u-boot/drivers/mmc/stm32_sdmmc2.c

807 lines
22 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Patrice Chotard, <patrice.chotard@foss.st.com> for STMicroelectronics.
*/
#define LOG_CATEGORY UCLASS_MMC
#include <common.h>
#include <clk.h>
#include <cpu_func.h>
#include <dm.h>
#include <fdtdec.h>
#include <log.h>
#include <malloc.h>
#include <asm/bitops.h>
#include <asm/cache.h>
#include <dm/device_compat.h>
#include <dm/pinctrl.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/libfdt.h>
#include <mmc.h>
#include <reset.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <linux/iopoll.h>
#include <power/regulator.h>
#include <watchdog.h>
#include <linux/printk.h>
struct stm32_sdmmc2_plat {
struct mmc_config cfg;
struct mmc mmc;
fdt_addr_t base;
struct clk clk;
struct reset_ctl reset_ctl;
struct gpio_desc cd_gpio;
u32 clk_reg_msk;
u32 pwr_reg_msk;
#if CONFIG_IS_ENABLED(DM_REGULATOR)
bool vqmmc_enabled;
#endif
};
struct stm32_sdmmc2_ctx {
u32 cache_start;
u32 cache_end;
u32 data_length;
bool dpsm_abort;
};
/* SDMMC REGISTERS OFFSET */
#define SDMMC_POWER 0x00 /* SDMMC power control */
#define SDMMC_CLKCR 0x04 /* SDMMC clock control */
#define SDMMC_ARG 0x08 /* SDMMC argument */
#define SDMMC_CMD 0x0C /* SDMMC command */
#define SDMMC_RESP1 0x14 /* SDMMC response 1 */
#define SDMMC_RESP2 0x18 /* SDMMC response 2 */
#define SDMMC_RESP3 0x1C /* SDMMC response 3 */
#define SDMMC_RESP4 0x20 /* SDMMC response 4 */
#define SDMMC_DTIMER 0x24 /* SDMMC data timer */
#define SDMMC_DLEN 0x28 /* SDMMC data length */
#define SDMMC_DCTRL 0x2C /* SDMMC data control */
#define SDMMC_DCOUNT 0x30 /* SDMMC data counter */
#define SDMMC_STA 0x34 /* SDMMC status */
#define SDMMC_ICR 0x38 /* SDMMC interrupt clear */
#define SDMMC_MASK 0x3C /* SDMMC mask */
#define SDMMC_IDMACTRL 0x50 /* SDMMC DMA control */
#define SDMMC_IDMABASE0 0x58 /* SDMMC DMA buffer 0 base address */
/* SDMMC_POWER register */
#define SDMMC_POWER_PWRCTRL_MASK GENMASK(1, 0)
#define SDMMC_POWER_PWRCTRL_OFF 0
#define SDMMC_POWER_PWRCTRL_CYCLE 2
#define SDMMC_POWER_PWRCTRL_ON 3
#define SDMMC_POWER_VSWITCH BIT(2)
#define SDMMC_POWER_VSWITCHEN BIT(3)
#define SDMMC_POWER_DIRPOL BIT(4)
/* SDMMC_CLKCR register */
#define SDMMC_CLKCR_CLKDIV GENMASK(9, 0)
#define SDMMC_CLKCR_CLKDIV_MAX SDMMC_CLKCR_CLKDIV
#define SDMMC_CLKCR_PWRSAV BIT(12)
#define SDMMC_CLKCR_WIDBUS_4 BIT(14)
#define SDMMC_CLKCR_WIDBUS_8 BIT(15)
#define SDMMC_CLKCR_NEGEDGE BIT(16)
#define SDMMC_CLKCR_HWFC_EN BIT(17)
#define SDMMC_CLKCR_DDR BIT(18)
#define SDMMC_CLKCR_BUSSPEED BIT(19)
#define SDMMC_CLKCR_SELCLKRX_MASK GENMASK(21, 20)
#define SDMMC_CLKCR_SELCLKRX_CK 0
#define SDMMC_CLKCR_SELCLKRX_CKIN BIT(20)
#define SDMMC_CLKCR_SELCLKRX_FBCK BIT(21)
/* SDMMC_CMD register */
#define SDMMC_CMD_CMDINDEX GENMASK(5, 0)
#define SDMMC_CMD_CMDTRANS BIT(6)
#define SDMMC_CMD_CMDSTOP BIT(7)
#define SDMMC_CMD_WAITRESP GENMASK(9, 8)
#define SDMMC_CMD_WAITRESP_0 BIT(8)
#define SDMMC_CMD_WAITRESP_1 BIT(9)
#define SDMMC_CMD_WAITINT BIT(10)
#define SDMMC_CMD_WAITPEND BIT(11)
#define SDMMC_CMD_CPSMEN BIT(12)
#define SDMMC_CMD_DTHOLD BIT(13)
#define SDMMC_CMD_BOOTMODE BIT(14)
#define SDMMC_CMD_BOOTEN BIT(15)
#define SDMMC_CMD_CMDSUSPEND BIT(16)
/* SDMMC_DCTRL register */
#define SDMMC_DCTRL_DTEN BIT(0)
#define SDMMC_DCTRL_DTDIR BIT(1)
#define SDMMC_DCTRL_DTMODE GENMASK(3, 2)
#define SDMMC_DCTRL_DBLOCKSIZE GENMASK(7, 4)
#define SDMMC_DCTRL_DBLOCKSIZE_SHIFT 4
#define SDMMC_DCTRL_RWSTART BIT(8)
#define SDMMC_DCTRL_RWSTOP BIT(9)
#define SDMMC_DCTRL_RWMOD BIT(10)
#define SDMMC_DCTRL_SDMMCEN BIT(11)
#define SDMMC_DCTRL_BOOTACKEN BIT(12)
#define SDMMC_DCTRL_FIFORST BIT(13)
/* SDMMC_STA register */
#define SDMMC_STA_CCRCFAIL BIT(0)
#define SDMMC_STA_DCRCFAIL BIT(1)
#define SDMMC_STA_CTIMEOUT BIT(2)
#define SDMMC_STA_DTIMEOUT BIT(3)
#define SDMMC_STA_TXUNDERR BIT(4)
#define SDMMC_STA_RXOVERR BIT(5)
#define SDMMC_STA_CMDREND BIT(6)
#define SDMMC_STA_CMDSENT BIT(7)
#define SDMMC_STA_DATAEND BIT(8)
#define SDMMC_STA_DHOLD BIT(9)
#define SDMMC_STA_DBCKEND BIT(10)
#define SDMMC_STA_DABORT BIT(11)
#define SDMMC_STA_DPSMACT BIT(12)
#define SDMMC_STA_CPSMACT BIT(13)
#define SDMMC_STA_TXFIFOHE BIT(14)
#define SDMMC_STA_RXFIFOHF BIT(15)
#define SDMMC_STA_TXFIFOF BIT(16)
#define SDMMC_STA_RXFIFOF BIT(17)
#define SDMMC_STA_TXFIFOE BIT(18)
#define SDMMC_STA_RXFIFOE BIT(19)
#define SDMMC_STA_BUSYD0 BIT(20)
#define SDMMC_STA_BUSYD0END BIT(21)
#define SDMMC_STA_SDMMCIT BIT(22)
#define SDMMC_STA_ACKFAIL BIT(23)
#define SDMMC_STA_ACKTIMEOUT BIT(24)
#define SDMMC_STA_VSWEND BIT(25)
#define SDMMC_STA_CKSTOP BIT(26)
#define SDMMC_STA_IDMATE BIT(27)
#define SDMMC_STA_IDMABTC BIT(28)
/* SDMMC_ICR register */
#define SDMMC_ICR_CCRCFAILC BIT(0)
#define SDMMC_ICR_DCRCFAILC BIT(1)
#define SDMMC_ICR_CTIMEOUTC BIT(2)
#define SDMMC_ICR_DTIMEOUTC BIT(3)
#define SDMMC_ICR_TXUNDERRC BIT(4)
#define SDMMC_ICR_RXOVERRC BIT(5)
#define SDMMC_ICR_CMDRENDC BIT(6)
#define SDMMC_ICR_CMDSENTC BIT(7)
#define SDMMC_ICR_DATAENDC BIT(8)
#define SDMMC_ICR_DHOLDC BIT(9)
#define SDMMC_ICR_DBCKENDC BIT(10)
#define SDMMC_ICR_DABORTC BIT(11)
#define SDMMC_ICR_BUSYD0ENDC BIT(21)
#define SDMMC_ICR_SDMMCITC BIT(22)
#define SDMMC_ICR_ACKFAILC BIT(23)
#define SDMMC_ICR_ACKTIMEOUTC BIT(24)
#define SDMMC_ICR_VSWENDC BIT(25)
#define SDMMC_ICR_CKSTOPC BIT(26)
#define SDMMC_ICR_IDMATEC BIT(27)
#define SDMMC_ICR_IDMABTCC BIT(28)
#define SDMMC_ICR_STATIC_FLAGS ((GENMASK(28, 21)) | (GENMASK(11, 0)))
/* SDMMC_MASK register */
#define SDMMC_MASK_CCRCFAILIE BIT(0)
#define SDMMC_MASK_DCRCFAILIE BIT(1)
#define SDMMC_MASK_CTIMEOUTIE BIT(2)
#define SDMMC_MASK_DTIMEOUTIE BIT(3)
#define SDMMC_MASK_TXUNDERRIE BIT(4)
#define SDMMC_MASK_RXOVERRIE BIT(5)
#define SDMMC_MASK_CMDRENDIE BIT(6)
#define SDMMC_MASK_CMDSENTIE BIT(7)
#define SDMMC_MASK_DATAENDIE BIT(8)
#define SDMMC_MASK_DHOLDIE BIT(9)
#define SDMMC_MASK_DBCKENDIE BIT(10)
#define SDMMC_MASK_DABORTIE BIT(11)
#define SDMMC_MASK_TXFIFOHEIE BIT(14)
#define SDMMC_MASK_RXFIFOHFIE BIT(15)
#define SDMMC_MASK_RXFIFOFIE BIT(17)
#define SDMMC_MASK_TXFIFOEIE BIT(18)
#define SDMMC_MASK_BUSYD0ENDIE BIT(21)
#define SDMMC_MASK_SDMMCITIE BIT(22)
#define SDMMC_MASK_ACKFAILIE BIT(23)
#define SDMMC_MASK_ACKTIMEOUTIE BIT(24)
#define SDMMC_MASK_VSWENDIE BIT(25)
#define SDMMC_MASK_CKSTOPIE BIT(26)
#define SDMMC_MASK_IDMABTCIE BIT(28)
/* SDMMC_IDMACTRL register */
#define SDMMC_IDMACTRL_IDMAEN BIT(0)
#define SDMMC_CMD_TIMEOUT 0xFFFFFFFF
mmc: stm32_sdmmc2: Increase SDMMC_BUSYD0END_TIMEOUT_US Increase SDMMC_BUSYD0END_TIMEOUT_US from 1s to 2s to avoid timeout error during blocks erase on some sdcard Issue seen on Kingston 16GB : Device: STM32 SDMMC2 Manufacturer ID: 27 OEM: 5048 Name: SD16G Bus Speed: 50000000 Mode: SD High Speed (50MHz) card capabilities: widths [4, 1] modes [SD Legacy, SD High Speed (50MHz)] host capabilities: widths [4, 1] modes [MMC legacy, SD Legacy, MMC High Speed (26MHz), SD High Speed (50MHz), MMC High Speed (52MHz)] Rd Block Len: 512 SD version 3.0 High Capacity: Yes Capacity: 14.5 GiB Bus Width: 4-bit Erase Group Size: 512 Bytes Issue reproduced with following command: STM32MP> mmc erase 0 100000 MMC erase: dev # 0, block # 0, count 1048576 ... mmc erase failed 16384 blocks erased: ERROR By setting SDMMC_BUSYD0END_TIMEOUT_US at 2 seconds and by adding time measurement in stm32_sdmmc2_end_cmd() as shown below: +start = get_timer(0); /* Polling status register */ ret = readl_poll_timeout(priv->base + SDMMC_STA, status, status & mask, SDMMC_BUSYD0END_TIMEOUT_US); +printf("time = %ld ms\n", get_timer(start)); We get the following trace: STM32MP> mmc erase 0 100000 MMC erase: dev # 0, block # 0, count 1048576 ... time = 17 ms time = 1 ms time = 1025 ms time = 54 ms time = 56 ms time = 1021 ms time = 57 ms time = 56 ms time = 1020 ms time = 53 ms time = 57 ms time = 1021 ms time = 53 ms time = 57 ms time = 1313 ms time = 54 ms time = 56 ms time = 1026 ms time = 54 ms time = 56 ms time = 1036 ms time = 54 ms time = 56 ms time = 1028 ms time = 53 ms time = 56 ms time = 1027 ms time = 54 ms time = 56 ms time = 1024 ms time = 54 ms time = 56 ms time = 1020 ms time = 54 ms time = 57 ms time = 1023 ms time = 54 ms time = 56 ms time = 1033 ms time = 53 ms time = 57 ms .... time = 53 ms time = 57 ms time = 1021 ms time = 56 ms time = 56 ms time = 1026 ms time = 54 ms time = 56 ms 1048576 blocks erased: OK We see that 1 second timeout is not enough, we also see one measurement up to 1313 ms. Set the timeout to 2 second to keep a security margin. Signed-off-by: Patrice Chotard <patrice.chotard@st.com>
2019-07-22 09:41:10 +00:00
#define SDMMC_BUSYD0END_TIMEOUT_US 2000000
static void stm32_sdmmc2_start_data(struct udevice *dev,
struct mmc_data *data,
struct stm32_sdmmc2_ctx *ctx)
{
struct stm32_sdmmc2_plat *plat = dev_get_plat(dev);
u32 data_ctrl, idmabase0;
/* Configure the SDMMC DPSM (Data Path State Machine) */
data_ctrl = (__ilog2(data->blocksize) <<
SDMMC_DCTRL_DBLOCKSIZE_SHIFT) &
SDMMC_DCTRL_DBLOCKSIZE;
if (data->flags & MMC_DATA_READ) {
data_ctrl |= SDMMC_DCTRL_DTDIR;
idmabase0 = (u32)data->dest;
} else {
idmabase0 = (u32)data->src;
}
/* Set the SDMMC DataLength value */
writel(ctx->data_length, plat->base + SDMMC_DLEN);
/* Write to SDMMC DCTRL */
writel(data_ctrl, plat->base + SDMMC_DCTRL);
/* Cache align */
ctx->cache_start = rounddown(idmabase0, ARCH_DMA_MINALIGN);
ctx->cache_end = roundup(idmabase0 + ctx->data_length,
ARCH_DMA_MINALIGN);
/*
* Flush data cache before DMA start (clean and invalidate)
* Clean also needed for read
* Avoid issue on buffer not cached-aligned
*/
flush_dcache_range(ctx->cache_start, ctx->cache_end);
/* Enable internal DMA */
writel(idmabase0, plat->base + SDMMC_IDMABASE0);
writel(SDMMC_IDMACTRL_IDMAEN, plat->base + SDMMC_IDMACTRL);
}
static void stm32_sdmmc2_start_cmd(struct udevice *dev,
struct mmc_cmd *cmd, u32 cmd_param,
struct stm32_sdmmc2_ctx *ctx)
{
struct stm32_sdmmc2_plat *plat = dev_get_plat(dev);
u32 timeout = 0;
if (readl(plat->base + SDMMC_CMD) & SDMMC_CMD_CPSMEN)
writel(0, plat->base + SDMMC_CMD);
cmd_param |= cmd->cmdidx | SDMMC_CMD_CPSMEN;
if (cmd->resp_type & MMC_RSP_PRESENT) {
if (cmd->resp_type & MMC_RSP_136)
cmd_param |= SDMMC_CMD_WAITRESP;
else if (cmd->resp_type & MMC_RSP_CRC)
cmd_param |= SDMMC_CMD_WAITRESP_0;
else
cmd_param |= SDMMC_CMD_WAITRESP_1;
}
/*
* SDMMC_DTIME must be set in two case:
* - on data transfert.
* - on busy request.
* If not done or too short, the dtimeout flag occurs and DPSM stays
* enabled/busy and waits for abort (stop transmission cmd).
* Next data command is not possible whereas DPSM is activated.
*/
if (ctx->data_length) {
timeout = SDMMC_CMD_TIMEOUT;
} else {
writel(0, plat->base + SDMMC_DCTRL);
if (cmd->resp_type & MMC_RSP_BUSY)
timeout = SDMMC_CMD_TIMEOUT;
}
/* Set the SDMMC Data TimeOut value */
writel(timeout, plat->base + SDMMC_DTIMER);
/* Clear flags */
writel(SDMMC_ICR_STATIC_FLAGS, plat->base + SDMMC_ICR);
/* Set SDMMC argument value */
writel(cmd->cmdarg, plat->base + SDMMC_ARG);
/* Set SDMMC command parameters */
writel(cmd_param, plat->base + SDMMC_CMD);
}
static int stm32_sdmmc2_end_cmd(struct udevice *dev,
struct mmc_cmd *cmd,
struct stm32_sdmmc2_ctx *ctx)
{
struct stm32_sdmmc2_plat *plat = dev_get_plat(dev);
u32 mask = SDMMC_STA_CTIMEOUT;
u32 status;
int ret;
if (cmd->resp_type & MMC_RSP_PRESENT) {
mask |= SDMMC_STA_CMDREND;
if (cmd->resp_type & MMC_RSP_CRC)
mask |= SDMMC_STA_CCRCFAIL;
} else {
mask |= SDMMC_STA_CMDSENT;
}
/* Polling status register */
ret = readl_poll_timeout(plat->base + SDMMC_STA, status, status & mask,
10000);
if (ret < 0) {
dev_dbg(dev, "timeout reading SDMMC_STA register\n");
ctx->dpsm_abort = true;
return ret;
}
/* Check status */
if (status & SDMMC_STA_CTIMEOUT) {
dev_dbg(dev, "error SDMMC_STA_CTIMEOUT (0x%x) for cmd %d\n",
status, cmd->cmdidx);
ctx->dpsm_abort = true;
return -ETIMEDOUT;
}
if (status & SDMMC_STA_CCRCFAIL && cmd->resp_type & MMC_RSP_CRC) {
dev_dbg(dev, "error SDMMC_STA_CCRCFAIL (0x%x) for cmd %d\n",
status, cmd->cmdidx);
ctx->dpsm_abort = true;
return -EILSEQ;
}
if (status & SDMMC_STA_CMDREND && cmd->resp_type & MMC_RSP_PRESENT) {
cmd->response[0] = readl(plat->base + SDMMC_RESP1);
if (cmd->resp_type & MMC_RSP_136) {
cmd->response[1] = readl(plat->base + SDMMC_RESP2);
cmd->response[2] = readl(plat->base + SDMMC_RESP3);
cmd->response[3] = readl(plat->base + SDMMC_RESP4);
}
/* Wait for BUSYD0END flag if busy status is detected */
if (cmd->resp_type & MMC_RSP_BUSY &&
status & SDMMC_STA_BUSYD0) {
mask = SDMMC_STA_DTIMEOUT | SDMMC_STA_BUSYD0END;
/* Polling status register */
ret = readl_poll_timeout(plat->base + SDMMC_STA,
status, status & mask,
SDMMC_BUSYD0END_TIMEOUT_US);
if (ret < 0) {
dev_dbg(dev, "timeout reading SDMMC_STA\n");
ctx->dpsm_abort = true;
return ret;
}
if (status & SDMMC_STA_DTIMEOUT) {
dev_dbg(dev,
"error SDMMC_STA_DTIMEOUT (0x%x)\n",
status);
ctx->dpsm_abort = true;
return -ETIMEDOUT;
}
}
}
return 0;
}
static int stm32_sdmmc2_end_data(struct udevice *dev,
struct mmc_cmd *cmd,
struct mmc_data *data,
struct stm32_sdmmc2_ctx *ctx)
{
struct stm32_sdmmc2_plat *plat = dev_get_plat(dev);
u32 mask = SDMMC_STA_DCRCFAIL | SDMMC_STA_DTIMEOUT |
SDMMC_STA_IDMATE | SDMMC_STA_DATAEND;
u32 status;
if (data->flags & MMC_DATA_READ)
mask |= SDMMC_STA_RXOVERR;
else
mask |= SDMMC_STA_TXUNDERR;
status = readl(plat->base + SDMMC_STA);
while (!(status & mask))
status = readl(plat->base + SDMMC_STA);
/*
* Need invalidate the dcache again to avoid any
* cache-refill during the DMA operations (pre-fetching)
*/
if (data->flags & MMC_DATA_READ)
invalidate_dcache_range(ctx->cache_start, ctx->cache_end);
if (status & SDMMC_STA_DCRCFAIL) {
dev_dbg(dev, "error SDMMC_STA_DCRCFAIL (0x%x) for cmd %d\n",
status, cmd->cmdidx);
if (readl(plat->base + SDMMC_DCOUNT))
ctx->dpsm_abort = true;
return -EILSEQ;
}
if (status & SDMMC_STA_DTIMEOUT) {
dev_dbg(dev, "error SDMMC_STA_DTIMEOUT (0x%x) for cmd %d\n",
status, cmd->cmdidx);
ctx->dpsm_abort = true;
return -ETIMEDOUT;
}
if (status & SDMMC_STA_TXUNDERR) {
dev_dbg(dev, "error SDMMC_STA_TXUNDERR (0x%x) for cmd %d\n",
status, cmd->cmdidx);
ctx->dpsm_abort = true;
return -EIO;
}
if (status & SDMMC_STA_RXOVERR) {
dev_dbg(dev, "error SDMMC_STA_RXOVERR (0x%x) for cmd %d\n",
status, cmd->cmdidx);
ctx->dpsm_abort = true;
return -EIO;
}
if (status & SDMMC_STA_IDMATE) {
dev_dbg(dev, "error SDMMC_STA_IDMATE (0x%x) for cmd %d\n",
status, cmd->cmdidx);
ctx->dpsm_abort = true;
return -EIO;
}
return 0;
}
static int stm32_sdmmc2_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct stm32_sdmmc2_plat *plat = dev_get_plat(dev);
struct stm32_sdmmc2_ctx ctx;
u32 cmdat = data ? SDMMC_CMD_CMDTRANS : 0;
int ret, retry = 3;
schedule();
retry_cmd:
ctx.data_length = 0;
ctx.dpsm_abort = false;
if (data) {
ctx.data_length = data->blocks * data->blocksize;
stm32_sdmmc2_start_data(dev, data, &ctx);
}
stm32_sdmmc2_start_cmd(dev, cmd, cmdat, &ctx);
dev_dbg(dev, "send cmd %d data: 0x%x @ 0x%x\n",
cmd->cmdidx, data ? ctx.data_length : 0, (unsigned int)data);
ret = stm32_sdmmc2_end_cmd(dev, cmd, &ctx);
if (data && !ret)
ret = stm32_sdmmc2_end_data(dev, cmd, data, &ctx);
/* Clear flags */
writel(SDMMC_ICR_STATIC_FLAGS, plat->base + SDMMC_ICR);
if (data)
writel(0x0, plat->base + SDMMC_IDMACTRL);
/*
* To stop Data Path State Machine, a stop_transmission command
* shall be send on cmd or data errors.
*/
if (ctx.dpsm_abort && (cmd->cmdidx != MMC_CMD_STOP_TRANSMISSION)) {
struct mmc_cmd stop_cmd;
stop_cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
stop_cmd.cmdarg = 0;
stop_cmd.resp_type = MMC_RSP_R1b;
dev_dbg(dev, "send STOP command to abort dpsm treatments\n");
ctx.data_length = 0;
stm32_sdmmc2_start_cmd(dev, &stop_cmd,
SDMMC_CMD_CMDSTOP, &ctx);
stm32_sdmmc2_end_cmd(dev, &stop_cmd, &ctx);
writel(SDMMC_ICR_STATIC_FLAGS, plat->base + SDMMC_ICR);
}
if ((ret != -ETIMEDOUT) && (ret != 0) && retry) {
dev_err(dev, "cmd %d failed, retrying ...\n", cmd->cmdidx);
retry--;
goto retry_cmd;
}
dev_dbg(dev, "end for CMD %d, ret = %d\n", cmd->cmdidx, ret);
return ret;
}
/*
* Reset the SDMMC with the RCC.SDMMCxRST register bit.
* This will reset the SDMMC to the reset state and the CPSM and DPSM
* to the Idle state. SDMMC is disabled, Signals Hiz.
*/
static void stm32_sdmmc2_reset(struct stm32_sdmmc2_plat *plat)
{
if (reset_valid(&plat->reset_ctl)) {
/* Reset */
reset_assert(&plat->reset_ctl);
udelay(2);
reset_deassert(&plat->reset_ctl);
}
/* init the needed SDMMC register after reset */
writel(plat->pwr_reg_msk, plat->base + SDMMC_POWER);
}
/*
* Set the SDMMC in power-cycle state.
* This will make that the SDMMC_D[7:0],
* SDMMC_CMD and SDMMC_CK are driven low, to prevent the card from being
* supplied through the signal lines.
*/
static void stm32_sdmmc2_pwrcycle(struct stm32_sdmmc2_plat *plat)
{
if ((readl(plat->base + SDMMC_POWER) & SDMMC_POWER_PWRCTRL_MASK) ==
SDMMC_POWER_PWRCTRL_CYCLE)
return;
stm32_sdmmc2_reset(plat);
}
/*
* set the SDMMC state Power-on: the card is clocked
* manage the SDMMC state control:
* Reset => Power-Cycle => Power-Off => Power
* PWRCTRL=10 PWCTRL=00 PWCTRL=11
*/
static void stm32_sdmmc2_pwron(struct stm32_sdmmc2_plat *plat)
{
u32 pwrctrl =
readl(plat->base + SDMMC_POWER) & SDMMC_POWER_PWRCTRL_MASK;
if (pwrctrl == SDMMC_POWER_PWRCTRL_ON)
return;
/* warning: same PWRCTRL value after reset and for power-off state
* it is the reset state here = the only managed by the driver
*/
if (pwrctrl == SDMMC_POWER_PWRCTRL_OFF) {
writel(SDMMC_POWER_PWRCTRL_CYCLE | plat->pwr_reg_msk,
plat->base + SDMMC_POWER);
}
/*
* the remaining case is SDMMC_POWER_PWRCTRL_CYCLE
* switch to Power-Off state: SDMCC disable, signals drive 1
*/
writel(SDMMC_POWER_PWRCTRL_OFF | plat->pwr_reg_msk,
plat->base + SDMMC_POWER);
/* After the 1ms delay set the SDMMC to power-on */
mdelay(1);
writel(SDMMC_POWER_PWRCTRL_ON | plat->pwr_reg_msk,
plat->base + SDMMC_POWER);
/* during the first 74 SDMMC_CK cycles the SDMMC is still disabled. */
#if CONFIG_IS_ENABLED(DM_REGULATOR)
if (plat->mmc.vqmmc_supply && !plat->vqmmc_enabled) {
if (regulator_set_enable_if_allowed(plat->mmc.vqmmc_supply, true))
dev_dbg(plat->mmc.dev, "failed to enable vqmmc-supply\n");
else
plat->vqmmc_enabled = true;
}
#endif
}
#define IS_RISING_EDGE(reg) (reg & SDMMC_CLKCR_NEGEDGE ? 0 : 1)
static int stm32_sdmmc2_set_ios(struct udevice *dev)
{
struct mmc *mmc = mmc_get_mmc_dev(dev);
struct stm32_sdmmc2_plat *plat = dev_get_plat(dev);
u32 desired = mmc->clock;
u32 sys_clock = clk_get_rate(&plat->clk);
u32 clk = 0;
dev_dbg(dev, "bus_with = %d, clock = %d\n",
mmc->bus_width, mmc->clock);
if (mmc->clk_disable)
stm32_sdmmc2_pwrcycle(plat);
else
stm32_sdmmc2_pwron(plat);
/*
* clk_div = 0 => command and data generated on SDMMCCLK falling edge
* clk_div > 0 and NEGEDGE = 0 => command and data generated on
* SDMMCCLK rising edge
* clk_div > 0 and NEGEDGE = 1 => command and data generated on
* SDMMCCLK falling edge
*/
if (desired && (sys_clock > desired || mmc->ddr_mode ||
IS_RISING_EDGE(plat->clk_reg_msk))) {
clk = DIV_ROUND_UP(sys_clock, 2 * desired);
if (clk > SDMMC_CLKCR_CLKDIV_MAX)
clk = SDMMC_CLKCR_CLKDIV_MAX;
}
if (mmc->ddr_mode)
clk |= SDMMC_CLKCR_DDR;
if (mmc->bus_width == 4)
clk |= SDMMC_CLKCR_WIDBUS_4;
if (mmc->bus_width == 8)
clk |= SDMMC_CLKCR_WIDBUS_8;
writel(clk | plat->clk_reg_msk | SDMMC_CLKCR_HWFC_EN,
plat->base + SDMMC_CLKCR);
return 0;
}
static int stm32_sdmmc2_getcd(struct udevice *dev)
{
struct stm32_sdmmc2_plat *plat = dev_get_plat(dev);
dev_dbg(dev, "%s called\n", __func__);
if (dm_gpio_is_valid(&plat->cd_gpio))
return dm_gpio_get_value(&plat->cd_gpio);
return 1;
}
static int stm32_sdmmc2_host_power_cycle(struct udevice *dev)
{
struct stm32_sdmmc2_plat *plat = dev_get_plat(dev);
writel(SDMMC_POWER_PWRCTRL_CYCLE | plat->pwr_reg_msk,
plat->base + SDMMC_POWER);
return 0;
}
static const struct dm_mmc_ops stm32_sdmmc2_ops = {
.send_cmd = stm32_sdmmc2_send_cmd,
.set_ios = stm32_sdmmc2_set_ios,
.get_cd = stm32_sdmmc2_getcd,
.host_power_cycle = stm32_sdmmc2_host_power_cycle,
};
static int stm32_sdmmc2_of_to_plat(struct udevice *dev)
{
struct stm32_sdmmc2_plat *plat = dev_get_plat(dev);
struct mmc_config *cfg = &plat->cfg;
int ret;
plat->base = dev_read_addr(dev);
if (plat->base == FDT_ADDR_T_NONE)
return -EINVAL;
if (dev_read_bool(dev, "st,neg-edge"))
plat->clk_reg_msk |= SDMMC_CLKCR_NEGEDGE;
if (dev_read_bool(dev, "st,sig-dir"))
plat->pwr_reg_msk |= SDMMC_POWER_DIRPOL;
if (dev_read_bool(dev, "st,use-ckin"))
plat->clk_reg_msk |= SDMMC_CLKCR_SELCLKRX_CKIN;
cfg->f_min = 400000;
cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
cfg->name = "STM32 SD/MMC";
cfg->host_caps = 0;
cfg->f_max = 52000000;
ret = mmc_of_parse(dev, cfg);
if (ret)
return ret;
cfg->host_caps &= ~(UHS_CAPS | MMC_MODE_HS200 | MMC_MODE_HS400 | MMC_MODE_HS400_ES);
ret = clk_get_by_index(dev, 0, &plat->clk);
if (ret)
return ret;
ret = reset_get_by_index(dev, 0, &plat->reset_ctl);
if (ret)
dev_dbg(dev, "No reset provided\n");
gpio_request_by_name(dev, "cd-gpios", 0, &plat->cd_gpio,
GPIOD_IS_IN);
return 0;
}
static int stm32_sdmmc2_probe_level_translator(struct udevice *dev)
{
struct stm32_sdmmc2_plat *plat = dev_get_plat(dev);
struct gpio_desc cmd_gpio;
struct gpio_desc ck_gpio;
struct gpio_desc ckin_gpio;
int clk_hi, clk_lo, ret;
ret = gpio_request_by_name(dev, "st,cmd-gpios", 0, &cmd_gpio,
GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
if (ret)
goto exit_cmd;
ret = gpio_request_by_name(dev, "st,ck-gpios", 0, &ck_gpio,
GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
if (ret)
goto exit_ck;
ret = gpio_request_by_name(dev, "st,ckin-gpios", 0, &ckin_gpio,
GPIOD_IS_IN);
if (ret)
goto exit_ckin;
/* All GPIOs are valid, test whether level translator works */
/* Sample CKIN */
clk_hi = !!dm_gpio_get_value(&ckin_gpio);
/* Set CK low */
dm_gpio_set_value(&ck_gpio, 0);
/* Sample CKIN */
clk_lo = !!dm_gpio_get_value(&ckin_gpio);
/* Tristate all */
dm_gpio_set_dir_flags(&cmd_gpio, GPIOD_IS_IN);
dm_gpio_set_dir_flags(&ck_gpio, GPIOD_IS_IN);
/* Level translator is present if CK signal is propagated to CKIN */
if (!clk_hi || clk_lo)
plat->clk_reg_msk &= ~SDMMC_CLKCR_SELCLKRX_CKIN;
dm_gpio_free(dev, &ckin_gpio);
exit_ckin:
dm_gpio_free(dev, &ck_gpio);
exit_ck:
dm_gpio_free(dev, &cmd_gpio);
exit_cmd:
pinctrl_select_state(dev, "default");
return 0;
}
static int stm32_sdmmc2_probe(struct udevice *dev)
{
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct stm32_sdmmc2_plat *plat = dev_get_plat(dev);
int ret;
ret = clk_enable(&plat->clk);
if (ret) {
clk_free(&plat->clk);
return ret;
}
upriv->mmc = &plat->mmc;
if (plat->clk_reg_msk & SDMMC_CLKCR_SELCLKRX_CKIN)
stm32_sdmmc2_probe_level_translator(dev);
/* SDMMC init */
stm32_sdmmc2_reset(plat);
return 0;
}
static int stm32_sdmmc2_bind(struct udevice *dev)
{
struct stm32_sdmmc2_plat *plat = dev_get_plat(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
static const struct udevice_id stm32_sdmmc2_ids[] = {
{ .compatible = "st,stm32-sdmmc2" },
{ }
};
U_BOOT_DRIVER(stm32_sdmmc2) = {
.name = "stm32_sdmmc2",
.id = UCLASS_MMC,
.of_match = stm32_sdmmc2_ids,
.ops = &stm32_sdmmc2_ops,
.probe = stm32_sdmmc2_probe,
.bind = stm32_sdmmc2_bind,
.of_to_plat = stm32_sdmmc2_of_to_plat,
.plat_auto = sizeof(struct stm32_sdmmc2_plat),
};