u-boot/drivers/clk/rockchip/clk_rk3328.c

820 lines
21 KiB
C
Raw Normal View History

/*
* (C) Copyright 2017 Rockchip Electronics Co., Ltd
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <bitfield.h>
#include <clk-uclass.h>
#include <dm.h>
#include <errno.h>
#include <syscon.h>
#include <asm/arch/clock.h>
#include <asm/arch/cru_rk3328.h>
#include <asm/arch/hardware.h>
#include <asm/arch/grf_rk3328.h>
#include <asm/io.h>
#include <dm/lists.h>
#include <dt-bindings/clock/rk3328-cru.h>
DECLARE_GLOBAL_DATA_PTR;
struct pll_div {
u32 refdiv;
u32 fbdiv;
u32 postdiv1;
u32 postdiv2;
u32 frac;
};
#define RATE_TO_DIV(input_rate, output_rate) \
((input_rate) / (output_rate) - 1);
#define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1))
#define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
.refdiv = _refdiv,\
.fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
.postdiv1 = _postdiv1, .postdiv2 = _postdiv2};
static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 1, 4, 1);
static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 2, 2, 1);
static const struct pll_div apll_816_cfg = PLL_DIVISORS(816 * MHz, 1, 2, 1);
static const struct pll_div apll_600_cfg = PLL_DIVISORS(600 * MHz, 1, 3, 1);
static const struct pll_div *apll_cfgs[] = {
[APLL_816_MHZ] = &apll_816_cfg,
[APLL_600_MHZ] = &apll_600_cfg,
};
enum {
/* PLL_CON0 */
PLL_POSTDIV1_SHIFT = 12,
PLL_POSTDIV1_MASK = 0x7 << PLL_POSTDIV1_SHIFT,
PLL_FBDIV_SHIFT = 0,
PLL_FBDIV_MASK = 0xfff,
/* PLL_CON1 */
PLL_DSMPD_SHIFT = 12,
PLL_DSMPD_MASK = 1 << PLL_DSMPD_SHIFT,
PLL_INTEGER_MODE = 1,
PLL_LOCK_STATUS_SHIFT = 10,
PLL_LOCK_STATUS_MASK = 1 << PLL_LOCK_STATUS_SHIFT,
PLL_POSTDIV2_SHIFT = 6,
PLL_POSTDIV2_MASK = 0x7 << PLL_POSTDIV2_SHIFT,
PLL_REFDIV_SHIFT = 0,
PLL_REFDIV_MASK = 0x3f,
/* PLL_CON2 */
PLL_FRACDIV_SHIFT = 0,
PLL_FRACDIV_MASK = 0xffffff,
/* MODE_CON */
APLL_MODE_SHIFT = 0,
NPLL_MODE_SHIFT = 1,
DPLL_MODE_SHIFT = 4,
CPLL_MODE_SHIFT = 8,
GPLL_MODE_SHIFT = 12,
PLL_MODE_SLOW = 0,
PLL_MODE_NORM,
/* CLKSEL_CON0 */
CLK_CORE_PLL_SEL_APLL = 0,
CLK_CORE_PLL_SEL_GPLL,
CLK_CORE_PLL_SEL_DPLL,
CLK_CORE_PLL_SEL_NPLL,
CLK_CORE_PLL_SEL_SHIFT = 6,
CLK_CORE_PLL_SEL_MASK = 3 << CLK_CORE_PLL_SEL_SHIFT,
CLK_CORE_DIV_SHIFT = 0,
CLK_CORE_DIV_MASK = 0x1f,
/* CLKSEL_CON1 */
ACLKM_CORE_DIV_SHIFT = 4,
ACLKM_CORE_DIV_MASK = 0x7 << ACLKM_CORE_DIV_SHIFT,
PCLK_DBG_DIV_SHIFT = 0,
PCLK_DBG_DIV_MASK = 0xF << PCLK_DBG_DIV_SHIFT,
/* CLKSEL_CON27 */
GMAC2IO_PLL_SEL_SHIFT = 7,
GMAC2IO_PLL_SEL_MASK = 1 << GMAC2IO_PLL_SEL_SHIFT,
GMAC2IO_PLL_SEL_CPLL = 0,
GMAC2IO_PLL_SEL_GPLL = 1,
GMAC2IO_CLK_DIV_MASK = 0x1f,
GMAC2IO_CLK_DIV_SHIFT = 0,
/* CLKSEL_CON28 */
ACLK_PERIHP_PLL_SEL_CPLL = 0,
ACLK_PERIHP_PLL_SEL_GPLL,
ACLK_PERIHP_PLL_SEL_HDMIPHY,
ACLK_PERIHP_PLL_SEL_SHIFT = 6,
ACLK_PERIHP_PLL_SEL_MASK = 3 << ACLK_PERIHP_PLL_SEL_SHIFT,
ACLK_PERIHP_DIV_CON_SHIFT = 0,
ACLK_PERIHP_DIV_CON_MASK = 0x1f,
/* CLKSEL_CON29 */
PCLK_PERIHP_DIV_CON_SHIFT = 4,
PCLK_PERIHP_DIV_CON_MASK = 0x7 << PCLK_PERIHP_DIV_CON_SHIFT,
HCLK_PERIHP_DIV_CON_SHIFT = 0,
HCLK_PERIHP_DIV_CON_MASK = 3 << HCLK_PERIHP_DIV_CON_SHIFT,
/* CLKSEL_CON22 */
CLK_TSADC_DIV_CON_SHIFT = 0,
CLK_TSADC_DIV_CON_MASK = 0x3ff,
/* CLKSEL_CON23 */
CLK_SARADC_DIV_CON_SHIFT = 0,
CLK_SARADC_DIV_CON_MASK = GENMASK(9, 0),
CLK_SARADC_DIV_CON_WIDTH = 10,
/* CLKSEL_CON24 */
CLK_PWM_PLL_SEL_CPLL = 0,
CLK_PWM_PLL_SEL_GPLL,
CLK_PWM_PLL_SEL_SHIFT = 15,
CLK_PWM_PLL_SEL_MASK = 1 << CLK_PWM_PLL_SEL_SHIFT,
CLK_PWM_DIV_CON_SHIFT = 8,
CLK_PWM_DIV_CON_MASK = 0x7f << CLK_PWM_DIV_CON_SHIFT,
CLK_SPI_PLL_SEL_CPLL = 0,
CLK_SPI_PLL_SEL_GPLL,
CLK_SPI_PLL_SEL_SHIFT = 7,
CLK_SPI_PLL_SEL_MASK = 1 << CLK_SPI_PLL_SEL_SHIFT,
CLK_SPI_DIV_CON_SHIFT = 0,
CLK_SPI_DIV_CON_MASK = 0x7f << CLK_SPI_DIV_CON_SHIFT,
/* CLKSEL_CON30 */
CLK_SDMMC_PLL_SEL_CPLL = 0,
CLK_SDMMC_PLL_SEL_GPLL,
CLK_SDMMC_PLL_SEL_24M,
CLK_SDMMC_PLL_SEL_USBPHY,
CLK_SDMMC_PLL_SHIFT = 8,
CLK_SDMMC_PLL_MASK = 0x3 << CLK_SDMMC_PLL_SHIFT,
CLK_SDMMC_DIV_CON_SHIFT = 0,
CLK_SDMMC_DIV_CON_MASK = 0xff << CLK_SDMMC_DIV_CON_SHIFT,
/* CLKSEL_CON32 */
CLK_EMMC_PLL_SEL_CPLL = 0,
CLK_EMMC_PLL_SEL_GPLL,
CLK_EMMC_PLL_SEL_24M,
CLK_EMMC_PLL_SEL_USBPHY,
CLK_EMMC_PLL_SHIFT = 8,
CLK_EMMC_PLL_MASK = 0x3 << CLK_EMMC_PLL_SHIFT,
CLK_EMMC_DIV_CON_SHIFT = 0,
CLK_EMMC_DIV_CON_MASK = 0xff << CLK_EMMC_DIV_CON_SHIFT,
/* CLKSEL_CON34 */
CLK_I2C_PLL_SEL_CPLL = 0,
CLK_I2C_PLL_SEL_GPLL,
CLK_I2C_DIV_CON_MASK = 0x7f,
CLK_I2C_PLL_SEL_MASK = 1,
CLK_I2C1_PLL_SEL_SHIFT = 15,
CLK_I2C1_DIV_CON_SHIFT = 8,
CLK_I2C0_PLL_SEL_SHIFT = 7,
CLK_I2C0_DIV_CON_SHIFT = 0,
/* CLKSEL_CON35 */
CLK_I2C3_PLL_SEL_SHIFT = 15,
CLK_I2C3_DIV_CON_SHIFT = 8,
CLK_I2C2_PLL_SEL_SHIFT = 7,
CLK_I2C2_DIV_CON_SHIFT = 0,
};
#define VCO_MAX_KHZ (3200 * (MHz / KHz))
#define VCO_MIN_KHZ (800 * (MHz / KHz))
#define OUTPUT_MAX_KHZ (3200 * (MHz / KHz))
#define OUTPUT_MIN_KHZ (16 * (MHz / KHz))
/*
* the div restructions of pll in integer mode, these are defined in
* * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
*/
#define PLL_DIV_MIN 16
#define PLL_DIV_MAX 3200
/*
* How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
* Formulas also embedded within the Fractional PLL Verilog model:
* If DSMPD = 1 (DSM is disabled, "integer mode")
* FOUTVCO = FREF / REFDIV * FBDIV
* FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
* Where:
* FOUTVCO = Fractional PLL non-divided output frequency
* FOUTPOSTDIV = Fractional PLL divided output frequency
* (output of second post divider)
* FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
* REFDIV = Fractional PLL input reference clock divider
* FBDIV = Integer value programmed into feedback divide
*
*/
static void rkclk_set_pll(struct rk3328_cru *cru, enum rk_clk_id clk_id,
const struct pll_div *div)
{
u32 *pll_con;
u32 mode_shift, mode_mask;
pll_con = NULL;
mode_shift = 0;
switch (clk_id) {
case CLK_ARM:
pll_con = cru->apll_con;
mode_shift = APLL_MODE_SHIFT;
break;
case CLK_DDR:
pll_con = cru->dpll_con;
mode_shift = DPLL_MODE_SHIFT;
break;
case CLK_CODEC:
pll_con = cru->cpll_con;
mode_shift = CPLL_MODE_SHIFT;
break;
case CLK_GENERAL:
pll_con = cru->gpll_con;
mode_shift = GPLL_MODE_SHIFT;
break;
case CLK_NEW:
pll_con = cru->npll_con;
mode_shift = NPLL_MODE_SHIFT;
break;
default:
break;
}
mode_mask = 1 << mode_shift;
/* All 8 PLLs have same VCO and output frequency range restrictions. */
u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, \
postdiv2=%d, vco=%u khz, output=%u khz\n",
pll_con, div->fbdiv, div->refdiv, div->postdiv1,
div->postdiv2, vco_khz, output_khz);
assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
/*
* When power on or changing PLL setting,
* we must force PLL into slow mode to ensure output stable clock.
*/
rk_clrsetreg(&cru->mode_con, mode_mask, PLL_MODE_SLOW << mode_shift);
/* use integer mode */
rk_clrsetreg(&pll_con[1], PLL_DSMPD_MASK,
PLL_INTEGER_MODE << PLL_DSMPD_SHIFT);
rk_clrsetreg(&pll_con[0],
PLL_FBDIV_MASK | PLL_POSTDIV1_MASK,
(div->fbdiv << PLL_FBDIV_SHIFT) |
(div->postdiv1 << PLL_POSTDIV1_SHIFT));
rk_clrsetreg(&pll_con[1],
PLL_POSTDIV2_MASK | PLL_REFDIV_MASK,
(div->postdiv2 << PLL_POSTDIV2_SHIFT) |
(div->refdiv << PLL_REFDIV_SHIFT));
/* waiting for pll lock */
while (!(readl(&pll_con[1]) & (1 << PLL_LOCK_STATUS_SHIFT)))
udelay(1);
/* pll enter normal mode */
rk_clrsetreg(&cru->mode_con, mode_mask, PLL_MODE_NORM << mode_shift);
}
static void rkclk_init(struct rk3328_cru *cru)
{
u32 aclk_div;
u32 hclk_div;
u32 pclk_div;
/* configure gpll cpll */
rkclk_set_pll(cru, CLK_GENERAL, &gpll_init_cfg);
rkclk_set_pll(cru, CLK_CODEC, &cpll_init_cfg);
/* configure perihp aclk, hclk, pclk */
aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
rk_clrsetreg(&cru->clksel_con[28],
ACLK_PERIHP_PLL_SEL_MASK | ACLK_PERIHP_DIV_CON_MASK,
ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT |
aclk_div << ACLK_PERIHP_DIV_CON_SHIFT);
rk_clrsetreg(&cru->clksel_con[29],
PCLK_PERIHP_DIV_CON_MASK | HCLK_PERIHP_DIV_CON_MASK,
pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
hclk_div << HCLK_PERIHP_DIV_CON_SHIFT);
}
void rk3328_configure_cpu(struct rk3328_cru *cru,
enum apll_frequencies apll_freq)
{
u32 clk_core_div;
u32 aclkm_div;
u32 pclk_dbg_div;
rkclk_set_pll(cru, CLK_ARM, apll_cfgs[apll_freq]);
clk_core_div = APLL_HZ / CLK_CORE_HZ - 1;
aclkm_div = APLL_HZ / ACLKM_CORE_HZ / (clk_core_div + 1) - 1;
pclk_dbg_div = APLL_HZ / PCLK_DBG_HZ / (clk_core_div + 1) - 1;
rk_clrsetreg(&cru->clksel_con[0],
CLK_CORE_PLL_SEL_MASK | CLK_CORE_DIV_MASK,
CLK_CORE_PLL_SEL_APLL << CLK_CORE_PLL_SEL_SHIFT |
clk_core_div << CLK_CORE_DIV_SHIFT);
rk_clrsetreg(&cru->clksel_con[1],
PCLK_DBG_DIV_MASK | ACLKM_CORE_DIV_MASK,
pclk_dbg_div << PCLK_DBG_DIV_SHIFT |
aclkm_div << ACLKM_CORE_DIV_SHIFT);
}
static ulong rk3328_i2c_get_clk(struct rk3328_cru *cru, ulong clk_id)
{
u32 div, con;
switch (clk_id) {
case SCLK_I2C0:
con = readl(&cru->clksel_con[34]);
div = con >> CLK_I2C0_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
break;
case SCLK_I2C1:
con = readl(&cru->clksel_con[34]);
div = con >> CLK_I2C1_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
break;
case SCLK_I2C2:
con = readl(&cru->clksel_con[35]);
div = con >> CLK_I2C2_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
break;
case SCLK_I2C3:
con = readl(&cru->clksel_con[35]);
div = con >> CLK_I2C3_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
break;
default:
printf("do not support this i2c bus\n");
return -EINVAL;
}
return DIV_TO_RATE(GPLL_HZ, div);
}
static ulong rk3328_i2c_set_clk(struct rk3328_cru *cru, ulong clk_id, uint hz)
{
int src_clk_div;
src_clk_div = GPLL_HZ / hz;
assert(src_clk_div - 1 < 127);
switch (clk_id) {
case SCLK_I2C0:
rk_clrsetreg(&cru->clksel_con[34],
CLK_I2C_DIV_CON_MASK << CLK_I2C0_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_MASK << CLK_I2C0_PLL_SEL_SHIFT,
(src_clk_div - 1) << CLK_I2C0_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_GPLL << CLK_I2C0_PLL_SEL_SHIFT);
break;
case SCLK_I2C1:
rk_clrsetreg(&cru->clksel_con[34],
CLK_I2C_DIV_CON_MASK << CLK_I2C1_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_MASK << CLK_I2C1_PLL_SEL_SHIFT,
(src_clk_div - 1) << CLK_I2C1_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_GPLL << CLK_I2C1_PLL_SEL_SHIFT);
break;
case SCLK_I2C2:
rk_clrsetreg(&cru->clksel_con[35],
CLK_I2C_DIV_CON_MASK << CLK_I2C2_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_MASK << CLK_I2C2_PLL_SEL_SHIFT,
(src_clk_div - 1) << CLK_I2C2_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_GPLL << CLK_I2C2_PLL_SEL_SHIFT);
break;
case SCLK_I2C3:
rk_clrsetreg(&cru->clksel_con[35],
CLK_I2C_DIV_CON_MASK << CLK_I2C3_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_MASK << CLK_I2C3_PLL_SEL_SHIFT,
(src_clk_div - 1) << CLK_I2C3_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_GPLL << CLK_I2C3_PLL_SEL_SHIFT);
break;
default:
printf("do not support this i2c bus\n");
return -EINVAL;
}
return DIV_TO_RATE(GPLL_HZ, src_clk_div);
}
static ulong rk3328_gmac2io_set_clk(struct rk3328_cru *cru, ulong rate)
{
struct rk3328_grf_regs *grf;
ulong ret;
grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
/*
* The RGMII CLK can be derived either from an external "clkin"
* or can be generated from internally by a divider from SCLK_MAC.
*/
if (readl(&grf->mac_con[1]) & BIT(10) &&
readl(&grf->soc_con[4]) & BIT(14)) {
/* An external clock will always generate the right rate... */
ret = rate;
} else {
u32 con = readl(&cru->clksel_con[27]);
ulong pll_rate;
u8 div;
if ((con >> GMAC2IO_PLL_SEL_SHIFT) & GMAC2IO_PLL_SEL_GPLL)
pll_rate = GPLL_HZ;
else
pll_rate = CPLL_HZ;
div = DIV_ROUND_UP(pll_rate, rate) - 1;
if (div <= 0x1f)
rk_clrsetreg(&cru->clksel_con[27], GMAC2IO_CLK_DIV_MASK,
div << GMAC2IO_CLK_DIV_SHIFT);
else
debug("Unsupported div for gmac:%d\n", div);
return DIV_TO_RATE(pll_rate, div);
}
return ret;
}
static ulong rk3328_mmc_get_clk(struct rk3328_cru *cru, uint clk_id)
{
u32 div, con, con_id;
switch (clk_id) {
case HCLK_SDMMC:
case SCLK_SDMMC:
con_id = 30;
break;
case HCLK_EMMC:
case SCLK_EMMC:
con_id = 32;
break;
default:
return -EINVAL;
}
con = readl(&cru->clksel_con[con_id]);
div = (con & CLK_EMMC_DIV_CON_MASK) >> CLK_EMMC_DIV_CON_SHIFT;
if ((con & CLK_EMMC_PLL_MASK) >> CLK_EMMC_PLL_SHIFT
== CLK_EMMC_PLL_SEL_24M)
return DIV_TO_RATE(OSC_HZ, div) / 2;
else
return DIV_TO_RATE(GPLL_HZ, div) / 2;
}
static ulong rk3328_mmc_set_clk(struct rk3328_cru *cru,
ulong clk_id, ulong set_rate)
{
int src_clk_div;
u32 con_id;
switch (clk_id) {
case HCLK_SDMMC:
case SCLK_SDMMC:
con_id = 30;
break;
case HCLK_EMMC:
case SCLK_EMMC:
con_id = 32;
break;
default:
return -EINVAL;
}
/* Select clk_sdmmc/emmc source from GPLL by default */
/* mmc clock defaulg div 2 internal, need provide double in cru */
src_clk_div = DIV_ROUND_UP(GPLL_HZ / 2, set_rate);
if (src_clk_div > 127) {
/* use 24MHz source for 400KHz clock */
src_clk_div = DIV_ROUND_UP(OSC_HZ / 2, set_rate);
rk_clrsetreg(&cru->clksel_con[con_id],
CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
CLK_EMMC_PLL_SEL_24M << CLK_EMMC_PLL_SHIFT |
(src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
} else {
rk_clrsetreg(&cru->clksel_con[con_id],
CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
(src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
}
return rk3328_mmc_get_clk(cru, clk_id);
}
static ulong rk3328_pwm_get_clk(struct rk3328_cru *cru)
{
u32 div, con;
con = readl(&cru->clksel_con[24]);
div = (con & CLK_PWM_DIV_CON_MASK) >> CLK_PWM_DIV_CON_SHIFT;
return DIV_TO_RATE(GPLL_HZ, div);
}
static ulong rk3328_pwm_set_clk(struct rk3328_cru *cru, uint hz)
{
u32 div = GPLL_HZ / hz;
rk_clrsetreg(&cru->clksel_con[24],
CLK_PWM_PLL_SEL_MASK | CLK_PWM_DIV_CON_MASK,
CLK_PWM_PLL_SEL_GPLL << CLK_PWM_PLL_SEL_SHIFT |
(div - 1) << CLK_PWM_DIV_CON_SHIFT);
return DIV_TO_RATE(GPLL_HZ, div);
}
static ulong rk3328_saradc_get_clk(struct rk3328_cru *cru)
{
u32 div, val;
val = readl(&cru->clksel_con[23]);
div = bitfield_extract(val, CLK_SARADC_DIV_CON_SHIFT,
CLK_SARADC_DIV_CON_WIDTH);
return DIV_TO_RATE(OSC_HZ, div);
}
static ulong rk3328_saradc_set_clk(struct rk3328_cru *cru, uint hz)
{
int src_clk_div;
src_clk_div = DIV_ROUND_UP(OSC_HZ, hz) - 1;
assert(src_clk_div < 128);
rk_clrsetreg(&cru->clksel_con[23],
CLK_SARADC_DIV_CON_MASK,
src_clk_div << CLK_SARADC_DIV_CON_SHIFT);
return rk3328_saradc_get_clk(cru);
}
static ulong rk3328_clk_get_rate(struct clk *clk)
{
struct rk3328_clk_priv *priv = dev_get_priv(clk->dev);
ulong rate = 0;
switch (clk->id) {
case 0 ... 29:
return 0;
case HCLK_SDMMC:
case HCLK_EMMC:
case SCLK_SDMMC:
case SCLK_EMMC:
rate = rk3328_mmc_get_clk(priv->cru, clk->id);
break;
case SCLK_I2C0:
case SCLK_I2C1:
case SCLK_I2C2:
case SCLK_I2C3:
rate = rk3328_i2c_get_clk(priv->cru, clk->id);
break;
case SCLK_PWM:
rate = rk3328_pwm_get_clk(priv->cru);
break;
case SCLK_SARADC:
rate = rk3328_saradc_get_clk(priv->cru);
break;
default:
return -ENOENT;
}
return rate;
}
static ulong rk3328_clk_set_rate(struct clk *clk, ulong rate)
{
struct rk3328_clk_priv *priv = dev_get_priv(clk->dev);
ulong ret = 0;
switch (clk->id) {
case 0 ... 29:
return 0;
case HCLK_SDMMC:
case HCLK_EMMC:
case SCLK_SDMMC:
case SCLK_EMMC:
ret = rk3328_mmc_set_clk(priv->cru, clk->id, rate);
break;
case SCLK_I2C0:
case SCLK_I2C1:
case SCLK_I2C2:
case SCLK_I2C3:
ret = rk3328_i2c_set_clk(priv->cru, clk->id, rate);
break;
case SCLK_MAC2IO:
ret = rk3328_gmac2io_set_clk(priv->cru, rate);
break;
case SCLK_PWM:
ret = rk3328_pwm_set_clk(priv->cru, rate);
break;
case SCLK_SARADC:
ret = rk3328_saradc_set_clk(priv->cru, rate);
break;
case DCLK_LCDC:
case SCLK_PDM:
case SCLK_RTC32K:
case SCLK_UART0:
case SCLK_UART1:
case SCLK_UART2:
case SCLK_SDIO:
case SCLK_TSP:
case SCLK_WIFI:
case ACLK_BUS_PRE:
case HCLK_BUS_PRE:
case PCLK_BUS_PRE:
case ACLK_PERI_PRE:
case HCLK_PERI:
case PCLK_PERI:
case ACLK_VIO_PRE:
case HCLK_VIO_PRE:
case ACLK_RGA_PRE:
case SCLK_RGA:
case ACLK_VOP_PRE:
case ACLK_RKVDEC_PRE:
case ACLK_RKVENC:
case ACLK_VPU_PRE:
case SCLK_VDEC_CABAC:
case SCLK_VDEC_CORE:
case SCLK_VENC_CORE:
case SCLK_VENC_DSP:
case SCLK_EFUSE:
case PCLK_DDR:
case ACLK_GMAC:
case PCLK_GMAC:
case SCLK_USB3OTG_SUSPEND:
return 0;
default:
return -ENOENT;
}
return ret;
}
static int rk3328_gmac2io_set_parent(struct clk *clk, struct clk *parent)
{
struct rk3328_grf_regs *grf;
const char *clock_output_name;
int ret;
grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
/*
* If the requested parent is in the same clock-controller and the id
* is SCLK_MAC2IO_SRC ("clk_mac2io_src"), switch to the internal clock.
*/
if ((parent->dev == clk->dev) && (parent->id == SCLK_MAC2IO_SRC)) {
debug("%s: switching RGMII to SCLK_MAC2IO_SRC\n", __func__);
rk_clrreg(&grf->mac_con[1], BIT(10));
return 0;
}
/*
* Otherwise, we need to check the clock-output-names of the
* requested parent to see if the requested id is "gmac_clkin".
*/
ret = dev_read_string_index(parent->dev, "clock-output-names",
parent->id, &clock_output_name);
if (ret < 0)
return -ENODATA;
/* If this is "gmac_clkin", switch to the external clock input */
if (!strcmp(clock_output_name, "gmac_clkin")) {
debug("%s: switching RGMII to CLKIN\n", __func__);
rk_setreg(&grf->mac_con[1], BIT(10));
return 0;
}
return -EINVAL;
}
static int rk3328_gmac2io_ext_set_parent(struct clk *clk, struct clk *parent)
{
struct rk3328_grf_regs *grf;
const char *clock_output_name;
int ret;
grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
/*
* If the requested parent is in the same clock-controller and the id
* is SCLK_MAC2IO ("clk_mac2io"), switch to the internal clock.
*/
if ((parent->dev == clk->dev) && (parent->id == SCLK_MAC2IO)) {
debug("%s: switching RGMII to SCLK_MAC2IO\n", __func__);
rk_clrreg(&grf->soc_con[4], BIT(14));
return 0;
}
/*
* Otherwise, we need to check the clock-output-names of the
* requested parent to see if the requested id is "gmac_clkin".
*/
ret = dev_read_string_index(parent->dev, "clock-output-names",
parent->id, &clock_output_name);
if (ret < 0)
return -ENODATA;
/* If this is "gmac_clkin", switch to the external clock input */
if (!strcmp(clock_output_name, "gmac_clkin")) {
debug("%s: switching RGMII to CLKIN\n", __func__);
rk_setreg(&grf->soc_con[4], BIT(14));
return 0;
}
return -EINVAL;
}
static int rk3328_clk_set_parent(struct clk *clk, struct clk *parent)
{
switch (clk->id) {
case SCLK_MAC2IO:
return rk3328_gmac2io_set_parent(clk, parent);
case SCLK_MAC2IO_EXT:
return rk3328_gmac2io_ext_set_parent(clk, parent);
case DCLK_LCDC:
case SCLK_PDM:
case SCLK_RTC32K:
case SCLK_UART0:
case SCLK_UART1:
case SCLK_UART2:
return 0;
}
debug("%s: unsupported clk %ld\n", __func__, clk->id);
return -ENOENT;
}
static struct clk_ops rk3328_clk_ops = {
.get_rate = rk3328_clk_get_rate,
.set_rate = rk3328_clk_set_rate,
.set_parent = rk3328_clk_set_parent,
};
static int rk3328_clk_probe(struct udevice *dev)
{
struct rk3328_clk_priv *priv = dev_get_priv(dev);
rkclk_init(priv->cru);
return 0;
}
static int rk3328_clk_ofdata_to_platdata(struct udevice *dev)
{
struct rk3328_clk_priv *priv = dev_get_priv(dev);
priv->cru = dev_read_addr_ptr(dev);
return 0;
}
static int rk3328_clk_bind(struct udevice *dev)
{
int ret;
struct udevice *sys_child;
struct sysreset_reg *priv;
/* The reset driver does not have a device node, so bind it here */
ret = device_bind_driver(dev, "rockchip_sysreset", "sysreset",
&sys_child);
if (ret) {
debug("Warning: No sysreset driver: ret=%d\n", ret);
} else {
priv = malloc(sizeof(struct sysreset_reg));
priv->glb_srst_fst_value = offsetof(struct rk3328_cru,
glb_srst_fst_value);
priv->glb_srst_snd_value = offsetof(struct rk3328_cru,
glb_srst_snd_value);
sys_child->priv = priv;
}
#if CONFIG_IS_ENABLED(CONFIG_RESET_ROCKCHIP)
ret = offsetof(struct rk3328_cru, softrst_con[0]);
ret = rockchip_reset_bind(dev, ret, 12);
if (ret)
debug("Warning: software reset driver bind faile\n");
#endif
return ret;
}
static const struct udevice_id rk3328_clk_ids[] = {
{ .compatible = "rockchip,rk3328-cru" },
{ }
};
U_BOOT_DRIVER(rockchip_rk3328_cru) = {
.name = "rockchip_rk3328_cru",
.id = UCLASS_CLK,
.of_match = rk3328_clk_ids,
.priv_auto_alloc_size = sizeof(struct rk3328_clk_priv),
.ofdata_to_platdata = rk3328_clk_ofdata_to_platdata,
.ops = &rk3328_clk_ops,
.bind = rk3328_clk_bind,
.probe = rk3328_clk_probe,
};