_err("strdup(calculated_vars) failed");
return;
}
tmp = vars;
while (true) {
var = strsep(&tmp, " ");
if (!var)
break;
debug("%s: var: %s\n", __func__, var);
set_calculated_env_var(var);
#ifdef DEBUG
printf("RAM banks after allocating %s:\n", var);
dump_ram_banks();
#endif
}
free(vars);
}
static int set_fdt_addr(void)
{
int ret;
ret = env_set_hex("fdt_addr", cboot_boot_x0);
if (ret) {
printf("Failed to set fdt_addr to point at DTB: %d\n", ret);
return ret;
}
return 0;
}
/*
* Attempt to use /chosen/nvidia,ether-mac in the cboot DTB to U-Boot's
* ethaddr environment variable if possible.
*/
static int cboot_get_ethaddr_legacy(const void *fdt, uint8_t mac[ETH_ALEN])
{
const char *const properties[] = {
"nvidia,ethernet-mac",
"nvidia,ether-mac",
};
const char *prop;
unsigned int i;
int node, len;
node = fdt_path_offset(fdt, "/chosen");
if (node < 0) {
printf("Can't find /chosen node in cboot DTB\n");
return node;
}
for (i = 0; i < ARRAY_SIZE(properties); i++) {
prop = fdt_getprop(fdt, node, properties[i], &len);
if (prop)
break;
}
if (!prop) {
printf("Can't find Ethernet MAC address in cboot DTB\n");
return -ENOENT;
}
string_to_enetaddr(prop, mac);
if (!is_valid_ethaddr(mac)) {
printf("Invalid MAC address: %s\n", prop);
return -EINVAL;
}
debug("Legacy MAC address: %pM\n", mac);
return 0;
}
int cboot_get_ethaddr(const void *fdt, uint8_t mac[ETH_ALEN])
{
int node, len, err = 0;
const uchar *prop;
const char *path;
path = fdt_get_alias(fdt, "ethernet");
if (!path) {
err = -ENOENT;
goto out;
}
debug("ethernet alias found: %s\n", path);
node = fdt_path_offset(fdt, path);
if (node < 0) {
err = -ENOENT;
goto out;
}
prop = fdt_getprop(fdt, node, "local-mac-address", &len);
if (!prop) {
err = -ENOENT;
goto out;
}
if (len != ETH_ALEN) {
err = -EINVAL;
goto out;
}
debug("MAC address: %pM\n", prop);
memcpy(mac, prop, ETH_ALEN);
out:
if (err < 0)
err = cboot_get_ethaddr_legacy(fdt, mac);
return err;
}
static char *strip(const char *ptr)
{
const char *end;
while (*ptr && isblank(*ptr))
ptr++;
/* empty string */
if (*ptr == '\0')
return strdup(ptr);
end = ptr;
while (end[1])
end++;
while (isblank(*end))
end--;
return strndup(ptr, end - ptr + 1);
}
static char *cboot_get_bootargs(const void *fdt)
{
const char *args;
int offset, len;
offset = fdt_path_offset(fdt, "/chosen");
if (offset < 0)
return NULL;
args = fdt_getprop(fdt, offset, "bootargs", &len);
if (!args)
return NULL;
return strip(args);
}
int cboot_late_init(void)
{
const void *fdt = (const void *)cboot_boot_x0;
uint8_t mac[ETH_ALEN];
char *bootargs;
int err;
set_calculated_env_vars();
/*
* Ignore errors here; the value may not be used depending on
* extlinux.conf or boot script content.
*/
set_fdt_addr();
/* Ignore errors here; not all cases care about Ethernet addresses */
err = cboot_get_ethaddr(fdt, mac);
if (!err) {
void *blob = (void *)gd->fdt_blob;
err = fdtdec_set_ethernet_mac_address(blob, mac, sizeof(mac));
if (err < 0)
printf("failed to set MAC address %pM: %d\n", mac, err);
}
bootargs = cboot_get_bootargs(fdt);
if (bootargs) {
env_set("cbootargs", bootargs);
free(bootargs);
}
return 0;
}