2018-05-06 21:58:06 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0+
|
2015-02-03 10:58:20 +00:00
|
|
|
/*
|
|
|
|
* Copyright (C) 1989-2013 Free Software Foundation, Inc.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "libgcc2.h"
|
|
|
|
|
|
|
|
DWtype
|
|
|
|
__ashldi3(DWtype u, shift_count_type b)
|
|
|
|
{
|
|
|
|
if (b == 0)
|
|
|
|
return u;
|
|
|
|
|
|
|
|
const DWunion uu = {.ll = u};
|
|
|
|
const shift_count_type bm = W_TYPE_SIZE - b;
|
|
|
|
DWunion w;
|
|
|
|
|
|
|
|
if (bm <= 0) {
|
|
|
|
w.s.low = 0;
|
|
|
|
w.s.high = (UWtype)uu.s.low << -bm;
|
|
|
|
} else {
|
|
|
|
const UWtype carries = (UWtype) uu.s.low >> bm;
|
|
|
|
|
|
|
|
w.s.low = (UWtype)uu.s.low << b;
|
|
|
|
w.s.high = ((UWtype)uu.s.high << b) | carries;
|
|
|
|
}
|
|
|
|
|
|
|
|
return w.ll;
|
|
|
|
}
|
|
|
|
|
|
|
|
DWtype
|
|
|
|
__ashrdi3(DWtype u, shift_count_type b)
|
|
|
|
{
|
|
|
|
if (b == 0)
|
|
|
|
return u;
|
|
|
|
|
|
|
|
const DWunion uu = {.ll = u};
|
|
|
|
const shift_count_type bm = W_TYPE_SIZE - b;
|
|
|
|
DWunion w;
|
|
|
|
|
|
|
|
if (bm <= 0) {
|
|
|
|
/* w.s.high = 1..1 or 0..0 */
|
|
|
|
w.s.high = uu.s.high >> (W_TYPE_SIZE - 1);
|
|
|
|
w.s.low = uu.s.high >> -bm;
|
|
|
|
} else {
|
|
|
|
const UWtype carries = (UWtype) uu.s.high << bm;
|
|
|
|
|
|
|
|
w.s.high = uu.s.high >> b;
|
|
|
|
w.s.low = ((UWtype)uu.s.low >> b) | carries;
|
|
|
|
}
|
|
|
|
|
|
|
|
return w.ll;
|
|
|
|
}
|
|
|
|
|
|
|
|
DWtype
|
|
|
|
__lshrdi3(DWtype u, shift_count_type b)
|
|
|
|
{
|
|
|
|
if (b == 0)
|
|
|
|
return u;
|
|
|
|
|
|
|
|
const DWunion uu = {.ll = u};
|
|
|
|
const shift_count_type bm = W_TYPE_SIZE - b;
|
|
|
|
DWunion w;
|
|
|
|
|
|
|
|
if (bm <= 0) {
|
|
|
|
w.s.high = 0;
|
|
|
|
w.s.low = (UWtype)uu.s.high >> -bm;
|
|
|
|
} else {
|
|
|
|
const UWtype carries = (UWtype)uu.s.high << bm;
|
|
|
|
|
|
|
|
w.s.high = (UWtype)uu.s.high >> b;
|
|
|
|
w.s.low = ((UWtype)uu.s.low >> b) | carries;
|
|
|
|
}
|
|
|
|
|
|
|
|
return w.ll;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long
|
|
|
|
udivmodsi4(unsigned long num, unsigned long den, int modwanted)
|
|
|
|
{
|
|
|
|
unsigned long bit = 1;
|
|
|
|
unsigned long res = 0;
|
|
|
|
|
|
|
|
while (den < num && bit && !(den & (1L<<31))) {
|
|
|
|
den <<= 1;
|
|
|
|
bit <<= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (bit) {
|
|
|
|
if (num >= den) {
|
|
|
|
num -= den;
|
|
|
|
res |= bit;
|
|
|
|
}
|
|
|
|
bit >>= 1;
|
|
|
|
den >>= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (modwanted)
|
|
|
|
return num;
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
long
|
|
|
|
__divsi3(long a, long b)
|
|
|
|
{
|
|
|
|
int neg = 0;
|
|
|
|
long res;
|
|
|
|
|
|
|
|
if (a < 0) {
|
|
|
|
a = -a;
|
|
|
|
neg = !neg;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (b < 0) {
|
|
|
|
b = -b;
|
|
|
|
neg = !neg;
|
|
|
|
}
|
|
|
|
|
|
|
|
res = udivmodsi4(a, b, 0);
|
|
|
|
|
|
|
|
if (neg)
|
|
|
|
res = -res;
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
long
|
|
|
|
__modsi3(long a, long b)
|
|
|
|
{
|
|
|
|
int neg = 0;
|
|
|
|
long res;
|
|
|
|
|
|
|
|
if (a < 0) {
|
|
|
|
a = -a;
|
|
|
|
neg = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (b < 0)
|
|
|
|
b = -b;
|
|
|
|
|
|
|
|
res = udivmodsi4(a, b, 1);
|
|
|
|
|
|
|
|
if (neg)
|
|
|
|
res = -res;
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
long
|
|
|
|
__udivsi3(long a, long b)
|
|
|
|
{
|
|
|
|
return udivmodsi4(a, b, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
long
|
|
|
|
__umodsi3(long a, long b)
|
|
|
|
{
|
|
|
|
return udivmodsi4(a, b, 1);
|
|
|
|
}
|
2019-09-02 09:19:15 +00:00
|
|
|
|
|
|
|
UDWtype
|
|
|
|
__udivmoddi4(UDWtype n, UDWtype d, UDWtype *rp)
|
|
|
|
{
|
|
|
|
UDWtype q = 0, r = n, y = d;
|
|
|
|
UWtype lz1, lz2, i, k;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Implements align divisor shift dividend method. This algorithm
|
|
|
|
* aligns the divisor under the dividend and then perform number of
|
|
|
|
* test-subtract iterations which shift the dividend left. Number of
|
|
|
|
* iterations is k + 1 where k is the number of bit positions the
|
|
|
|
* divisor must be shifted left to align it under the dividend.
|
|
|
|
* quotient bits can be saved in the rightmost positions of the
|
|
|
|
* dividend as it shifts left on each test-subtract iteration.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (y <= r) {
|
|
|
|
lz1 = __builtin_clzll(d);
|
|
|
|
lz2 = __builtin_clzll(n);
|
|
|
|
|
|
|
|
k = lz1 - lz2;
|
|
|
|
y = (y << k);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Dividend can exceed 2 ^ (width - 1) - 1 but still be less
|
|
|
|
* than the aligned divisor. Normal iteration can drops the
|
|
|
|
* high order bit of the dividend. Therefore, first
|
|
|
|
* test-subtract iteration is a special case, saving its
|
|
|
|
* quotient bit in a separate location and not shifting
|
|
|
|
* the dividend.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (r >= y) {
|
|
|
|
r = r - y;
|
|
|
|
q = (1ULL << k);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (k > 0) {
|
|
|
|
y = y >> 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* k additional iterations where k regular test
|
|
|
|
* subtract shift dividend iterations are done.
|
|
|
|
*/
|
|
|
|
i = k;
|
|
|
|
do {
|
|
|
|
if (r >= y)
|
|
|
|
r = ((r - y) << 1) + 1;
|
|
|
|
else
|
|
|
|
r = (r << 1);
|
|
|
|
i = i - 1;
|
|
|
|
} while (i != 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* First quotient bit is combined with the quotient
|
|
|
|
* bits resulting from the k regular iterations.
|
|
|
|
*/
|
|
|
|
q = q + r;
|
|
|
|
r = r >> k;
|
|
|
|
q = q - (r << k);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rp)
|
|
|
|
*rp = r;
|
|
|
|
|
|
|
|
return q;
|
|
|
|
}
|
|
|
|
|
|
|
|
UDWtype
|
|
|
|
__udivdi3(UDWtype n, UDWtype d)
|
|
|
|
{
|
|
|
|
return __udivmoddi4(n, d, (UDWtype *)0);
|
|
|
|
}
|